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Abstract. Maximal length feedback with carry shift register sequences have several remarkable
statistical properties. Among them is the property that the arithmetic correlations between any
two cyclically distinct decimations are precisely zero. It is open, however, whether all such pairs of
decimations are indeed cyclically distinct. In this paper we show that the set of distinct decimations
is large and, in some cases, all decimations are distinct.
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1. Introduction. If a = (a0, a1, a2, . . . ) is a periodic binary sequence, let aτ =
(aτ , aτ+1, aτ+2, . . . ) denote the τ -shifted sequence. If a,b are periodic binary se-
quences with the same period T we say they are cyclically distinct if aτ �= b, for every
shift τ with 0 < τ < T .

Associate to a and bτ the 2-adic integers

α =

∞∑
i=0

ai2
i and βτ =

∞∑
i=0

bi+τ2
i.

We recall that if b̄i+τ = 1 − bi+τ denotes the complementary bit, then −βτ = 1 +∑∞
i=0 b̄i+τ2

i. Let

γ = α− βτ =

∞∑
i=0

ci2
i

be the difference. The sequence of bits c = (c0, c1, . . . ) is eventually periodic (with
period T ), and the arithmetic cross-correlation Ca,b(τ) is defined to be the num-
ber of zeroes minus the number of ones in a single window of size T within the
periodic part of c. The pair of sequences a,b is said to have ideal arithmetic cross-
correlation if Ca,b(τ) = 0 for every τ . In this paper we discuss families S of peri-
odic binary sequences such that every pair a,b ∈ S of elements has ideal arithmetic
cross-correlation. Further background on 2-adic numbers can be found in a book by
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Koblitz [15] and in a paper by Klapper and Goresky [14]. Further background on
arithmetic correlations can be found in another paper by Goresky and Klapper [8].

The existence of such families is surprising in light of the Welch bound [11], which
states that if S is a collection of S cyclically distinct binary sequences of period T ,
then there exist a,b ∈ S and a shift τ such that the (usual) periodic cross-correlation

ca,b(τ) =

T−1∑
i=0

(−1)ai−bτ+i

satisfies

ca,b(τ) ≥ T

√
S − 1

ST − 1
.

Thus the Welch bound can be broached, by replacing the usual cross-correlation c
with the arithmetic cross-correlation C.

The particular sequences of interest are called long sequences or �-sequences; they
are in many ways analogous to the binary m-sequences. Let q be a prime number
such that 2 is a primitive root modulo q (meaning that the powers of 2 account for
all the nonzero elements in Z/(q)). Then a binary �-sequence is any sequence of the
form

ai = (A2−i mod q) mod 2,(1.1)

where A ∈ Z/(q) is nonzero. This equation means the following. Let b = 2−1 ∈ Z/(q)
be the inverse of 2, modulo q. First compute Abi and reduce modulo q to obtain a
number between 0 and q−1. Then reduce this number modulo 2. The sequence (1.1)
is strictly periodic with period q − 1, and different choices of A give rise to cyclic
shifts of the same “base” sequence ai = (2−i mod q) mod 2. (Up to a shift, this
sequence may be described as the coefficient sequence of the 2-adic expansion of the
fraction −1/q; it is also the reverse of the binary expansion of the fraction 1/q.) These
sequences have been studied since Gauss [7]. The related sequences (gi mod q) mod �
are used in the Digital Signature Standard and are important for an attack due to
Nguyen and Shparlinski [18].

Such �-sequences may be generated using feedback with carry shift registers as
described in [13, 14], where their role in stream ciphers was investigated; see also [5]
and [16]. This method of generating �-sequences (and their mod p generalizations)
was discovered independently by Marsaglia and Zaman [17] in special cases and by
Couture and L’Ecuyer [4] in general, who proposed using them as pseudorandom
number generators for Monte Carlo simulations.

These �-sequences exhibit important randomness properties. In [1] it was shown
that they have perfect distribution properties: for any d < log q, every d-tuple of bits
occurs either �(q − 1)/d� or �(q − 1)/d� times in a single period, where hereafter we
use ln z and log z to denote the natural and binary logarithms of z > 0, respectively.

Let x = ad be the d-fold decimation of a. That is, xi = adi. We say this
decimation is allowable if d is relatively prime to q − 1. In [8] it was shown that
cyclically distinct allowable decimations of a single �-sequence have ideal arithmetic
cross-correlation; see the following theorem.

Theorem 1.1. Let q be a prime number such that 2 is a primitive root modulo
q and let a = (a0, a1, . . . ) be an �-sequence of period q − 1. Let x = ad and y = ae
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be allowable decimations of a by d and e, respectively. Suppose x and y are cyclically
distinct. Then for any shift τ the arithmetic crosscorrelation vanishes: Cx,y(τ) = 0.

This theorem provides a family S of periodic sequences with ideal arithmetic
cross-correlation. Unfortunately, however, even if d �= e, the sequences x and y may
fail to be cyclically distinct. On the basis of extensive experimental evidence the
following conjecture was made [8].

Conjecture 1.2. If q > 13 is prime, 2 is primitive modulo q, and a is an
�-sequence based on q, then every pair of allowable decimations of a is cyclically
distinct.

It is relevant to remark that by the celebrated result of Hooley [12], under the
extended Riemann hypothesis, 2 is primitive for a set of primes of positive relative
density.

If Conjecture 1.2 holds for a prime q, then the resulting family S consists of
ϕ(q − 1) distinct elements with ideal arithmetic correlation (where ϕ is the Euler
function). We have verified this conjecture for all primes q < 2, 000, 000. It can be
restated in very elementary terms as follows.

Let q > 13 be a prime number such that 2 is primitive mod q. Let E be the set
of even integers 0 ≤ e ≤ q − 1. Fix A with 1 ≤ A ≤ q − 1. Suppose the mapping
x 	→ Axd mod q preserves (but permutes the elements within) the set E. Then d = 1
and A = 1. The equivalence between these two statements follows from the fact that
ad and ae are cyclically distinct if and only if a and ah are cyclically distinct, where
h = d(e−1 mod q − 1).

2. Previous and current results. Conjecture 1.2 has turned out to be sur-
prisingly resistant to proof. Suppose q is prime, 2 is a primitive root mod q, a is an
�-sequence with prime connection integer q > 13, and d is relatively prime to q − 1.
In [8] and [9] the following was shown.

Theorem 2.1. Suppose
(i) either d = −1 (or, equivalently, d = q − 2);
(ii) or q ≡ 1 mod 4 and d = (q + 1)/2;
(iii) or

1 < d ≤ (q2 − 1)4

216q7(ln q + 2)4
∼ q

(16 ln q)4
.

Then the decimation ad is cyclically distinct from a.
In this paper we give the complete proof of Theorem 2.1 (iii) (which was only

sketched in [9]) and we improve substantially on this bound by removing the ln q
factors. Let a, q, d be as above.

Theorem 2.2. If d > 1 and

d ≤ (q2 − 1)4

224q7

or if d < 0 and

|d| ≤ (q2 − 1)4

225q7
,

then the decimation ad is cyclically distinct from a.
Finally, we show that, asymptotically for large q, the collection of counterexamples

to Conjecture 1.2 is a vanishingly small fraction of the set of all allowable decimations.
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Theorem 2.3. For any fixed ε > 0 there is a constant C0(ε) > 0 depending only
on ε, such that there are at most C0(ε)q

2/3+ε decimations of an �-sequence a with
connection number q that are cyclic permutations of a.

Finally, we show that for certain q, Conjecture 1.2 holds.
Theorem 2.4. If q = 2p+1 = 8r+3 with q, p, and r prime, and if 2 is primitive

mod q, then Conjecture 1.2 holds for q sufficiently large.

3. Preliminary estimates. Throughout this paper we fix a primitive qth root
of unity, say, ξ = e2πi/q ∈ C. Define

Sd(a, b) =

q−1∑
x=0

ξax
d+bx.

Then Sd(0, 0) = q, Sd(a, 0) = Sd(0, b) = 0 if a and b are nonzero, and

Sd(1, b) = Sd(λ
d, λb)(3.1)

for any λ �= 0 (and for any b).
We need the following bound on the fourth moment of the sums Sd(a, b) averaged

over b; see [9].
Lemma 3.1. If a �= 0 and d > 1, then

q−1∑
b=0

|Sd(a, b)|4 ≤ (d− 1)q3.

Proof. The proof follows the method of Davenport and Heilbronn [6]. Let R(w, t)
denote the number of solutions to the system of congruences

x + y ≡ w mod q,

xd + yd ≡ t mod q.

By solving for y using the first equation, we can reduce this to a single equation
of degree d − 1. (Since d > 1 is odd, the terms involving xd cancel out.) Such an
equation has at most d− 1 solutions unless w = t = 0, when it has q solutions. Also,
R(w, t) = 0 if one but not both of w and t is zero. Thus we have

q−1∑
w=1

q−1∑
t=1

R(w, t) =

q−1∑
w=0

q−1∑
t=0

R(w, t) − q = q2 − q

and

q−1∑
w=0

q−1∑
t=0

R2(w, t) ≤ (d− 1)

q−1∑
w=1

q−1∑
t=1

R(w, t) + q2 = dq2 − (d− 1)q.

Therefore the sum

T =

q−1∑
a=0

q−1∑
b=0

|Sd(a, b)|4

is given by

T =

q−1∑
a=0

q−1∑
b=0

p−1∑
x1=0

p−1∑
x2=0

p−1∑
x3=0

p−1∑
x4=0

ξa(xd
1+xd

2−xd
3−xd

4)+b(x1+x2−x3−x4),



134 M. GORESKY, A. KLAPPER, R. MURTY, AND I. SHPARLINSKI

which is q2 times the number of solutions (x1, x2, x3, x4) to the system

x1 + x2 ≡ x3 + x4 mod q,

xd
1 + xd

2 ≡ xd
3 + xd

4 mod q

with 0 ≤ x1, x2, x3, x4 ≤ q − 1. Counting the number of pairs (x1, x2) and (x3, x4)
independently gives

q−1∑
a=0

q−1∑
b=0

|Sd(a, b)|4 = T = q2

q−1∑
w=0

q−1∑
t=0

R2(w, t) ≤ dq4 − (d− 1)q3.(3.2)

The terms for which a = 0 contribute the quantity

q−1∑
b=0

|Sd(0, b)|4 = q4.

Thus

q−1∑
a=1

q−1∑
b=0

|Sd(a, b)|4 ≤ (d− 1)(q4 − q3).

Since d is relatively prime to q−1, the mapping x 	→ xd is a permutation; hence (3.1)
gives

q−1∑
b=0

|Sd(a, b)|4 =

q−1∑
b=0

|Sd(1, b)|4 =
1

q − 1

q−1∑
λ=1

q−1∑
b=0

|Sd(λ
d, λb)|4

≤ 1

q − 1

q−1∑
u=0

q−1∑
v=0

|Sd(u, v)|4 ≤ (d− 1)q3.

(3.3)

This completes the proof of Lemma 3.1.
Let E = {0, 2, . . . , q − 1} ⊂ Z/(q) denote the set of “even” elements. For any

b ∈ Z define

σd(b) =
∑
x∈E

ξbAxd

=

(q−1)/2∑
x=0

ξbA2dxd

.

Then σd(0) = |E| = (q + 1)/2.
Lemma 3.2. For any b �= 0 we have

|σd(b)| ≤
214/4

π
(d− 1)1/4q3/4 + 4 ln q + 4 < 23(d− 1)1/4q3/4.

Proof. Davenport and Heilbronn [6] gave estimates on certain exponential sums.
If we let

F (n) =

q−1∑
x=0

ξf(x)+nx,
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where n is an integer, then their Lemma 4 says that for any m,

m∑
x=0

ξf(x) =
m

q
F (0) + O

(
q−1∑
n=1

1

n
(|F (n)| + |F (−n)|)

)
+ O(ln q).

Let us take f(x) = axd (where a = bA2d) and m = (q − 1)/2. Then F (0) = 0 and
F (n) = Sd(a, n). By carefully examining Davenport and Heilbronn’s proof, one sees
that the constant on the first big-O is 2/π and the second big-O can be replaced by
4 ln q + 4. In other words,

|σd(b)| ≤
2

π

(
q−1∑
n=1

1

n
(|Sd(a, n)| + |Sd(a,−n)|)

)
+ 4 ln q + 4.(3.4)

Applying Hölder’s inequality to Lemma 3.1 gives

q−1∑
n=1

1

n
|Sd(a, n)| ≤ 43/4(d− 1)1/4q3/4.

The same bound applies to the sum using Sd(a,−n) in place of Sd(a, n). The lemma
follows.

4. Proof of Theorem 2.1 (iii). Although Theorem 2.2 gives a better estimate
than Theorem 2.1 (iii), we briefly include our original proof of it because it illustrates
a technique which may some day be refined so as to give an even better estimate. As in
the previous sections we suppose that q is a prime number, that 2 is primitive modulo
q, and that d is relatively prime to q − 1. Again let E = {0, 2, . . . , q − 1} ⊂ Z/(q) be
the set of even numbers. Define

fE(x) =

{
1 if x ∈ E,
0 otherwise.

Its Fourier transform is given by

f̂E(b) =
1

q

q−1∑
c=0

fE(c)ξ−bc.

By the Fourier inversion formula we have

fE(a) =

q−1∑
b=0

f̂E(b)ξba.

Now assume that the mapping x 	→ Axd preserves (but permutes the elements within)
the set E. Then

∑
x∈E

fE(Axd) =

q−1∑
b=0

f̂E(b)
∑
x∈E

ξbAxd

=

q−1∑
b=0

f̂E(b)σd(b).

The left-hand side equals |E| = (q + 1)/2 because if b = 0, then f̂E(b) = (q + 1)/(2q)
and σd(b) = |E| = (q + 1)/2. Thus

q2 − 1

4q
=

∣∣∣∣∣
q−1∑
b=1

f̂E(b)σd(b)

∣∣∣∣∣ ≤
(

q−1∑
b=1

|f̂E(b)|
)

max
b �=0

|σd(b)|.
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We need the following lemma; see [9].
Lemma 4.1. The following inequality holds:

q−1∑
b=1

|f̂E(b)| ≤ 1 +
1

2
ln

(
q − 3

2

)
<

ln q + 2

2
.

Combining this estimate with Lemma 3.2 gives

d >
(q2 − 1)4

216q7(ln q + 2)4
,

which completes the proof of Theorem 2.1.

5. Proof of Theorem 2.2. In this section we use the technique for obtaining
bounds from exponential sums that has been used by several authors (for example,
see [3]).

As in the preceding sections, let E be the set of even integers between 0 and q−1
and assume that the conclusion of Theorem 2.2 is false. In other words, assume that
Axd ∈ E for every x ∈ E. Let W denote the set of integers between 0 and �(q − 2)/4�
and let s = 2 �(q − 1)/4� + 1. It follows that the congruence

Axd ≡ 2(u− v) + s mod q, x ∈ E, u, v ∈ W,

has no solutions. Therefore

0 =
1

q

∑
u,v∈W

∑
x∈E

q−1∑
b=0

ξb(Axd−2(u−v)−s)

=
1

q

q−1∑
b=0

ξ−bsσd(b)
∑

u,v∈W

ξ2b(u−v) =
1

q

q−1∑
b=0

ξ−bsσd(b)

∣∣∣∣∣
∑
u∈W

ξbu

∣∣∣∣∣
2

.

The term corresponding to b = 0 equals |W |2|E|/q. Therefore

|W |2|E|
q

= −1

q

q−1∑
b=1

ξ−bsσd(b)

∣∣∣∣∣
∑
u∈W

ξ2bu

∣∣∣∣∣
2

≤ 1

q

q−1∑
b=1

|σd(b)|
∣∣∣∣∣
∑
u∈W

ξ2bu

∣∣∣∣∣
2

.(5.1)

Using Lemma 3.2, we derive

|W |2|E|
q

≤ 23(d− 1)1/4q−1/4

q−1∑
b=1

∣∣∣∣∣
∑
u∈W

ξbu

∣∣∣∣∣
2

≤ 23(d− 1)1/4q−1/4

q−1∑
b=0

∣∣∣∣∣
∑
u∈W

ξ2bu

∣∣∣∣∣
2

= 23(d− 1)1/4q−1/4(q|W |) = 23(d− 1)1/4q3/4|W |.

(5.2)

Since |W | ≥ (q − 1)/4 we obtain

d− 1 ≥ |W |4|E|4
212q7

≥ (q2 − 1)4

224q7
.
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A similar argument can be made for negative d. Suppose d = −e with e > 0. The
system of congruences

x + y ≡ w mod q,

xd + yd ≡ t mod q

is equivalent to the single congruence

(w − x)e + xe ≡ t(w − x)exe,

which has at most 2e solutions. This fact can be used in the proof of Lemma 3.1,
which now says, If a �= 0 and if d = −e < 0, then

q−1∑
b=0

|Sd(a, b)|4 ≤ 2eq3.

Lemma 3.2 then reads as follows: for any b �= 0,

|σd(b)| < 23(2e)1/4q3/4.

Now go back to the beginning of the proof of Theorem 2.2, using this estimate for
|σd(b)| in (5.1). The factors (d − 1) become replaced by 2e, which leads to the con-
clusion

2e >
(q2 − 1)4

224q7
.

This completes the proof of Theorem 2.2.

6. Proof of Theorem 2.3. It follows from the proof of Theorem 8 of Canetti
et al. [2] that for any fixed ε > 0, the sum of the numbers of solutions to the systems
of congruences

x1 + x2 ≡ x3 + x4 mod q,

xd
1 + xd

2 ≡ xd
3 + xd

4 mod q
(6.1)

over all d = 0, 1, . . . , q − 2 is bounded by a function in O
(
q11/3+ε

)
. Let D be the set

of d such that the system of congruences (6.1) has more than q3−ε solutions. Then
the cardinality of D satisfies |D| ∈ O(q2/3+ε).

We claim that if there exists A �= 0 such that x 	→ Axd preserves the set E of even
elements, then d ∈ D. Suppose the contrary: fix such an A and d, and suppose that
d /∈ D. Then the number of solutions to (6.1) is no more than q3−ε. Thus by (3.2)
we obtain the bound

q−1∑
a=0

q−1∑
b=0

|Sd(a, b)|4 = T ∈ O(q5−ε).

Hence, as in (3.3), we conclude that

q−1∑
b=0

|Sd(a, b)|4 ≤ 1

q − 1

q−1∑
a=0

q−1∑
b=0

|Sd(a, b)|4 ∈ O(q4−ε),
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and thus |Sd(a, b)| ∈ O(q1−ε/4) for every b = 0, . . . , q − 1. Hence

q−1∑
n=1

1

n
|Sd(a, n)| ∈ O(q1−ε/4 ln q)

and this estimate can be used in (3.4) to give

|σd(b)| ∈ O(q1−ε/4 ln q).

Now return to the beginning of the proof of Theorem 2.2 and use this estimate in (5.1).
Then (5.2) becomes

|W |2|E|
q

∈ O(q1−ε/4|W | ln q),

which is impossible.

7. Proof of Theorem 2.3 and other large sets of distinct decimations.
Let G denote the set of decimations of an �-sequence a with connection integer q. The
set G is a multiplicative group isomorphic to (Z/(ϕ(q)))∗. Let H denote the set of
decimations that are cyclic shifts of a. Then H is a subgroup of G.

Let ∆ ⊆ G be a set of representatives for G/H, with 1 ∈ ∆. That is, for each
coset dH, there is exactly one element in dH ∩ ∆.

Lemma 7.1. The set D = {ad : d ∈ ∆} is a set of |∆| pairwise cyclically distinct
decimations with ideal arithmetic correlations.

Proof. Suppose that ad is a cyclic permutation of ae, with d, e ∈ ∆. Then ade−1

is a cyclic permutation of a. Thus de−1 ∈ H, and by the hypotheses on ∆, de−1 = 1.
That is, d = e.

Corollary 7.2. Let a be an �-sequence with connection integer q. For any fixed
ε > 0 there are constants C1(ε), C2(ε) > 0 depending only on ε, such that the following
statements hold:

(i) The set {ad : d ∈ ∆} is a set of at least

|G|
|H| ≥ C1(ε)q

1/3−ε

cyclically distinct sequences with ideal arithmetic correlations.
(ii) If ϕ(ϕ(q)) has a prime factor r > C2(ε)q

2/3+ε, then {ad : d ∈ ∆} is a set of
at least r cyclically distinct sequences with ideal arithmetic correlations.

Proof. The first statement follows from Theorem 2.3 and the lower bound

q

ϕ(ϕ(q))
∈ O((ln ln q)2);

see Theorem 328 in [10].
We know that |H| and |∆| divide |G| = ϕ(ϕ(q)). Take C2(ε) = C1(ε)

−1. If
ϕ(ϕ(q)) has a prime factor r > C2(ε)q

2/3+ε, then r cannot divide |H|, and so {ad :
d ∈ ∆} is a set of at least r > C2(ε)q

2/3+ε cyclically distinct sequences. This proves
the second statement.
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Now consider integers q with the special form q = 2p + 1 = 2kr + 3 with p
and r prime. In this case ϕ(ϕ(q)) = ϕ(2p) = p − 1 = 2k−1r. If k is small enough
(for example, k = 3 as in the formulation of Theorem 2.4) and q is large enough,
then r does not divide |H|. This implies that |H| is a power of 2. We also have
|G| = (Z/(2p))∗ = (Z/(p))∗, which is a cyclic group. Thus either |H| is trivial or
H contains −1. However, we have already shown in Theorem 2.1 that −1 �∈ H. It
follows that all decimations are cyclically distinct. This proves Theorem 2.4.

In fact, as we have just seen, in Theorem 2.4 one can consider more general
families of primes.

There is a heuristic for the density of such primes q. Artin’s conjecture, which is
true if the extended Riemann hypothesis is true [12], implies that there are at least
AN/ lnN primes q < N such that 2 is primitive modulo q. (The constant A is known
as Artin’s constant and is about .3739558.) Of these, we expect about 1/ lnN to
satisfy q = 2p + 1 with p prime. If p is congruent to 3 modulo 4, then q is congruent
to 7 modulo 8, which would imply that 2 is a quadratic residue, hence, not primitive.
Thus it must be the case that p is congruent to 1 modulo 4, so q = 8r + 3 for some
r. We expect r to be prime with probability about 1/ lnN , so we expect more than
AN/(lnN)2 primes less than N that satisfy all these requirements. Experimentation
shows that this estimate is a bit conservative for N < 1, 000, 000, 000.

8. Conclusions. We have significantly increased the set of decimations of an
�-sequence a that are known to be cyclically distinct from a. For sufficiently long �-
sequences we have shown that there is a large family of cyclically distinct decimations.
In some special cases we have in fact shown that all decimations are cyclically distinct.
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