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Abstract

Bent and resilient functions play significant roles in cryptography, coding the-
ory, and combinatorics. However, the numbers of bent and resilient functions on a
given number of variables are not known. Even a reasonable bound on the number
of bent functions is not known and the best known bound on the number of resilient
functions seems weak for functions of high orders. In this paper we present new
bounds which significantly improve upon those which can be directly deduced from
the restrictions on the degrees of these functions. In the case of bent functions, it
is the first one of this type. In the case of m-resilient functions, it improves upon
the known bounds for m large.
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1 Introduction

Since the introduction of the notion of bent function in the mid-70’s, the problem of
efficiently upper bounding their number has remained open. The case of resilient func-
tions is different: an upper bound obtained by M. Schneider seems efficient, at least
for resilient functions of low orders. In both cases (bent and resilient functions), simple
upper bounds can be directly derived from the upper bounds on their algebraic degrees.
But these derived bounds are weak. This can be checked by trying (unsuccessfully) to
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obtain an m-resilient function (respectively, a bent function) in n variables by picking at
random a Boolean function of algebraic degree upper bounded by n−m−1 (respectively,
n/2). In this paper, we use characterizations of these functions by means of their Nu-
merical Normal Forms to derive upper bounds on the numbers of m-resilient functions
and of bent functions, which show that these numbers are exponentially (with respect to
n) smaller than the numbers of Boolean functions of algebraic degrees smaller than or
equal to n−m− 1 and n/2 respectively. We improve upon Schneider’s bound for high
orders resilient functions.

We denote by ⊕ (respectively, +) addition in F2 (respectively, in Z) and by
⊕

i∈...

(respectively,
∑

i∈...) the corresponding multiple sum. Let n be any positive integer. Any
Boolean function f in n variables (i.e., any {0, 1}-valued function defined on the set F2

n

of all binary words of length n) admits (cf. [18]) a unique algebraic normal form (or
ANF):

f(x1, · · · , xn) =
⊕

I⊆{1,···,n}
aI

∏
i∈I

xi =
⊕

I⊆{1,···,n}
aI xI ,

where the aI ’s are in F2 and xI =
∏

i∈I xi. We call the degree of the algebraic normal
form of a Boolean function its algebraic degree. Any function f also admits (cf. [7]) a
unique numerical normal form (or NNF):

f(x1, · · · , xn) =
∑

I⊆{1,···,n}
λI xI ,

where the λI ’s are in Z. We call the degree of the numerical normal form of a Boolean
function its numerical degree. The ANF of f being equal to its NNF mod 2, the algebraic
degree of f is always smaller than or equal to its numerical degree.

The Hamming weight, wH(f), of a Boolean function f in n variables is the size of its
support, {x ∈ F n

2 ; f(x) = 1}. The Hamming distance, dH(f, g), between two Boolean
functions f and g is the Hamming weight of their difference (i.e. of their sum modulo 2)
f ⊕ g. The nonlinearity of f is its minimum distance to all affine functions. Functions
used in stream or block ciphers must have high nonlinearities to resist certain attacks
on these ciphers (correlation and linear attacks). A Boolean function is called bent if
its nonlinearity equals 2n−1 − 2n/2−1 (which is the maximum possible value), where n is
even. The distance from a bent function to every affine function equals 2n−1 ± 2n/2−1.
This property can also be stated in terms of the Walsh (i.e., Hadamard) transform of f ,
defined as

f̂(s) =
∑

x∈F2
n

f(x) (−1)x·s,

where x · s denotes the usual inner product x · s =
⊕n

i=1 xi si. But it is more easily stated
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in terms of the Walsh transform of the “sign” function χf (x) = (−1)f(x), equal to

χ̂f (s) =
∑

x∈F2
n

(−1)f(x)⊕x·s.

The function f is bent if and only if χ̂f (s) has constant magnitude 2n/2 (cf. [10, 18, 27]).
Indeed, the distance dH(f, l) between f and the affine function l(x) = s · x ⊕ ε (s ∈
F n

2 ; ε ∈ F2) and the number χ̂f (s) are related by:

χ̂f (s) = (−1)ε(2n − 2dH(f, l)). (1)

Notice that

χ̂f (s) = 2n − 2f̂(s) if s = 0 and χ̂f (s) = −2f̂(s) otherwise. (2)

The notion of bent function is invariant under linear equivalence and it is independent
of the choice of the inner product in F2

n (since any other inner product has the form
〈x, s〉 = x ·L(s), where L is a self-adjoint linear isomorphism). Any function f is bent if
and only if its support is a difference set in the elementary Abelian 2-group F n

2 (cf. [10]).
The notion of difference sets in Abelian groups had been known for several decades
when bent functions were introduced in cryptography, but it was not well studied in the
framework of elementary 2-groups.

The class of bent functions, whose complete determination is still an open problem,
is relevant to several topics of information theory:

• cryptography, cf. [22] (bent functions have a drawback from cryptographic view-
point: they are not balanced; but as soon as n is large enough (say n = 20), the
difference 2n/2−1 between their weights and the weight 2n−1 of balanced functions
is negligible and cannot be used in attacks);

• algebraic coding theory: for example, Kerdock codes are constructed from quadratic
bent functions and are the best known codes for their parameters, cf. [18];

• sequences (cf. [24]);

• design theory (any difference set can be used to construct a symmetric design,
cf. [1], pages 274-278).

More information on bent functions can be found in the survey paper [5].
A characterization of bent functions by means of their NNFs is given in [7] and is

our main tool in deriving a bound on their number: a Boolean function f is bent if and
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only if for every I such that n
2

< |I| < n (where |I| denotes the size of I), the coefficient

λI is divisible by 2|I|−
n
2 , and if λ{1,...,n} ≡ 2

n
2
−1 mod 2

n
2 .

Another class of Boolean functions which is important for cryptography is that of
resilient functions. These functions play a central role in stream ciphers: in a common
type of these ciphers (cf. [30]), the outputs of n linear feedback shift registers are the
inputs to a Boolean function. The output of the function produces the keystream, which
is then bitwise XOR-ed with the message to produce the cipher. Several divide-and-
conquer attacks exist on this method of encryption (cf. [3, 15, 16, 31]) and lead to
criteria the combining function must satisfy. Two main criteria are the following: the
combining function must be balanced (i.e. uniformly distributed) and the probability
distribution of its output must be unaltered when any m of its inputs are fixed [31],
with m as large as possible. This property, called m-th order correlation-immunity [30],
is characterized by the set of zero values in the Walsh spectrum [33]: f is m-th order
correlation-immune if and only if χ̂f (u) = 0, or, equivalently, f̂(u) = 0 for all u ∈ F n

2

such that 1 ≤ wH(u) ≤ m, where wH(u) denotes the Hamming weight of the n-bit
vector u (the number of its nonzero components). Balanced m-th order correlation-
immune functions are called m-resilient functions and are characterized by the fact that
χ̂f (u) = 0 for all u ∈ F n

2 such that wH(u) ≤ m.
The notions of correlation-immune and resilient functions are not invariant under

linear equivalence.
Characterizations of resilient functions and of correlation-immune functions by means

of NNF are given in [8] and in [6] and are also our main tool in deriving bounds on
their numbers: a Boolean function f is m-resilient if and only if for every I such that
|I| ≥ n−m, the coefficient λI of xI in the NNF of the function g(x) = f(x)⊕x1⊕ . . .⊕xn

is null (i.e. if and only if the numerical degree of g is smaller than n − m). And f is
m-th order correlation-immune if and only if, for every I such that |I| ≥ n−m, we have:
λI = (−2)|I|−nλ{1,···,n} = (−1)n (−2)|I|−nwH(f).

2 Upper Bounds on Degrees of Functions

Rothaus’ inequality states that any bent function has algebraic degree at most n/2 [27].
Thus, the number of bent functions is at most

21+n+...+( n
n/2) = 22n−1+ 1

2(
n

n/2).

We refer to this as the naive bound on (the number of) bent functions. However, we know
that for n = 6 (the highest number of variables for which the number of bent functions
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is known), the number of bent functions is approximately equal to 232 (cf. [26]), which

is much less than 225+ 1
2(

6
3) = 242. Also it has been checked experimentally that there

is no hope of obtaining a bent function in 8 variables by picking a Boolean function of
algebraic degree upper bounded by 4 at random. So a better upper bound is desirable.

Siegenthaler’s inequality [30] states that any m-th order correlation-immune function
in n variables has algebraic degree at most n − m, that any m-resilient function (0 ≤
m < n−1) has algebraic degree smaller than or equal to n−m−1, and that any (n−1)-
resilient function has algebraic degree 1. This implies that the number of m-resilient

functions is at most 21+n+...+( n
n−m−1) if m < n − 1. This is also a weak bound that we

refer to as the naive bound on (the number of) m-resilient functions.
A bound on the number of first order correlation-immune functions was found by

Yang and Guo [32] and improved to
∑2n−2

j=0

(
2n−2

j

)4
by Park, Lee, Sung and Kim [25]. The

method of Park, Lee, Sung and Kim can be applied to bound the number of 1-resilient
functions. This gives a slightly smaller (but more complex) bound. Maitra and Sarkar
[19] have also derived an upper bound for the number of first order correlation-immune
functions and Jian-Zhou Zhang, Zhi-Sheng You and Zheng-Liang Li [34] have derived an
upper bound for the number of m-th order correlation-immune functions. However, their
results involve complex parameters which make them impractical for obtaining effective
upper bounds.

Moreover, a general and efficiently computed upper bound was earlier found by
Schneider [29]. In the case of m-resilient functions, the upper bound he obtained is∏n−m

j=1

(
2j

2j−1

)(n−j−1
m−1 )

. His bound for the number of correlation-immune functions is more
complex but comparable. In both cases, the bound when m = 1 is better than Park, Lee,
Sung and Kim’s bound. It seems difficult to improve it significantly for low orders. But
Schneider’s bound is weak for high orders. For instance, the exact number of (n − 3)-
resilient functions has been computed [2]: it is equal to n(n− 1)(3n− 2)(n+1)/3, which

is much less than
∏3

j=1

(
2j

2j−1

)(n−j−1
n−4 )

, as we can see in Table 1.

n Schneider/exact n Schneider/exact
5 3.9× 101 9 1.1× 109

6 8.6× 102 10 5.7× 1011

7 4.4× 104 11 5.9× 1014

8 4.8× 106 12 1.3× 1018

Table 1: (Schneider’s bound/exact number) of (n− 3)-resilient functions

In this paper we derive a new bound which significantly improves upon Schneider’s
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bound for high order correlation-immune and resilient functions.

Remark: It has recently been shown that the distance between any m-th order correlation-
immune function (respectively, any m-resilient function) and any affine function is divis-
ible by 2m (respectively, 2m+1) [28] (this result can be improved [6, 9] when the algebraic
degree of the function is more strictly upper bounded than by Siegenthaler’s bound).
As has been observed [4, 6], the divisibility properties of the distances between affine
functions and resilient functions imply upper bounds on their algebraic degrees. The
same observation can be made for bent functions. Indeed, according to relations (1) and
(2), the distance between a Boolean function f and every affine function is divisible by
2k (respectively is congruent to 2k−1 modulo 2k) where k < n, if and only if, for every
word s, the number f̂(s) is divisible by 2k (respectively is congruent to 2k−1 modulo 2k).
Then f has algebraic degree at most n− k. This is a direct consequence of the fact that
the ANF of any Boolean function equals its NNF modulo 2 and of the relations obtained
in [7] between the coefficients λu and the values of the Walsh transform:

f̂(s) = (−1)w(s)
∑

I⊆{1,···,n} | supp(s)⊆I

2n−|I|λI , (3)

where supp(s) denotes the support {i; si = 1} of s;

λI = 2−n(−2)|I|
∑

x∈F2
n | I⊆supp(x)

f̂(x). (4)

These bounds on the algebraic degrees do not in turn imply the divisibility properties of
their distances to affine functions. McEliece’s Theorem [18, 21] applied to Reed-Muller
codes gives a tight divisibility bound on the distances between affine functions and func-
tions of algebraic degrees at most d: these distances are divisible by 2b(n−1)/dc. 2

We denote by B(n) the set of Boolean functions in n variables, by B(k, n) the subset
of those Boolean functions of algebraic degrees at most k, by D(k, n) the set of functions
in B(n) whose distances to affine functions are all divisible by 2k and by C(k, n) the
set of functions in B(n) whose distances to affine functions are all congruent to 2k mod
2k+1. We also denote B(n) = |B(n)|, B(k, n) = |B(k, n)|, D(k, n) = |D(k, n)|, and
C(k, n) = |C(k, n)|. Thus every bent function is in C(n/2 − 1, n), every m-th order
correlation immune function is in D(m, n), and every m-resilient function is in D(m +
1, n). According to the remark above, we have D(k, n) ⊆ B(n − k, n) and C(k, n) ⊆
B(n − k − 1, n). Applying this fact with k = m (respectively, k = m + 1) implies
Siegenthaler’s upper bound. Applying it with k = n/2 − 1 implies Rothaus’ upper
bound.
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It is possible to give characterizations of D(k, n) and of C(k, n) by means of NNFs.

Proposition 2.1 Let n be any positive integer and m, k any non-negative integers
smaller than n. Let f be any Boolean function on F n

2 and
∑

I⊆{1,···,n} λI xI be its NNF.
Then

1. f ∈ D(k, n) if and only if, for every multi-index I, the number λI is divisible by
2|I|+k−n.

2. f ∈ C(k − 1, n) if and only if, for every multi-index I 6= {1, . . . , n}, the number λI

is divisible by 2|I|+k−n and if λ{1,...,n} is congruent to 2k−1 mod 2k.

Proof: We know that f is in D(k, n) (respectively, in C(k − 1, n)) if and only if, for
every word s, the number f̂(s) is divisible by 2k (respectively, is congruent to 2k−1 mod
2k). Thus, according to relations (3) and (4), f is in D(k, n) if and only if, for every
multi-index I, the number λI is divisible by 2|I|+k−n. Similarly, f is in C(k− 1, n) if and
only if, for every multi-index I 6= {1, . . . , n}, the number λI is divisible by 2|I|+k−n and
λ{1,...,n} is congruent to 2k−1 mod 2k (indeed, the set {x ∈ F2

n | I ⊆ supp(x)} has odd
size if I = {1, . . . , n} and has even size otherwise). 2

3 Necessary Conditions on Functions with Walsh

Spectrum Constraints

A relation between the coefficients of the NNF and the coefficients of the ANF of any
Boolean function f is shown in [7]:

λI =
2n∑

k=1

(−2)k−1
∑

{I1,...,Ik} |
I1∪···∪Ik=I

aI1 · · · aIk
, (5)

where the indices I1, . . . , Ik are all distinct and in indefinite order. Notice that this
relation can be directly derived from the following observation:

f(x) =
⊕

I⊆{1,···,n}
aI xI ⇐⇒ (−1)f(x) =

∏
I⊆{1,···,n}

(−1)aI xI

⇐⇒ 1− 2 f(x) =
∏

I⊆{1,···,n}
(1− 2 aI xI)

⇐⇒ f(x) =
1

2

1−
∏

I⊆{1,···,n}
(1− 2 aI xI)

 .
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We deduce necessary conditions for a function to bent or resilient (see also [13, 14]).

Theorem 3.1 Let n and m be any positive integers. Let f be any Boolean function on
F n

2 . Let f(x) =
⊕

I⊆{1,···,n} aI xI be its ANF. Denote by g(x) the function f(x) ⊕ x1 ⊕
. . . ⊕ xn and let g(x) =

⊕
I⊆{1,···,n} bI xI its ANF (i.e. bI = aI ⊕ 1 if |I| = 1; bI = aI

otherwise). Then

1. if f ∈ D(m,n) and n > m ≥ 2, then for every multi-index I such that |I| ≥
n−m + 2, we have that

⊕
{J,K} |J∪K=I

aJ aK = 0.

2. if f ∈ C(m,n) and n − 1 > m ≥ 2, then for every multi-index I such that |I| ≥
n−m + 1, we have that

⊕
{J,K} |J∪K=I

aJ aK = 0.

3. if f is bent (n even) and n ≥ 6, then for every multi-index I such that |I| ≥ n
2

+ 2,

we have that
⊕

{J,K} |J∪K=I

aJ aK = 0.

4. if f is m-th order correlation-immune with n > m ≥ 2, then for every multi-index
I such that |I| ≥ n−m + 2, we have that

⊕
{J,K} |J∪K=I

aJ aK = 0.

5. if f is m-resilient with n > m ≥ 2, then for every multi-index I such that |I| ≥
n−m, we have that

⊕
{J,K} |J∪K=I

bJ bK = 0.

Proof: Let f(x) =
∑

I⊆{1,···,n} λI xI be the NNF of f . If f ∈ D(m, n), then according to

Proposition 2.1, for every multi-index I, the number λI is divisible by 2|I|+m−n. Thus, if
|I| ≥ n − m + 2, then λI is divisible by 4. According to relation (5), this is equivalent
to aI = 0 (we know this already since f has algebraic degree at most n − m) and⊕
{J,K} |J∪K=I

aJ aK = 0.

Replacing m by m + 1 in Proposition 2.1, we see that if f ∈ C(m,n) and if |I| ≥
n − m + 1, then λI is divisible by 4 (indeed, if I 6= {1, . . . , n}, then λI is divisible by
2|I|+m+1−n and thus by 4 and if I = {1, . . . , n}, λI is congruent to 2m mod 2m+1 and thus
it is divisible by 4). This implies

⊕
{J,K} |J∪K=I

aJ aK = 0.

If f is bent, then f ∈ C(n/2−1, n) and thus, if n/2−1 ≥ 2, then for every multi-index
I such that |I| ≥ n

2
+ 2, we have

⊕
{J,K} |J∪K=I

aJ aK = 0.
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If f is m-th order correlation-immune, then f ∈ D(m,n).
If f is m-resilient, then for every multi-index I whose size is greater than or equal to

n−m, the coefficient of xI in the NNF of g is zero, since g has numerical degree at most
n−m− 1. Thus

⊕
{J,K} |J∪K=I

bJ bK = 0. 2

Notice that if f is m-resilient and if |I| > n−m, then the condition J ∪K = I and
the fact that f has algebraic degree at most n −m − 1 imply that J and K must have
at least size 2; thus

⊕
{J,K} |J∪K=I

bJ bK =
⊕

{J,K} |J∪K=I

aJ aK .

Remark Divisibility by 8 (instead of 4) gives one more equality satisfied by the bI ’s:
according to relation (5), the coefficient of xI in the NNF of g is congruent modulo 8 to

bI − 2
⊕

{J,K} |J∪K=I

bJ bK + 4

 ⊕
{J,K,L} |J∪K∪L=I

bJ bK bL +
⊕

{{J,K},{L,M}} |
J∪K=I;L∪M=I

bJ bK bL bM


(indeed any sum of bits

∑
j∈J uj is congruent to

⊕
j∈J uj +2

⊕
{j,k}⊆J ujuk modulo 4, and

this can be applied to the sum
∑

{J,K} |J∪K=I bJ bK). We deduce that, additionally,⊕
{J,K,L} |J∪K∪L=I

bJ bK bL =
⊕

{{J,K},{L,M}} |
J∪K=I;L∪M=I

bJ bK bL bM

if f ∈ D(m,n), m ≥ 3 and |I| ≥ n−m+3; or if f ∈ C(m, n), m ≥ 2 and |I| ≥ n−m+2;
or if f is bent, n ≥ 8 and |I| ≥ n

2
+ 3; or if f is m-th order correlation-immune and

|I| ≥ n − m + 3; or if f is m-resilient and |I| ≥ n − m. It is not clear to us, however,
how to use this equation to obtain further constraints on the numbers of various types
of functions.

4 Dependence and Bounds

In this section we use Theorem 3.1 to obtain bounds on the numbers of bent, resilient,
and correlation-immune functions and on the sizes of the sets D(m, n) and C(m,n). Our
strategy is to show that certain coefficients depend on other coefficients.

In the cases of bent and correlation immune functions and in the cases of the sets
D(m,n) and C(m,n), we are trying to bound the size of a set E(d, n) of functions f(x) =∑

I⊆{1,2,···,n} aIx
I ∈ B(d, n) such that for all I with |I| ≥ d + 2, we have⊕

{J,K}:J∪K=I

aJaK = 0. (6)
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In the case of resilient functions, we are trying to bound a similar set where the I are
only constrained to have size at least d + 1.

We obtain bounds by counting within certain subsets of B(d, n). Specifically, if
A(d, n) is the set of homogeneous polynomials of degree d in x1, · · · , xn, then we have
B(d, n) = B(d− 1, n) ∪ (∪h∈A(d,n)h + B(d− 1, n)). Fix h(x) =

∑
|I|=d aIx

I ∈ A(d, n). An
element of E(d, n) ∩ (h + B(d − 1, n)) is determined by a choice of aI for each I of size
less than or equal to d− 1 satisfying equation (6).

Lemma 4.1 Let n, d and l be positive integers such that d ≤ n and l ≤ min(d−1, n−d).
Denote by El(d, n) the set of functions f(x) =

∑
I⊆{1,2,···,n} aIx

I ∈ B(d, n) such that for
all I with |I| ≥ d + l, we have

⊕
{J,K}:J∪K=I aJaK = 0. Let f ∈ El(d, n) have degree d

and let J be a multi-index of cardinality d such that the coefficient aJ of xJ in the ANF
of f equals 1. The coefficients aK with K ∩ J = ∅ and l ≤ |K| ≤ d− 1 in the ANF of f
are then completely determined by the coefficients aL with L ∩ J 6= ∅.

Proof: Let I be any multi-index containing J and let K = I − J . In the equation
(6) corresponding to I, the coefficient aK appears only in the term aJaK since if aLaK

appears, then L ∪ K = I, so J ⊆ L, which is only possible if J = L if aL = 1.
Furthermore, suppose I ′ is any other multi-index containing J . If aK appeared in a
term aLaK in the equation corresponding to I ′, then we would have L ∪K = I ′. Thus
J ⊆ L from which it follows that I ′ = I (if aL = 1). Thus aK appears in only one
equation corresponding to an I containing J , and that equation is of the form aK +
(terms involving only aLs with J ∩ L 6= ∅). The lemma follows. 2

It follows that

|El(d, n) ∩ (h + B(d− 1, n)|) ≤ B(d− 1, n)

2
∑min(d−1,n−d)

i=l (n−d
i )

.

Summing over h we immediately obtain that

|El(d, n)| ≤ B(d, n)−B(d− 1, n)

2
∑min(d−1,n−d)

i=l (n−d
i )

+ B(d− 1, n).

We can improve this bound when d ≤ n−d (or, equivalently, d ≤ n/2) by considering
the coefficients aK with |K| = d. From here on let

ε =
1

2(n−1
d−1)−(n−1−d

d−1 )−1
.
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Lemma 4.2 Let d ≤ n/2. The number of homogeneous degree d functions h in n
variables such that equation (6) holds for every multi-index I of size 2d is at most

2(n
d)−(n−d

d )(1 + ε).

Proof: Let T (d, n) denote the number of homogeneous degree d functions h in n variables
such that equation (6) holds for every multi-index I of size 2d. Let J = {J : n ∈ J, |J | =
d} and let J1, J2, · · · , Jt, with t =

(
n−1
d−1

)
be an arbitrary enumeration of J . Let Si be the

set of homogeneous degree d functions h(x) =
∑

K:|K|=d aKxK with aJ`
= 0 for ` < i and

aJi
= 1. Then

T (d, n) = T (d, n− 1) +
t∑

i=1

|Si|. (7)

To bound |Si|, we consider equation (6) with aJ`
= 0 for ` < i and aJi

= 1. There

are
(

n−d
d

)
equations for multi-indices I of size 2d with with Ji ⊆ I. Each such equation

determines aI−Ji
as a sum of terms of the form aKaL with K ∪ L = I. Neither K nor

L can be of the form I ′ − Ji for a multi-index I ′ of size 2d since each of K and L must
contain some element of Ji. Also, I − Ji cannot equal J` for ` < i since any such J`

contains n and I − Ji does not. Thus Si is contained in a linear subspace of dimension
at most

(
n
d

)
− i−

(
n−d

d

)
. It follows from equation (7) that

T (d, n) ≤ T (d, n− 1) +
t∑

i=1

2(n
d)−i−(n−d

d )

≤ T (d, n− 1) + 2(n
d)−(n−d

d )

= T (d, 2d− 1) +
n∑

k=2d

2(k
d)−(k−d

d )

= 2(2d−1
d ) +

n∑
k=2d

2(k
d)−(k−d

d ).

The first term is less than the term with k = 2d, and for every k, the term indexed by
k is at most one half the term indexed by k + 1, since

(
k+1

d

)
−

(
k+1−d

d

)
−

(
k
d

)
+

(
k−d

d

)
=(

k
d−1

)
−

(
k−d
d−1

)
≥ 1. Thus

T (d, n) ≤ 2(n
d)−(n−d

d ) + 2(n−1
d )−(n−1−d

d )+1

= 2(n
d)−(n−d

d )(1 +
1

2(n−1
d−1)−(n−1−d

d−1 )−1
)
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= 2(n
d)−(n−d

d )(1 + ε).

2

Thus we have the following.

Theorem 4.3 Let l be a positive integer smaller than min(d − 1, n − d). If d ≤ n/2,
then

|El(d, n)| ≤ B(d, n)(1 + ε)

2
∑d

i=l (
n−d

i )
+ B(d− 1, n),

where ε = 1/2Ω((2n/n)1/2). If d > n/2, then

|El(d, n)| ≤ B(d, n)−B(d− 1, n)

22n−d−
∑l−1

i=0 (n−d
i )

+ B(d− 1, n).

Combining this with Theorem 3.1, we have the following bounds on the numbers of
bent, correlation immune, and resilient functions and on the sizes of the sets D(mm, n)
and C(m− 1, n).

Corollary 4.4 For n ≥ 6 even, the number of bent functions in n variables is at most

B(n/2, n)(1 + ε)

22n/2−n/2−1
+ B(n/2− 1, n) = 22n−1+( n

n/2)/2−2n/2+n/2+1(1 + ε) + 22n−1−( n
n/2)/2.

If 2 ≤ n/2 ≤ m < n, then the number of m-th order correlation immune functions in n
variables and the sizes of the sets D(m,n) and C(m− 1, n) (with m > 2 in this case) are
at most

2m+1B(n−m, n)(1 + ε)

B(n−m, m)
+ B(n−m− 1, n),

where ε = 1/2Ω((2n/n)1/2). If 2 ≤ m < n/2, then the number of m-th order correlation
immune functions in n variables and the sizes of the sets D(m,n) and C(m− 1, n) (with
m > 2) are at most

B(n−m, n)−B(n−m− 1, n)

22m−m−1
+ B(n−m− 1, n).

If n/2 ≤ m < n, then the number of (m − 1)-resilient functions in n variables is at
most

2B(n−m, n)(1 + ε)

B(n−m, m)
+ B(n−m− 1, n),

where ε = 1/2Ω((2n/n)1/2). If 2 ≤ m < n/2, then the number of (m− 1)-resilient functions
in n variables is at most

B(n−m, n)−B(n−m− 1, n)

22m−1
+ B(n−m− 1, n).
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5 Conclusions and Possible Improvements

We have seen that the numbers of bent, correlation immune, and resilient functions can be
bounded by counting independent equations that arise from divisibility properties of the
Walsh coefficients of functions. These bounds are better than previously known bounds
when n−m is small and at least 3, as illustrated in Tables 2 and 3 (see appendix). In fact
our bound is of the form 2p(n) where p(n) is a polynomial of degree d (with coefficients
depending on d), and Schneider’s bound is of the form 2p(n) where p(n) is a polynomial
of degree d + 1 (with coefficients depending on d). Thus if we fix n−m (and thus fix d),
then for n sufficiently large our bound is smaller than Schneider’s.

In fact, the bounds we have obtained are not sharp. We can see this, for instance,
in the case of bent functions in six variables. It is known that there are approximately
232 such functions. The naive bound is 242, and our bound is about 238. We might
obtain some small improvement by strengthening the results in Lemma 4.2, but this will
only reduce ε. We can obtain much greater improvements if we count more equations
in Lemma 4.1. In choosing a general homogeneous function h of degree d in Section 4,
we assumed only that it had at least one nonzero term. This is the case only for few
functions h. In fact if h can be written in the form h1h2 where h1 and h2 depend on
disjoint sets of variables and h1 is a quadratic function of rank greater than 1 then one
can obtain a much larger set of equations. The details of counting these equations and
of counting the number of such h are beyond the scope of the current paper.
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A Tables

n n−m = 3 n−m = 4 n−m = 5 n−m = 6 n−m = 7
6 6.3× 103 3.5× 1010 1.8× 1016 – –
7 2.5× 104 1.1× 1015 5.0× 1027 1.7× 1035 –
8 9.9× 104 3.0× 1020 3.6× 1044 6.6× 1063 2.8× 1073

9 3.9× 105 6.2× 1026 1.1× 1068 3.0× 10110 1.5× 10138

10 1.6× 106 1.0× 1034 2.2× 1099 5.3× 10182 5.7× 10250

11 6.3× 106 1.4× 1042 4.8× 10139 3.9× 10289 1× 10438

12 2.5× 107 1.5× 1051 1.8× 10190 4.1× 10441 4.2× 10736

13 1× 108 1.3× 1061 1.8× 10252 6.7× 10650 1.2× 101195

14 4× 108 8.8× 1071 8.3× 10326 6.1× 10930 2.6× 101875

15 1.6× 109 4.9× 1083 2.6× 10415 3.4× 101296 9.3× 102854

Table 2: Bounds on the number of m-resilient functions, m large

n n−m = 3 n−m = 4 n−m = 5 n−m = 6 n−m = 7
6 1.5× 102 6.3 3.6× 10−1 – –
7 3.7× 103 1.9× 102 2.9× 10−1 7.2× 10−2 –
8 1.8× 105 6.6× 104 8.4× 10−1 2.6× 10−3 1× 10−2

9 1.7× 107 5.6× 108 5.4× 10 1.7× 10−5 3.2× 10−6

10 3.3× 109 2.3× 1014 9.3× 105 5.6× 10−8 4.2× 10−13

11 1.3× 1012 9× 1021 1× 1014 1.5× 10−9 7.2× 10−25

12 9.9× 1014 6.8× 1031 3.5× 1027 7.2× 10−8 1× 10−42

13 1.5× 1018 2× 1044 3.4× 1048 2.7× 10 1× 10−64

14 4.7× 1021 4.4× 1059 1.9× 1079 1.9× 1022 8.8× 10−95

15 2.9× 1025 1.5× 1078 2.3× 10122 5.2× 1062 2.8× 10−119

Table 3: (Schneider’s bound/New bound) for m-resilient functions
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