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This document is an introduction to a variety of topics in modern algebra. It is extracted
from a book on algebraically defined pseudorandom sequences and the set of topics is geared
to that purpose. There is an emphasis, for example, on finite fields and adic rings. The
beginning sections, however, are quite general and can serve as an introduction to the algebra
needed for such topics as coding theory and cryptography. There is a bibliography that
contains many general books on algebra.
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Chapter 1 Abstract Algebra

1.1 Group Theory

Groups are basic building blocks of modern algebra. They arise in a vast range of appli-
cations, including coding theory, cryptography, physics, chemistry, and biology. They are
commonly used to model symmetry in structures or sets of transformations. They are also
building blocks for more complex algebraic constructions such as rings, fields, vector spaces,
and lattices.

1.1.a Basic properties

Definition 1.1.1 A group is a set G with a distinguished element e (called the identity)
and a binary operation ∗ satisfying the following axioms:

1. (Associative law) For all a, b, c ∈ G, (a ∗ b) ∗ c = a ∗ (b ∗ c).
2. (Identity law) For all a ∈ G, a ∗ e = e ∗ a = a.
3. (Inverse law) For all a ∈ G, there exists b ∈ G such that a ∗ b = e. The element b is

called an inverse of a.

A group G is said to be commutative or Abelian if it satisfies the following

4. (Commutative law) For all a, b ∈ G, a ∗ b = b ∗ a.

Proposition 1.1.2 Let G be a group. Then the following statements hold.

1. If a, b ∈ G and a ∗ b = e then b ∗ a = e.
2. Every a ∈ G has a unique inverse.
3. The identity e ∈ G is unique.

Proof: To prove the first claim, suppose a∗ b = e. Let c be an inverse of b. By associativity
we have (b∗a)∗b = b∗(a∗b) = b∗e = b. Therefore e = b∗c = ((b∗a)∗b)∗c = (b∗a)∗(b∗c) =
(b ∗ a) ∗ e = b ∗ a.

To prove the second claim, suppose a ∗ b = e = a ∗ c. Then b = e ∗ b = (b ∗ a) ∗ b =
b ∗ (a ∗ b) = b ∗ (a ∗ c) = (b ∗ a) ∗ c = e ∗ c = c.

To prove the third claim, suppose e and f are both identities in G. That is, for all a ∈ G,
a ∗ e = e ∗ a = a ∗ f = f ∗ a = a. Then (taking a = f) f ∗ e = f . But also (taking a = e)
f ∗ e = e. Thus f = e. 2
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Sometimes we use multiplicative notation and write a−1 to denote the inverse of a, ab
for a ∗ b, a0 = e, and an = aan−1 for n ≥ 1. Then anam = an+m and (an)m = anm. If G is
Abelian, it is common to use additive notation in which we write + instead of ∗, −a instead
of a−1, a− b for a+ (−b), and 0 instead of e. We sometimes write e = eG when considering
several different groups.

Examples:

1. The integers Z with identity 0 and addition as operation is an Abelian group.

2. The rational numbers Q with identity 0 and addition as operation is an Abelian group.

3. The nonzero rational numbers Q − {0} with identity 1 and multiplication as operation
is an Abelian group.

4. If S is any set, the set of permutations of S is a (non-Abelian if |S| ≥ 3) group with
composition as operation and the identity function as identity.

5. For any n ≥ 1, the set of invertible n × n matrices (that is, with nonzero determinant)
with rational entries is a (non-Abelian if n ≥ 2) group with multiplication as operation and
the n× n identity matrix as identity.

6. If m ≥ 2 is an integer, then a is congruent to b modulo m, written a ≡ b (mod m), if m
divides a− b. This is an equivalence relation on Z. Let Z/mZ denote the set of equivalence
classes for this relation. That is, Z/mZ is the set of sets of the form

a+mZ = {a+mb : b ∈ Z}.

Then Z/mZ is an Abelian group with the operation (a +mZ) + (b +mZ) = (a + b) +mZ
and 0 + Z as identity. To prove this it suffices to show that this definition of addition is
independent of the choice of representatives a and b (that is, if a + mZ = c + mZ and
b + mZ = d + mZ, then (a + b) + mZ = (c + d) + mZ) and that the group axioms for
Z/mZ follow immediately from the group axioms for Z. The set of equivalence classes of
elements that are relatively prime to m, denoted (Z/mZ)∗, is also an Abelian group, with
multiplication as operation and 1 as unit.

Following is a basic fact about groups that we shall use later.

Theorem 1.1.3 If G is a finite group and a ∈ G, then a|G| = e.
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Proof: First suppose that G is Abelian. Let us define a function from G to itself by
f(b) = ab. This function is one-to-one (if ab = ac then multiplying by a−1 gives b = b), so
it is also onto. Therefore ∏

b∈G

b =
∏
b∈G

ab = a|G|
∏
b∈G

b.

Multiplying by the inverse of
∏

b∈G b gives the result of the theorem.

Now suppose that G is arbitrary. It is nonetheless the case that H = {ai : i = 0, 1, · · ·}
is an Abelian group, so a|H| = e. Thus it suffices to show that |H| divides |G|. Consider the
cosets bH with b ∈ G. Suppose two of these have a nonempty intersection, bH ∩ cH 6= ∅.
Then there are integers i, j so that bai = caj. It follows from this that every bak is in cH
and every cak is in bH. That is, bH = cH. This implies that the set of all cosets bH forms
a partition of G. Since each bH has cardinality |H|, |G| is a multiple of |H| as desired. 2

1.1.b Subgroups

Definition 1.1.4 If G is a group, then a subset H ⊆ G is a subgroup if it is a group with
the same operation as G and the same identity as G.

This means that H is a subset of G such that (1) e ∈ H; (2) if a, b ∈ H, then a+ b ∈ H;
and (3) if a ∈ H, then a−1 ∈ H. Then the group axioms hold in H. Also, if G is Abelian
then H is Abelian. The order of a group G is its cardinality as a set.

For example, the additive group of integers is a subgroup of the additive group of rational
numbers. The set of cyclic permutations of {1, 2, · · · , n} is a subgroup of the group of all
permutations.

If G1 and G2 are groups with operations ∗1 and ∗2 and identities e1 and e2, then their
direct product G1 ×G2 = {(a, b) : a ∈ G1, b ∈ G2} is a group with operation (a, b) ∗ (c, d) =
(a ∗ c, b ∗ d) and identity (e1, e2). More generally, if {Gi : i ∈ I} is any collection of groups,
indexed by a set I, then the Cartesian product∏

i∈I

nGi

is a group, again called the direct product of {Gi : i ∈ I}. The group operation is defined
coordinate-wise. If all the groups are Abelian, then so is the product. If I = {1, 2, · · · , n}
for some natural number n, then we write

∏
i∈I

nGi =
n∏
i=1

Gi = G1 ×G2 × · · · ×Gn.
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If a ∈ G then we let 〈a〉 denote {ai : i ∈ Z}. This set is an Abelian subgroup, called
the subgroup generated by a. If 〈a〉 has finite order then we say the order of a is the order
of 〈a〉. Otherwise we say a has infinite order. Equivalently, the order of a is the least k > 0
such that ak = e, if such a k exists. A group is cyclic if G = 〈a〉 for some a and then a is
called a generator of G. So every infinite cyclic group is isomorphic to the integers Z and
every finite cyclic group is isomorphic to the (additive) group Z/(n) where n is the order of
any generator.

Theorem 1.1.5 Every subgroup of a cyclic group is cyclic. Suppose 〈a〉 is a finite cyclic
group with order n.

1. If k is a positive integer, then 〈ak〉 is a subgroup of 〈a〉 of order n/ gcd(n, k).
2. If d|n and d > 0, then 〈a〉 contains one subgroup of order d.
3. If d|n and d > 0, then 〈a〉 contains φ(d) elements of order d. (φ(d) is Euler’s phi

function, the number of positive integers less than d and relatively prime to d.)
4. 〈a〉 contains φ(n) generators.

Proof: Let H be a nontrivial subgroup of 〈a〉. H contains some ak with k > 0. Let k be
the smallest positive integer with ak ∈ H and let am ∈ H. Suppose k does not divide m.
Then gcd(k,m) < k and gcd(k,m) = sk + tm for some integers s, t. Then

agcd(k,m) = (ak)s(am)t ∈ H,

which is a contradiction. Therefore H = 〈ak〉. Thus every subgroup of 〈a〉 is cyclic.

(1) Let H = 〈ak〉 and d = gcd(n, k). We have (ak)r = e if and only if n|kr. Thus the
order of H is the least positive r such that n|kr. This is equivalent to (n/d)|(k/d)r, and
this is equivalent to (n/d)|r. That is, the order of H is n/d.

(2) By (1), a subgroup H = 〈ak〉 has order d|n if and only if d = n/ gcd(n, k), or,
equivalently, d · gcd(n, k) = n. Let f = gcd(n, k) = sn + tk for some s, t ∈ Z. Then
e = an ∈ H, so af ∈ H as above. Since f |k, we also have H = 〈af〉. But f = n/d so f is
unique. Conversely, 〈an/d〉 is always a subgroup of order d.

(3) Let n = df . By (1), an element ak has order d if and only if gcd(n, k) = n/d = f .
This holds precisely when k = gf with g relatively prime to n/f = d and 0 < k < n. That
is, 0 < g < d. The number of such g is φ(d).

(4) Follows immediately from (3) with d = n. 2

For example, the group Z is cyclic (with generator 1) so every subgroup is of the form
mZ = {mk : k ∈ Z} for some integer m.

7



1.1.c Homomorphisms

More generally, relationships between groups often arise as functions from one group to
another that preserve all the relevant algebraic structures and operations.

Definition 1.1.6 Let G and H be two groups. A function ϕ : G→ H is a homomorphism
if it preserves the group operations. That is, if for every a, b ∈ G we have ϕ(ab) = ϕ(a)ϕ(b).
The image of ϕ, denoted by Im(ϕ), is the set of b ∈ H such that there is a ∈ G with
ϕ(a) = b. The kernel of ϕ, denoted by ker(ϕ), is the set of a ∈ G such that ϕ(a) = eH . The
homomorphism ϕ is an endomorphism if G = H. It is an epimorphism or is surjective if it
is onto as a set function. It is a monomorphism or is injective if it is one-to-one as a set
function. It is an isomorphism if it is both injective and surjective. It is an automorphism
if it is an endomorphism and an isomorphism.

Proposition 1.1.7 Let ϕ : G → H be a homomorphism. Then ϕ preserves identities and
inverses. Morever ker(ϕ) is a subgroup of G and Im(ϕ) is a subgroup of H.

Proof: To see that ϕ preserves identities observe that ϕ(eG) = ϕ(eGeG) = ϕ(eG)ϕ(eG).
Multiplying by ϕ(eG)−1 then gives eH = ϕ(eG). To see that ϕ preserves inverses, let a ∈ G.
Then eH = ϕ(eG) = ϕ(aa−1) = ϕ(a)ϕ(a−1) so ϕ(a)−1 = ϕ(a−1) by uniqueness. The
remaining statements are equally easy. 2

Proposition 1.1.8 If f : F → G and g : G→ H are homomorphisms, then the composition
g◦f : F → H is a homomorphism.

Proof: For all a, b ∈ F , we have (g◦f)(a + b) = g(f(a + b)) = g(f(a) + f(b)) = g(f(a)) +
g(f(b)). Similarly for multiplication. 2

Definition 1.1.9 A pair of homomorphisms φ : F → G and ψ : G→ H is exact (at G) if
the kernel of ψ equals the image of φ. A sequence of maps

1→ F → G→ H → 1 (1.1)

is a short exact sequence if it is exact at F , G, and H. Here 1 denotes the trivial group with
a single element.

The short exact sequence in (1.1) splits if there is a homomorphism h : H → G so that
g · h is the identity.

Proposition 1.1.10 If 1 → F → G → H → 1 is a short exact sequence and all three
groups are finite, then |G| = |F | · |H|.
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Proof: Let φ denote the homomorphism from F to G, and let ψ denote the homomorphism
from G to H. Since ψ is surjective, there is a subset U of G that maps one to one and onto
H. If g is any element of G, then there is some u ∈ U so that ψ(u) = ψ(g). Then gu−1

maps to the identity in H, so gu−1 = f ∈ Im(φ). Thus we can write g = fu with f ∈ Im(φ).
Suppose that fu = f ′u′ for some f, f ′ ∈ Im(φ) and u, u′ ∈ U . Then uu−1 = (f ′)−1f ∈ Im(φ).
It follows that ψ(uu−1) = eH , so ψ(u) = ψ(u′). By the choice of U , we have u = u′. Then
also f = f ′. It follows that for each g there is a unique representation of u in the form
g = fu. The proposition is immediate from this. 2

Proposition 1.1.11 Suppose 1 → F → G → H → 1 is a short exact sequence with
φ : F → G and ψ : G→ H, all three groups are Abelian, and the short exact sequence splits
via a homomorphism µ : H → G, then there is an isomorphism between F ×H and G given
by (a, b) 7→ φ(a)µ(b). Conversely, if G = F ×H, then there is a short exact sequence as in
(1.1), where g is the projection map and f maps a to (a, 1).

Proof: In Proposition 1.1.10 we can take U to be the image of µ to prove the first statement.
The converse is trivial. 2

1.1.d Quotients

Recall that Z is a group. If m is any positive integer, then the set of multiples of m, mZ,
is a subgroup. We defined an equivalence relation by saying a ≡ b (mod m) if a− b ∈ mZ.
We then formed a group Z/mZ whose elements are the equivalence classes for this relation.

More generally, suppose G is any group and H is a subgroup of G. We can form an
equivalence relation by saying a ∼ b if there is an h ∈ H such that b = ah (The proof that
this is an equivalence relation is left as an exercise). The equivalence class of a is called the
left coset of a. It is exactly aH. We would like to form a group consisting of the equivalence
classes {aH : a ∈ G}. Unfortunately, this does not work in general In fact, we could have
started by defining a ∼′ b if there is an h ∈ H such that b = ha. This is also an equivalence
relation. The equivalence class of a with respect to this relation is called the right coset of
a. It is exactly Ha. We can form a group out of the equivalence classes exactly when the
left and right cosets are the same.

Definition 1.1.12 If H is a subgroup of G, then H is normal in G if for every a ∈ G, we
have aH = Ha.

Equivalently, H is normal in G if for every a ∈ G and h ∈ H, we have aha−1 ∈ H. If the
group G is Abelian then every subgroup H is normal in G.
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Theorem 1.1.13 If H is normal in G, then the set of left cosets of G modulo H, denoted
G/H, is a group under the operation (aH)(bH) = abH.

Proof: Left as an exercise. 2

In this case, G/H is called the quotient group of G modulo H. The natural mapping
G→ G/H (given by a 7→ aH) is a homomorphism. If the set of left cosets is finite, then we
say H has finite index in G. The number of left cosets (which equals the number of right
cosets) is called the index of H in G. Thus if H is normal in G and of finite index, then
G/H is finite and |G/H| equals the index of H in G. If G is finite, so is G/H, and we have
|G/H| = |G|/|H|.

Theorem 1.1.14 If ϕ : G→ G′ is a homomorphism then the following statements hold.

1. ker(ϕ) is normal in G.
2. The quotient G/ker(ϕ) is isomorphic to Im(ϕ).
3. Conversely, if H is a normal subgroup of G, then the natural mapping a 7→ aH is a

surjection from G to G/H with kernel equal to H.

Proof: Left as an exercise. 2

1.1.e Finitely generated Abelian groups

An Abelian group G is finitely generated if there is a finite set V ⊆ G such that every element
of G is equal to a finite product of elements of V . We state without proof the fundamental
theorem of finite Abelian groups (See, for example, Lang [14, p. 46]):

Theorem 1.1.15 Let G be a finitely generated Abelian group. Then G is isomorphic to a
direct product of cyclic groups.

Corollary 1.1.16 Let G be a finite Abelian group with nm elements, where n and m are
relatively prime positive integers. Then there are groups H1 and H2 with n and m elements,
respectively, so that G is isomorphic to H1 ×H2.

An element g in an Abelian group G is a torsion element if g 6= 0 and if some finite sum
g + g + · · ·+ g = 0 vanishes. That is, if it has finite order. The group G is torsion-free if it
contains no torsion elements.

Corollary 1.1.17 Let G be a finitely generated torsion-free Abelian group. Then G is iso-
morphic to a direct product of finitely many copies of Z.
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1.2 Rings and Fields

Many important algebraic structures come with two interrelated operations. For example,
addition and multiplication of integers, rational numbers, real numbers, and complex num-
bers; AND and XOR of Boolean valued functions; and addition and multiplication of n× n
matrices of integers, etc.

Definition 1.2.1 A ring R is a set with two binary operations + and · and two distinguished
elements 0, 1 which satisfy the following properties for all a, b, c ∈ R:

1. R is an Abelian group with operation + and identity 0;
2. a · (b · c) = (a · b) · c and 1 · a = a · 1 = a; and
3. a · (b+ c) = (a · b) + (a · c) and (b+ c) · a = (b · a) + (c · a) (the distributive law).

It follows that a · 0 = 0 for all a, since a · 0 = a · (0 + 0) = a · 0 + a · 0. If 0 = 1 then
R = {0} is the zero ring. It is common to denote by R+ the Abelian group that is obtained
from R by forgetting the multiplication.

A ring R is commutative if a · b = b · a for all a, b ∈ R. Throughout this book, all rings
are commutative unless otherwise stated. We generally write ab for the product a · b.

1.2.a Units and zero divisors

Let R be a commutative ring. An element a ∈ R is a unit if it is invertible, that is, if there
exists b ∈ R so that ab = 1. In this case b is unique. The collection of all units in R is
denoted R×. It forms an Abelian group (under multiplication). An element a ∈ R is a zero
divisor if there exists a nonzero element b ∈ R such that ab = 0. The ring of integers Z has
no zero divisors, but only 1 and −1 are units. However if the ring R is finite then a given
element is either a unit or a zero divisor. Indeed, let ϕa : R → R be the mapping which is
given by multiplication by a. If ϕa is one to one, then it is also onto, hence a is invertible.
If ϕa is not one to one, then there exist b 6= c so that ab = ac or a(b− c) = 0, so a is a zero
divisor.

Definition 1.2.2 An integral domain is a commutative ring with no zero divisors. A field
is a commutative ring in which every nonzero element is invertible.

In particular, a finite integral domain is necessarily a field. Every commutative ring R
embeds in a ring S−1R which has the property that every element is either a zero divisor or
is invertible, cf. §1.2.d.
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1.2.b Ideals and Quotients

Definition 1.2.3 A subring S of a ring R is a subset of R, which is a ring under the same
operations as R, and with the same zero and identity.

If I is an additive subgroup of R (meaning that if a, b ∈ I then a + b ∈ I and −a ∈ I)
then the quotient R/I is the set of equivalence classes under the equivalence relation a ∼ b if
a−b ∈ I. The equivalence class containing a ∈ R is the coset a+I. Then R/I is an Abelian
group under addition: (a+ I) + (b+ I) = a+ b+ I. However, the multiplication operation
on R does not necessarily induce a well defined multiplication on R/I. For if a′ ∼ a, say,
a′ = a+ c and if b′ ∼ b, say, b′ = b+ d (where c, d ∈ I) then a′b′ = ab+ ad+ bc+ cd which is
not necessarily equivalent to ab unless ad+bc+cd ∈ S. The following definition is necessary
and sufficient to ensure this holds for all a, b ∈ R and c, d ∈ I.

Definition 1.2.4 An ideal is an additive subgroup I ⊂ R such that for any a ∈ I and for
any b ∈ R we have: ab ∈ I.

It follows that the set of equivalence classes R/I inherits a ring structure from R if and
only if I is an ideal. Two elements a, b ∈ R are said to be congruent modulo I if they are in
the same equivalence class. That is, if a− b ∈ I. Each equivalence class is called a residue
class modulo I.

An ideal I is proper if I 6= R, in which case it does not contain any units. An ideal I
is principal if there exists an element a ∈ R such that I = {ar : r ∈ R}, in which case we
write I = (a). If I, J are ideals then the sum I + J is the set of all sums a+ b where a ∈ I
and b ∈ J . It is the smallest ideal containing both I and J . The intersection I ∩J is also an
ideal. The product ideal IJ is the set of all finite sums

∑
aibi where ai ∈ I and bi ∈ J . An

ideal I ⊂ R is maximal if I 6= R and if I is not a proper subset of any other proper ideal.
An ideal I is prime if ab ∈ I implies a ∈ I or b ∈ I. An ideal I ⊂ R is primary if I 6= R and
whenever ab ∈ I, then either a ∈ I or bn ∈ I for some n ≥ 1.

A field contains only the ideals (0) and (1).

Theorem 1.2.5 Let R be a commutative ring. Then the following statements hold.

1. An ideal P ⊂ R is maximal if and only if R/P is a field (called the residue field with
respect to P ).

2. An ideal P ⊂ R is prime if and only if R/P is an integral domain. (See Definition
1.2.10.)

3. Every maximal ideal is prime.
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Proof: (1) Let P be maximal and a ∈ R −M . Then J = {ab + c : b ∈ R, c ∈ P} is closed
under addition and under multiplication by elements of R. It contains P (take b = 0) and a
(take b = 1 and c = 0) so it properly contains P . Then by maximality it is not an ideal, so
it must not be a proper subset of R. That is, J = R. In particular, 1 ∈ J , so 1 = ab+ c for
some b ∈ R and c ∈ P . Therefore (a + P )(b + P ) = ab + P = 1− c + P = 1 + P so a + P
is invertible in R/P . Thus R/P is a field. On the other hand, suppose R/P is a field and
J is an ideal containing P . Let a ∈ J − P . Then a + P is invertible in R/P , so there is a
b ∈ R such that (a + P )(b + P ) = 1 + P . That is, such that ab = 1 + cm for some c ∈ P .
But then 1 = ab − c ∈ J . By closure under multiplication by R, we have R ⊆ J . But this
contradicts the fact that J is an ideal. Therefore P is maximal.

(2) Let a, b ∈ R. Then (a + P )(b + P ) = 0 in R/P if and only if ab ∈ P . If P is prime,
this says (a+P )(b+P ) = 0 implies a ∈ P or b ∈ P , which implies a+P = 0 or b+P = 0 in
R/P , so R/P is an integral domain. Conversely, if R/P is an integral domain, then ab ∈ P
implies (a+ P )(b+ P ) = 0 which implies a+ P = 0 or b+ P = 0. That is, a ∈ P or b ∈ P ,
so P is a prime ideal.

(3) This follows from (1) and (2). 2

For example, consider the ring of ordinary integers Z. Let I be an ideal containing a
nonzero element. Multiplication by −1 preserves membership in I, so I contains a positive
element. Let m be the least positive element of I. Suppose that a ∈ I is any other element
of I. Then gcd(m, a) = um + va for some integers u and v, so gcd(m, a) ∈ I. We have
gcd(m, a) ≤ m, so by the minimality of m, gcd(m, a) = m. That is, m divides a. Since every
multiple of m is in I, it follows that I consists exactly of the multiples of m. In particular,
I = (m) is principal.

The ideal (m) is contained in the ideal (n) if and only if m is a multiple of n. The ideal
(m) is prime if and only if m is prime. In this case it is also maximal. It is primary if and
only if m is a power of a prime.

Definition 1.2.6 A function ϕ : R→ S from a ring R to a ring S is a ring homomorphism
if ϕ(a+ b) = ϕ(a) + ϕ(b) and ϕ(ab) = ϕ(a)ϕ(b) for all a, b ∈ R. The homomorphism ϕ is a
surjection (or epimorphism) if it is onto. It is an injection (or monomorphism) if it is one to
one. It is an isomorphism if it is both an injection and a surjection. It is an endomorphism
if R = S. It is an automorphism if it is an endomorphism and an isomorphism.

The set of automorphisms of a ring S forms a group under composition, denoted by
Aut(S). More generally, if R is a subring of S (we also say that S is an extension of R),
then the set of automorphisms of S whose restrictions to R are the identity forms a subgroup
AutR(S).

The proof of the following theorem is left as an exercise.
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Theorem 1.2.7 If ϕ : R→ S is a ring homomorphism, then

ker(ϕ) = {r ∈ R : ϕ(r) = 0}

is an ideal of R, the image of ϕ is a subring of S, and ϕ induces an isomorphism between
R/ker(ϕ) and the image of ϕ. Conversely, if I is an ideal of R then the map a 7→ a + I is
a surjective homomorphism from R→ R/I with kernel I.

If F is a field and E is a ring, then the kernel of any non-zero homomorphism F → E is
the zero ideal (the only ideal), so every homomorphism is an injection. We say that E is an
extension of F . If F ⊂ E are fields then the group AutF (E) of automorphisms of E which fix
each element of F is the Galois group of E over F and it is denoted by Gal(E/F ). In general,
if G is a subgroup of the group of automorphisms of E, then the set of elements in E that
are fixed by every automorphism in G (that is, σ(a) = a for every a ∈ E and every σ ∈ G)
is denoted EG. It is necessarily a field since it is closed under addition, multiplication, and
inverse. If G = Gal(E/F ), then F ⊆ EG. If in fact F = EG, then we say that E is a Galois
extension of F . The general theory of Galois extensions is venerable, and its invention by
Galois was a turning point in the understanding of the nature of algebraic equations.

1.2.c Characteristic

Let R be a commutative ring. If m is a nonnegative integer, we write m ∈ R for the sum
1+1 · · ·+1 (m times). This defines a homomorphism from Z into R. That this function is a
homomorphism can be shown by a series of induction arguments. In fact this is the unique
homomorphism from Z into R, since any such homomorphism is completely determined by
the fact that 1Z maps to 1R, and the ring operations are preserved. The kernel of this
homomorphism is an ideal in Z, hence by the example in §1.2.b is of the form (m) for some
nonnegative integer m. This integer is called the characteristic of R. For any a ∈ R, we
have ma = a+a+ · · ·+a (m times). Hence if the characteristic is nonzero, it is the smallest
positive integer m such that ma = 0 for all a ∈ R. If the characteristic is zero, then no
such m exists and Z is isomorphic to a subring of R. Otherwise Z/(m) is isomorphic to a
subring of R. If R is finite then its characteristic is positive since the sequence of elements
1, 1 + 1, 1 + 1 + 1, · · · must eventually lead to a repetition.

Theorem 1.2.8 If R is an integral domain then its characteristic is either 0 or is a prime
number. In particular, the characteristic of any finite field is prime.

Proof: Let k > 0 be the characteristic and suppose k = mn, with m > 0 and n > 0. Let
a ∈ R be the element 1+ · · ·+1 (m times) and let b ∈ R be the element 1+ · · ·+1 (n times).
Then ab = 0, so a = 0 or b = 0. Suppose a = 0. For any c ∈ R, the element c + · · ·+ c (m
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times) is ac = mc = 0. By the minimality of k, we must have m = k and n = 1. A similar
argument holds when b = 0. It follows that k is prime. 2

Lemma 1.2.9 Let R be a commutative ring. If the characteristic k of R is a prime number,
and if q is any positive power of k then

(a+ b)q = aq + bq ∈ R (1.2)

for every a, b ∈ R.

Proof: If k is prime and if 0 < m < k, the binomial coefficient
(
k
m

)
= k!/m!(k − m)! is

divisible by k since k appears as a factor in the numerator but not in the denominator.
Consequently (a+ b)k = ak + bk and equation (1.2) follows by induction. 2

If k is not prime, then equation (1.2) is generally false.

1.2.d Divisibility in rings

Let R be a commutative ring. If a, b ∈ R then a is a divisor of b if there exists c ∈ R
such that ac = b, in which case we write a|b. The element a is a unit if it is a divisor of
1. Elements a, b ∈ R are associates if a = εb for some unit ε. A non-zero element c ∈ R
is a common divisor of a and b if c|a and c|b. It is a greatest common divisor of a and b
(written c = gcd(a, b)) if it is a common divisor and if every other common divisor of a and
b divides c. An element c 6= 0 is a common multiple of a and b if a|c and b|c. It is a least
common multiple (written c = lcm(a, b)) if it is a common multiple and if it divides every
other common multiple of a and b.

A nonzero element r ∈ R is prime if (r) is a proper prime ideal. It is primary if (r) is
primary. It is irreducible if it is not a unit and if r = ab implies that a or b is a unit. Two
nonzero non-units r, s ∈ R are coprime if (r) + (s) = R.

Definition 1.2.10 Let R be a commutative ring.

1. R is an integral domain (or is integral) if it has no zero divisors.
2. R is principal if every ideal in R is principal. It is a principal ideal domain or PID if

it is principal and is an integral domain.
3. R is a GCD ring if every pair of elements has a greatest common divisor.
4. R is a local ring if it contains a unique maximal ideal.
5. R is a unique factorization domain (or UFD, or factorial) if it is an integral domain

and every nonunit a ∈ R has a factorization into a product

a =
m∏
i=1

pi (1.3)
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of irreducible elements (not necessarily distinct), which is unique up to reordering of
the pis and multiplication of the pis by units. That is, if a =

∏n
i=1 qi, then m = n and

there is a permutation σ of {1, · · · ,m} so that pi and qσ(i) are associates.
6. R is Euclidean if there is a function δ : R → {0, 1, 2, · · ·} ∪ {−∞} such that (1) for

every a, b ∈ R with a and b both nonzero, we have δ(ab) ≥ δ(a), and (2) for every
a, b ∈ R with b 6= 0 there exist q, r ∈ R so that

a = qb+ r and δ(r) < δ(b).

(We say that a divided by b has quotient q and remainder r.)

Theorem 1.2.11 summarizes the various inclusions among the special types of rings that
we have discussed. We have included the polynomial ring R[x] for ease of reference although
it will not be defined until Section 1.4.

Theorem 1.2.11 Let R be a commutative ring and let R[x] be the ring of polynomials with
coefficients in R (see §1.4). Then we have the following diagram of implications between
various possible properties of R.

field =⇒ Euclidean =⇒ PID =⇒ UFD =⇒ integral =⇒ R[x]integral
⇓ ⇓

R[x]Euclidean GCD

Proof: The properties of the polynomial ring R[x] are proved in Lemma 1.4.1 and Theorem
1.4.2. If R is a field then it is Euclidean with δ(0) = −∞ and δ(r) = 0 for all nonzero
elements r ∈ R.

To show that every Euclidean ring is a PID, let R be Euclidean. Suppose a ∈ R is
nonzero. We can write 0 = qa + r with δ(r) < δ(a). Suppose that q is nonzero. Then
δ(r) = δ(−qa) ≥ δ(a), which is a contradiction. Thus q = 0 so r = 0. But then we must
have δ(0) < δ(a) for every a 6= 0. In particular, δ(a) ≥ 0 if a is nonzero. Now let I be
a nonzero ideal in R. Let a ∈ I − {0} be an element such that δ(a) is minimal. There is
at least one such element since δ(I − {0}) ⊂ N has a least element (by the well ordering
principal). We claim that I = (a). Let b be any other element in I. Then b = qa + r for
some q, r ∈ R such that δ(r) < δ(a). But r = b − qa ∈ I, so r = 0. That is, b = qa, as
claimed. Moreover, if 0 = ab for some nonzero a, then the argument above shows that b = 0,
so R is an integral domain.

Now assume that R is a PID. If a and b are two elements of R, then the ideal (a, b) has
a principal generator, (a, b) = (c). Thus c divides both a and b, and c = ua + vb for some
u, v ∈ R. Therefore any common divisor of a and b divides c as well. That is, c is a GCD of
a and b. It follows that R is a GCD ring. It also follows that the GCD c can be written in
the form c = ua+ vb.
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Lemma 1.2.12 If R is a PID then every (properly increasing) chain of ideals (a1) ⊂ (a2) ⊂
· · · is finite.

Proof: The union of such a chain is again an ideal, hence is principal, say with generator
a. Then the element a lies in one of the ideals in the chain, say a ∈ (an). Hence (an) ⊂
∪i(ai) = (a) ⊂ (an) so the chain stops at (an). 2

Next we show that R is a UFD. We first prove that every element a ∈ R has a prime
factorization. Let S be the set of elements of R that do not have prime factorizations, and
suppose S is nonempty. Any chain (a1) ⊆ (a2) ⊆ · · · with every ai ∈ S, is finite by Lemma
1.2.12. Thus there is an element a ∈ S such that the generator of every ideal properly
containing a has a factorization. The element a cannot be irreducible, so we have a = bc
with neither b nor c a unit. Hence (a) is a proper subideal of (b) and of (c), and b and c have
prime factorizations. The product of these factorizations is a factorization of a, contradicting
the fact that a ∈ S.

Next we prove uniqueness. Suppose a ∈ R is irreducible and a|bc. If a 6 |b, then 1 is a
gcd of a and b, so we have

1 = ua+ vb,

for some u, v ∈ R. Thus c = uac + vbc, so a|c. That is, if a|bc, then a|b or a|c. In other
words, a is prime if a is irreducible.

Suppose some nonunit b ∈ R can be factored in two ways,

b =
k∏
i=1

pi =
∏̀
i=1

qi.

Since b is not a unit, we have k > 0 and ` > 0. We use induction on k. Since pk|
∏`

i=1 qi,
we have pk|qn for some n by the primality of pk, say qn = dp1. By the irreducibility of pk
and qn, d is a unit. Then

∏k−1
i=1 pi = d(

∏`
i=1 qi)/qn, and the result follows by induction. This

completes the proof that R is a UFD.
The implication UFD =⇒ GCD is obvious. Every UFD is integral by definition. 2

In particular, in a PID, two elements are coprime if and only if 1 is a GCD. Note that
for finite rings R these distinctions are irrelevant since a finite integral ring is a field.

Theorem 1.2.13 Let R be a commutative ring and let a, b ∈ R. Then

1. The element a is prime if and only if it has the following property: if a|cd then a|c or
a|d.

2. If a is prime and is not a zero divisor, then a is irreducible.
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3. If R is a UFD, then a is prime if and only if a is irreducible.
4. If a and b are coprime, then every common divisor of a and b is a unit.
5. If R is a PID and if every common divisor of a and b is a unit, then a and b are

coprime.
6. If R is a PID and a ∈ R, then a is prime if and only if (a) is maximal (if and only if

R/(a) is a field).

Proof: Part (1) is just a restatement of the definition that (a) is a prime ideal.

Now suppose a is prime and is not a zero divisor, and suppose a = cd. Then either
c ∈ (a) or d ∈ (a); we may assume the former holds. Then c = ea for some e ∈ R, so
a = cd = ead or a(1 − ed) = 0. Since a is not a zero divisor, we have ed = 1 hence d is a
unit. This proves (2).

For part (3), first suppose that a ∈ R is irreducible and let cd ∈ (a). Then cd = ae
for some element e ∈ R. The right side of this equation is part of the unique factorization
of the left side, so a must divide either c or d. Therefore either c ∈ (a) or d ∈ (a). The
converse was already proven in part (2). (Note that a UFD contains no zero divisors, due
to the unique factorization of 0.)

For part (4), supposing a and b are coprime, we may write 1 = ac+ bd for some c, d ∈ R.
If e|a and e|b then a = fe and b = ge for some f, g ∈ R. This gives 1 = (fc + gd)e so e is
invertible.

For part (5), Suppose R is a PID. Given a, b the ideal (a)+(b) is principal, so it equals (c)
for some c ∈ R, which implies that c|a and c|b. Therefore c is a unit, so (a) + (b) = (c) = R.

For part (6), we have already shown, in Theorem 1.2.5 that (a) maximal implies that a
is prime. For the converse, suppose that (a) is prime and that (a) ⊂ (b) 6= R. Then b is
not a unit, and a = cb for some c ∈ R. Since the ring R is also a UFD, the element a is
irreducible, so c is a unit. Therefore (a) = (b) hence (a) must be maximal. 2

1.2.e Fractions

Let R be a commutative ring. A subset S of R is multiplicative if it contains 1, does not
contain 0, and is closed under multiplication. For example, we could take S to be the
collection of all elements of R which are not zero divisors. If S is any multiplicative subset
of R, we define the ring S−1R to be the collection of all formal symbols a/b (where a ∈ R
and b ∈ S), under the following equivalence relation: a/b ∼ a′/b′ if ab′ = ba′. Addition and
multiplication of fractions are defined by the usual formulas:

a

b
+
a′

b′
=
ab′ + a′b

bb′
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and
a

b

a′

b′
=
aa′

bb′
.

The natural mapping R→ S−1R (which takes a to a/1) is an injection if S does not contain
any zero divisors. Every element of S that is not a zero divisor has become invertible in
S−1R. If S is the set of elements that are not zero divisors, then an element of S−1R is
either a zero divisor or else it is invertible (exercise). In this case, the ring S−1R is called
the ring of fractions of R. If R is an integral domain then its ring of fractions is therefore a
field, which is called the fraction field of R. See for example, §2.2.9 and §4.2.

1.2.f Examples

Here are a few standard examples of rings.

1. The integers Z is a Euclidean domain with δ(a) = |a|.

2. The rational numbers Q, the real numbers R, and the complex numbers C are fields.

3. If k = mn is a composite integer (with m,n ≥ 2) then Z/kZ is not an integral domain
since m · n = 0.

4. If R is a ring and S is a nonempty set, then the set of functions from S to R is a ring with
the operations (f + g)(x) = f(x) + g(x) and (fg)(x) = f(x)g(x). The zero is the function
z(x) = 0 for all x, and the identity is the function i(x) = 1 for all x.

5. If R is a ring then the collection R[x] of polynomials with coefficients in R (see §1.4) is a
ring.

6. Let G be an Abelian group with operation ∗ and identity e. The set E of endomorphisms
of G is a ring with the operations +E = “product” and ·E = “composition”. The zero is the
function z(a) = e for all a, and the identity is the function i(a) = a for all a.

7. If R1 and R2 are rings then their Cartesian product R1×R2 is a ring under the coordinate-
wise operations of addition and multiplication.

Theorem 1.2.14 (Chinese Remainder Theorem) Let R be a ring and let I1, · · · , Ik be ideals
such that Ii + Ij = R for every i 6= j. Then for every ai, · · · , ak ∈ R there is an element
a ∈ R such that for every i, a ≡ ai (mod Ii). Furthermore, if I = ∩kj=1Ij, then

R/I ∼=
k∏
j=0

R/Ij.
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Proof: For k = 1 the statement is trivial. If k = 2, then there are elements b1 ∈ I1 and
b2 ∈ I2 so that 1 = b1 + b2. Let a = a1b2 + a2b1.

Now suppose k > 2. For every i let Ji =
∏

j 6=i Ij. For every i ≥ 2 there are elements

ci ∈ I1 and bi ∈ Ii such that 1 = ci + bi. In particular,
∏k

i=2(ci + bi) = 1. This product is
in I1 + J1, so R = I1 + J1. Similarly, R = Ij + Jj for every j. By the theorem in the case
of two ideals, there is an element dj ∈ R such that dj ≡ 1 (mod Ij) and dj ≡ 0 (mod Jj).
Then a = a1d1 + · · ·+ akdk satisfies our requirements

For each i there is a reduction homomorphism ϕi from R/I to R/Ii. This induces a
homomorphism ϕ from R/I to

∏k
j=1R/Ij whose kernel is I = ∩kj=1Ij. Thus ϕ is injective.

By the first part it is surjective, hence an isomorphism. 2

Corollary 1.2.15 Suppose R is a Euclidean domain and b1, · · · , bk ∈ R are pairwise rela-
tively prime. If a1, · · · , ak ∈ R, then there exists an element a ∈ R such that for every i,
a ≡ ai (mod bi).

Proof: By Theorem 1.2.14 it suffices to show that for each i 6= j we have (bi) + (bj) = R.
Suppose not. Then (bi) + (bj) is an ideal. Since Euclidean =⇒ PID (Theorem 1.2.11, there
is some b ∈ R so that (bi) + (bj) = (b). This says that b is a common divisor of bi and bj,
which is false by assumption. 2

The case when R = Z is the classical Chinese Remainder Theorem.

1.2.g Vector Spaces

In many settings we have a notion of one algebraic object “acting on” another by multiplica-
tion. For example, a real number r acts on the set of points in the plane by (x, y) 7→ (rx, ry).

Definition 1.2.16 A vector space over a field F is a set V such that V is an Abelian group
with an operation +, and there is a function · from F × V to V such that for all a, b ∈ F
and u, v ∈ V

1. a · (u+ v) = (a · u) + (a · v);
2. (ab) · u = a · (b · u);
3. (a+ b) · u = (a · u) + (b · u); and
4. 1 · u = u.

It follows from these axioms that for every u ∈ V , 0 · u = 0.
For example, the set of points in the real plane is a vector space over the real numbers.

If F is a field which is a subring of a ring R, then R is vector space over F (just use
the multiplication in R for the action of F on R). If F is a field and S is a nonempty
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set, then the set of functions from S to F is a vector space over F with the operations
(f + g)(x) = f(x)+ g(x) and (a · f)(x) = af(x) for a ∈ F , x ∈ S, and f, g : S → F . Various
restrictions can be put on the functions to produce interesting vector spaces (e.g., continuity
if S = F = R).

Let V be a vector space over a field F . The elements of V are called vectors. A linear com-
bination of vectors v1, v2, · · · , vk ∈ V is a vector a1v1+a2v2+· · ·+akvk with a1, a2, · · · , ak ∈ F .
A set of vectors S ⊆ V is linearly independent if the only linear combination of elements of
S that is zero is the one with all the coefficients ai equal to zero. S spans V if every vector
can be written as a linear combination of elements of S. S is a basis for V if it spans V and
is linearly independent.

Theorem 1.2.17 Let V be a vector space over a field F . If V has more than one element
then it has a nonempty basis. If S is a basis, then every vector can be written uniquely as a
linear combination of elements of S.

Proof: Left as an exercise. 2

If V has a basis S with a finite number of elements, then we say V is finite dimensional
with dimension = |S|. In this case it can be shown that every basis has the same number of
elements. In the important case when F is a subfield of a field E, E is called an extension
field. If E is finite dimensional as a vector space over F , then its dimension is called the
degree of the extension and is denoted [E : F ].

Theorem 1.2.18 If F is a finite field and V is a finite dimensional vector space over F
with dimension d, then |V | = |F |d.

Proof: Let S be a basis for V . Thus |S| = d. That is S = {v1, v2, · · · , vd} for some
v1, v2, · · · , vd. By the previous theorem, the elements of V are in one-to-one correspon-
dence with the linear combinations

∑d
i=1 aivi, ai ∈ F . There are exactly |F |d such linear

combinations. 2

Definition 1.2.19 If F is a field and V and W are vector spaces over F , then a function
L : V → W is a homomorphism or is F -linear if it is a group homomorphism and for all
a ∈ F and v ∈ V we have L(av) = aL(v).

If S = {v1, v2, · · · , vd} is a basis for V , then an F -linear function L is completely deter-
mined by its values on the elements of S (because L(

∑
i aivi) =

∑
i aiL(vi)). On the other

hand, any choice of values for the L(ui) determines an F -linear function L. Furthermore, if
T = {w1, w2, · · · , we} is a basis for W , then each value L(vi) can be expressed as a linear
combination L(vi) =

∑e
j=1 bijwj with bij ∈ F .
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Theorem 1.2.20 If F is finite and V and W are finite dimensional with dimensions d and
e, respectively, then there are |F |de F -linear functions from V to W .

The image and kernel of L are Abelian groups, and it is straightforward to check that
they are also vector spaces over F . Their dimensions are called the rank and co-rank of L,
respectively. We leave it as an exercise to show that the rank plus the co-rank equals the
dimension of V .

We can identify an element
∑

i aivi ∈ V with the column vector (a1, · · · , ad)t, and sim-
ilarly for an element of W . Then the linear function L is identified with ordinary matrix
multiplication by the matrix B = [bij]. The rank of L is the size of a maximal set of
independent columns or independent rows of B.

If B is a square matrix, then the determinant of B is defined as usual in linear algebra.
In this case the kernel is nonempty if and only if the determinant is zero.

1.2.h Modules and Lattices

The notion of a vector space over a field can be generalized to rings.

Definition 1.2.21 Let (R,+, ·, 0, 1) be a commutative ring. A module over R is an Abelian
group (M,+, 0M) with an operation · from R × M to M such that for all a, b ∈ R and
u, v ∈M

1. a · (u+ v) = (a · u) + (a · v);
2. (ab) · u = a · (b · u);
3. (a+ b) · u = (a · u) + (b · u); and
4. 1 · u = u.

Again, it follows from these axioms that for every u ∈ V , 0 · u = 0.
For example, every Abelian group is a module over the integers (if n ∈ Z+, then n · a

equals the sum of n copies of a). If f is a homomorphism from a ring R to a ring S, then S
is a module over R with the operation a · u = f(a)u.

It is apparent that the notion of basis no longer makes sense for modules in general –
even a single element of a module may not be linearly independent. However, if there is a
finite set of elements m1, · · · ,mk ∈M such that every element of M can be written (perhaps
not uniquely) as a linear combination a1m1 + · · · + akmk with a1, · · · , ak ∈ R, then we say
that M is finitely generated over R. If M is finitely generated, then the size of the smallest
set of generators for M over R is called the R-rank or simply the rank of M .

A module M over a ring R is free if M is isomorphic to the Cartesian product of a finite
number of copies of R. That is, M is free if there are elements m1, · · · ,mk ∈ M such that
every element m ∈ M can be represented uniquely in the form

∑k
i=1 cimi with ci ∈ R. In
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this case the set m1, · · · ,mk is called a basis of M over R. A free Z-module that is a subset
of Rn for some n is called an integer lattice or Z-lattice. If n = k, then it is said to be a full
lattice. In this case a basis for M is also a basis for Rn. If M is a full lattice in Rn with
basis m1, · · · ,mn, then the set

P c =

{
n∑
i=1

zimi : zi ∈ R and − 1 ≤ zi ≤ 0

}
⊂ Rn (1.4)

is called the fundamental (or closed) parallelepiped of M . The set

P =

{
n∑
i=1

zimi : zi ∈ R and − 1 < zi ≤ 0

}
⊂ Rn (1.5)

is the half-open parallelepiped of M , and the set

P o =

{
n∑
i=1

zimi : zi ∈ R and − 1 < zi < 0

}
⊂ Rn (1.6)

is the open parallelepiped of M .
Next we show that the number of points of a lattice in any bounded set is finite. Let

||(x1, · · · , xn)|| = (
∑

i x
2
i )

1/2 be the Euclidean norm on Rn. Recall that Schwartz’s inequality
says that for any real vectors x = (x1, · · · , xn) and y = (y1, · · · , yn) of length n we have
〈x, y〉 ≤ ||x|| · ||y|| where 〈x, y〉 =

∑n
i=1 xiyi is the ordinary inner product.

Theorem 1.2.22 If L ⊆ Rn is an integer lattice of rank at most n, then L∩ {x : ||x|| < c}
is finite for every c ∈ R.

Proof: We can extend any non-full lattice to a full one, and this cannot decrease the
number of points of the lattice with norm at most c, so we may assume L is full, with
basis m1, · · · ,mn. The conditions 〈x,m2〉 = 0, · · · , 〈x,mn〉 = 0 amount to a system of
n− 1 independent linear equations in n variables (the coordinates of x), so there is at least
one nonzero solution x to these equations. It cannot then hold that 〈x,m1〉 = 0. Let
z1 = (1/〈x,m1〉)x, so that 〈z1,m1〉 = 1 and 〈z1,mi〉 = 0 for i 6= 1. Similarly we can find
vectors z2, · · · , zn so that

〈zj,mi〉 =

{
0 if j = i
1 if j 6= i.

Now suppose that w = a1m1 + · · ·+ anmn ∈ L ∩ {x : ||x|| < c}. We have ai = 〈w, zi〉, so by
Schwartz’s inequality

|ai| = |〈w, zi〉| ≤ ||w|| · ||zi|| ≤ c||zi||.
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But ai is an integer, so there are only finitely many possible values for each ai, and thus
there are only finitely many such w. 2

Sometimes a module M over a ring R has the structure of a commutative ring. If the
function a 7→ a · 1M is a ring homomorphism, then we say that M is a (commutative) S-
algebra. For example, every commutative ring is a Z-algebra. If R is a subring of a ring R′,
then R′ is an R-algebra. If R is commutative ring and S is a multiplicative set in R, then
S−1R is an R-algebra. More generally, if I is an ideal of R and R/I is a subring of a ring
R′, then R′ is an R-algebra.

1.3 Characters and Fourier transforms

The Fourier transform can be defined in tremendous generality. In this section we describe
the main properties of the Fourier transform for finite Abelian groups.

1.3.a Basic properties of characters

Definition 1.3.1 A (complex) character of an Abelian group G is a group homomorphism
from G to the multiplicative group C× = C − {0} of the complex numbers. That is, it is
a function χ : G → C such that χ(a + b) = χ(a)χ(b) for all a, b ∈ G. Such a character is
nontrivial if χ(a) 6= 1 for some a. The trivial character is denoted 1, and the collection of

all characters of G is denoted Ĝ.

The group operation in an Abelian group is usually denoted “+”, and this can lead to
some confusion since a character takes values in a multiplicative group. In particular, if χ
is a character of G then χ(mg) = χ(g)m (for any integer m), and χ(0) = 1. For example,
if G = Z/(2) then there is a unique nontrivial character χ and it is given by χ(0) = 1
and χ(1) = −1. That is, it converts {0, 1} sequences into {±1} sequences. If G is a finite
Abelian group then |χ(g)| = 1 for all g ∈ G (since χ(g)|G| = 1). It follows that χ(−g) = χ(g)
(complex conjugate) for all g ∈ G.

If G = Z/(N) is the additive group of integers modulo N then the group Ĝ of characters
is also cyclic and is generated by the primitive character χ(i) = e2πi/N . If G = G1 × G2 is

a product of two groups then Ĝ = Ĝ1 × Ĝ2. In other words, if χ is a character of G then
there are unique characters χ1, χ2 of G1, G2 (respectively) such that χ(g1, g2) = χ1(g1)χ2(g2),
namely χ1(g1) = χ(g1, 1) and χ2(g2) = χ(1, g2) (for any g1 ∈ G1 and g2 ∈ G2). From this,
together with the fundamental theorem for finite Abelian groups 1.1.15, it follows that the
collection Ĝ of characters of a finite Abelian group G is itself a finite Abelian group which
is isomorphic to G. (The corresponding statement for infinite Abelian groups is false: any
nonzero x ∈ C defines a character of the integers Z by setting χ(m) = xm.)

24



Proposition 1.3.2 Let G be a finite Abelian group, let χ : G→ C× be a character, and let
g ∈ G. Then ∑

h∈G

χ(h) =

{
0 if χ 6= 1
|G| if χ = 1

(1.7)

and ∑
ψ∈ bG

ψ(g) =

{
0 if g 6= 0
|G| if g = 0.

(1.8)

Proof: If χ is nontrivial, there exists ah ∈ G with χ(a) 6= 1. Then

χ(a)
∑
h∈G

χ(h) =
∑
h∈G

χ(ah) =
∑
h′∈G

χ(h′)

so (1− χ(a))
∑

h∈G χ(g) = 0. For the second statement, note that g determines a character

ψg of Ĝ by the equation ψg(χ) = χ(g). This character is nontrivial precisely when g 6= 0. In
this case, the sum is

∑
χ∈ bG ψg(χ), which is zero by the first part of the lemma. 2

Corollary 1.3.3 If G is a finite Abelian group and if g, h ∈ G with g 6= h, then there exists
a character χ such that χ(g) 6= χ(h).

Proof: If χ(g − h) = 1 for every χ ∈ Ĝ, then summing over all characters gives |G|. By
equation (1.8) we conclude that g − h = 0. 2

Corollary 1.3.4 (Orthogonality relations) If G is a finite Abelian group and if ψ, χ ∈ Ĝ
are distinct characters then ∑

g∈G

ψ(g)χ(g) = 0. (1.9)

If g, h ∈ G are distinct elements then∑
χ∈ bG

χ(g)χ(h) = 0. (1.10)

Proof: The first equation follows by applying Proposition 1.3.2 to the character ψχ−1. The
second equation is

∑
χ χ(g − h) = 0, also by Proposition 1.3.2. 2
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1.3.b Fourier Transform

Let G be a finite Abelian group and f : G → C be a function. We define its Fourier
transform f̂ : Ĝ→ C by

f̂(χ) =
∑
g∈G

χ(g)f(g).

The Fourier inversion formula

f(g) =
1

|G|
∑
χ∈ bG

f̂(χ)χ(g) (1.11)

expresses an arbitrary function f as a linear combination of characters. Equation (1.11)
follows immediately from the orthogonality relation for characters, for the sum on the right
hand side is

1

G

∑
χ∈ bG

∑
h∈G

f(h)χ(h)χ(g) =
1

|G|
∑
h∈G

f(h)
∑
χ∈ bG

χ(h− g) = f(g)

by equation (1.8). Equation (1.11) implies that the characters span the group C[G] of
complex-valued functions on G.

Proposition 1.3.5 (Parseval’s formula) Let f : G→ C. Then

|G|
∑
g∈G

|f(g)|2 =
∑
χ∈ bG
|f̂(χ)|2. (1.12)

Proof: Multiply f̂(χ) =
∑

g χ(g)f(g) by its conjugate,
∑

h χ(h)f(h) to get∑
χ

|f̂(χ)|2 =
∑
χ

∑
g

∑
h

f(g)f(h)χ(g)χ(h) =
∑
g,h

f(g)f(h)
∑
χ

χ(g)χ(h).

The inner sum vanishes unless g = h, which leaves |G|
∑

g f(g)f(g) as claimed. 2

If G ∼= Z/(N) is a cyclic group then a choice ζ ∈ C of primitive N -th root of unity

determines an isomorphism G ∼= Ĝ which takes 1 to the character χ1 with χ1(k) = ζk. The
other nontrivial characters χm are powers of this: χm(k) = ζmk. Thus, if f : G → C is a

function, its Fourier transform f̂ may be considered as a function f̂ : G → C by writing
f̂(m) rather than f̂(χm). Thus

f̂(m) =
N−1∑
k=0

ζmkf(k). (1.13)
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1.4 Polynomials

In this section we describe some of the basic properties of the ring of polynomials. The
polynomial ring is among the most fundamental algebraic constructions. It is needed for
much of the analysis of shift register sequences.

1.4.a Polynomials over a ring

Throughout this section R denotes a commutative ring. A polynomial over R is an expression

f = f(x) = a0 + a1x+ a2x
2 + · · ·+ adx

d =
d∑
i=0

aix
i

where a0, a1, · · · , ad ∈ R and x is an indeterminate. The ai are called the coefficients of
R. When writing polynomials we may omit terms whose coefficients equal zero. We may
also write the terms in a different order. If ad 6= 0, then we say that f(x) has degree
d = deg(f(x)). In this case ad is called the leading coefficient of f(x). We say deg(0) = −∞.
If deg(f(x)) = 0 then f(x) is a constant polynomial. If ad = 1 then f(x) is monic. The term
a0 is called the constant term. The value of f(x) at an element b ∈ R is f(a) =

∑d
i=0 aib

i.
An element a ∈ R is a root of f(x) if f(a) = 0. If g(x) =

∑e
i=0 bix

i is a second polynomial
over R, then we define

(f + g)(x) = f(x) + g(x) =

max(d,e)∑
i=0

(ai + bi)x
i

(where we may have to extend one of the polynomials with zero coefficients so that this
makes sense) and

(fg)(x) = f(x)g(x) =
d+e∑
i=0

 min(d,i)∑
j=max(0,i−e)

ajbi−j

xi.

The set of polynomials over R is denoted R[x]. The operations of addition and multiplication
make R[x] into a ring whose zero is the polynomial with every ai = 0, and whose identity
is the polynomial with a0 = 1 and ai = 0 for i ≥ 1. The proof of the following lemma is
straightforward.

Lemma 1.4.1 If f(x), g(x) ∈ R[x], then deg(f + g) ≤ max(deg(f), deg(g)) with equality
if deg(f) 6= deg(g). Also, deg(fg) ≤ deg(f) + deg(g), and equality can fail only when the
product of the leading coefficients of f and g equals zero. In particular, if R is an integral
domain then so is R[x].
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If R is an integral domain, then the units in R[x] are exactly the polynomials with degree
zero. This is false in general. For example, if R = (Z/(4), then (1 + 2x)2 = 1, so 1 + 2x is a
unit with degree one.

The following result says that sometimes we can perform division with remainder in R[x].

Theorem 1.4.2 (Division Theorem for f/g) Let f(x), g(x) ∈ R[x]. Suppose the leading
coefficient of g is invertible. Then there exist unique polynomials q, r ∈ R[x] such that
deg(r) < deg(g) and

f(x) = q(x)g(x) + r(x).

Proof: By induction on the degree d of f . If deg(f) < deg(g), take q = 0 and r = f .
Otherwise, suppose f has leading coefficient ad. Suppose g has degree e ≤ d and leading
coefficient be. Then we have f(x) = adb

−1
e xd−eg(x) + f ′(x) for some polynomial f ′. The

degree of f ′ is less than the degree of f , so by induction we have f ′ = q′g + r. It follows
that f = (adb

−1
e + q′)xd−eg + r. For uniqueness, suppose f = q1g + r1 = q2g + r2 with

deg(ri) < deg(g). Then 0 = (q1 − q2)g + (r1 − r2). The leading coefficient of g is invertible,
and deg(r1 − r2) < deg(g). It follows that the leading coefficient of q1 − q2 is zero, that is,
q1 − q2 = 0. Therefore r1 − r2 = 0. 2

Theorem 1.4.3 If a is a root of f(x) ∈ R[x], then there exists a polynomial q(x) ∈ R[x]
such that

f(x) = (x− a)q(x).

If R is an integral domain, then the number of distinct roots of f is no more than the degree
of f (but see exercise 16).

Proof: Use the division theorem (Theorem 1.4.2) with g = x − a. The remainder r has
degree zero but has a as a root. Thus r is zero. If R is an integral domain and if b 6= a is
another root of f(x) then b is necessarily a root of q(x). So the second statement follows by
induction. 2

A root a of polynomial f is said to be simple if a is not a root of f(x)/(x− a).

Lemma 1.4.4 Let q =
∑m

i=0 qix
i ∈ R[x] be a polynomial with coefficients in R. Consider

the following statements

1. q0 is invertible in R.
2. The polynomial x is invertible in the quotient ring R[x]/(q).
3. The polynomials q(x) and x are relatively prime in the ring R[x].
4. There exists an integer T > 0 such that q(x) is a factor of xT − 1.
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5. There exists an integer T > 0 such that xT = 1 in the ring R[x]/(q).

Then statements (1), (2), and (3) are equivalent and

x−1 = −q−1
0 (q1 + q2x+ · · ·+ qmx

m−1)

in R[x]/(q). Statements (4) and (5) are equivalent (and the same T works for both) and
x−1 = xT−1 in R[x]/(q). Statement (4) (or (5)) implies (1), (2), (3). If R is finite then (1)
(or (2) or (3)) implies (4),(5).

Proof: The statements are all straightforward except (possibly) the last one. Suppose
that R is finite. Then the quotient ring R[x]/(q) also contains finitely many elements so
the powers {xn} of x in this ring cannot all be different. Hence there exists T such that
xn+T ≡ xn (mod q) for all sufficiently large n. Under assumption (2) this implies that
xT ≡ 1 (mod q). In other words, q divides the polynomial xT − 1, as claimed. 2

When condition (4) (or (5)) in Lemma 1.4.4 holds, the smallest T such that q(x)|(xT −1)
is called the order of the polynomial q. (Otherwise one may say that q does not have an
order, or that its order is infinite. The terminology is confusing: it should be called the
order of x (mod q) for consistency with the terminology of group theory.)

1.4.b Polynomials over a field

Theorem 1.4.5 If F is a field, then F [x] is Euclidean with δ(f) = deg(f). Every ideal in
F [x] has a unique monic principal generator. Any f(x) ∈ F [x] can be written in the form

f(x) = ape11 p
e2
2 · · · p

ek
k

where a ∈ F , the pi are distinct monic irreducible elements of F [x], and the ei are positive
integers. This representation is unique apart from changing the order of the pi.

Proof: It follows from Theorem 1.4.2 that F [x] is Euclidean. It is also principal and is a
UFD by Theorem 1.2.11. Each irreducible polynomial has a unique monic associate (divide
by the leading coefficient). This accounts uniquely for a. 2

It also follows from Theorem 1.2.11 that F [x] is a GCD ring, but to be precise we have:

Theorem 1.4.6 Let F be a field and f1, · · · , fk ∈ F [x], not all zero. There is a unique
monic g ∈ F [x] such that (1) g divides every fi and (2) if h divides every fi then h also
divides g. Moreover, g can be written in the form

g = h1f1 + h2f2 + · · ·+ hkfk (1.14)

for some h1, h2, · · · , hk ∈ F [x].
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Proof: Let I = {h1f1 + h2f2 + · · · + hkfk : h1, h2, · · · , hk ∈ F [x]}. Then I is an ideal in
F [x], so by Theorem 1.4.5, I has a unique monic generator g. Since g ∈ I, g can be written
in the form in equation (1.14). It follows that any h that divides every fi also divides g.
Since fi ∈ I, g divides fi. 2

We write g = gcd(f1, · · · , fk). It can be found by the usual Euclidean algorithm by
repeatedly using Theorem 1.4.2. There is also a notion of least common multiple in F [x].
The following theorem later allows us to construct finite fields of all possible sizes. The proof
is omitted.

Theorem 1.4.7 If F is a finite field and d is a positive integer, then there is at least one
irreducible polynomial of degree d in F [x].

If F ⊆ E are fields and if a ∈ E is an element that is the root of some polynomial
with coefficients in F , then we say a is algebraic over F . A polynomial f ∈ F [x] is called
a minimal polynomial of a (over F ) if it is monic, if f(a) = 0 and if it is a polynomial of
smallest degree with these properties.

Theorem 1.4.8 Suppose a is algebraic over F . Then it has a unique minimal polynomial
f ∈ F [x]. The minimal polynomial f is also the unique monic irreducible polynomial in F [x]
having a as a root. If g ∈ F [x] is any other polynomial such that g(a) = 0 then f divides g
in F [x].

Proof: If two monic polynomials f, g ∈ F [x] have the same (minimal) degree and both
have a as a root then f − g has smaller degree, which is a contradiction. Now suppose f is a
monic irreducible polynomial such that f(a) = 0. The set J = {h ∈ F [x] : h(a) = 0} is an
ideal, so it is principal. It contains f , but f is irreducible, so J = (f) is the ideal generated
by f , and f is the unique monic polynomial with this property. If g(a) = 0 then g ∈ J so g
is a multiple of f . 2

1.5 Exercises

1. Prove that if G1 and G2 are groups, then the direct product G1 × G2 is a group. Prove
that G1 ×G2 is Abelian if G1 and G2 are Abelian.

2. Describe the set of all subgroups of the group Z/mZ.

3. Let ϕ : G → H be a group homomorphism. Prove that ker(ϕ) is a subgroup of G and
Im(ϕ) is a subgroup of H.
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4. Let G be a group and let H be a subgroup of G. Prove that the relation defined by a ∼ b
if there is an h ∈ H such that b = ah is an equivalence relation. Find an example where the
definition aHbH = abH does not make the set of equivalence classes into a group.

5. Prove that a subgroup H of a group G is normal if and only if for every a ∈ G and h ∈ H,
we have aha−1 ∈ H.

6. Theorem 1.1.14: Let ϕ : G→ G′ be a homomorphism.

1.Prove that ker(ϕ) is normal in G.
2.Prove that the quotient G/ker(ϕ) is isomorphic to Im(ϕ).
3.Conversely, prove that if H is a normal subgroup of G, then the map a 7→ aH is a

surjection from G to G/H with kernel equal to H.

7. Show that the set of endomorphisms of an Abelian group is a ring.

8. Theorem 1.2.7:

1.Suppose ϕ : R→ S is a ring homomorphism. Prove that ker(ϕ) is an ideal of R and ϕ
induces an isomorphism between R/ker(ϕ) and the image of f .

2.Prove that if I is an ideal of R, then the map a 7→ a + I is a homomorphism from R
onto R/I with kernel I.

9. Prove that a GCD ring with no infinite chain of proper ascending ideals is also a LCM
ring.

10. Let {Rs : s ∈ S} be a family of rings. Prove that RS is the unique (up to isomorphism)
ring such that if T is any ring and ψs : T → Rs any set of homomorphisms, then there is a
homomorphism g : T → RS such that ψs = ϕs◦g for every s ∈ S.

11. Prove that if V is a vector space over a field F , then for every u ∈ V we have 0 · u = 0.

12. Theorem 1.2.17:

1.Prove that every vector space has a basis. (Hint: use Zorn’s Lemma.)
2.Prove that if S is a basis for a vector space V , then every vector can be written uniquely

as a linear combination of elements of S.

13. Develop a theory of characters as functions with values in an arbitrary field F rather
than C. For certain parts you will need to assume that F contains the n-th roots of unity.

14. Prove that the Hadamard transform is
∑

x ζ
a·xf(x).
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15. Prove that the Walsh transform is something else.

16. Let R = Z × Z. Let f(x) = (1, 0)x − (1, 0) ∈ R[x]. Show that f has infinitely many
roots in the ring R.
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Chapter 2 Special Fields

2.1 Finite Fields

In this section we analyze the structure of finite fields. For a more complete treatment see
the excellent reference by Lidl and Niedereitter [15]. Our first task is identify all finite fields
and all inclusion relations among them.

2.1.a Basic properties

Theorem 2.1.1 Let p be a prime number. For each d > 0 there is (up to isomorphism) a
unique field Fpd with pd elements. These account for all finite fields. If e > 0 is another
integer, then there is an inclusion Fpd ⊆ Fpe if and only if d divides e. That is, the lattice
of finite fields with characteristic p under inclusion is isomorphic to the lattice of whole
numbers under divisibility. The subfield Fpd consists of those elements a of Fpe satisfying

ap
d

= a.

The field Fpd is sometimes denoted GF (pd) (for ”Galois field”). The proof of Theorem
2.1.1 will occupy the rest of §2.1.a.

Suppose d is a positive integer and F is a finite field with q elements. Let f(x) be an
irreducible polynomial over F with degree d. Then by Theorem 1.2.5.4, F [x]/(f(x)) is a
field. It has qd elements. In particular, if p is a prime integer and we take F = Z/(p), then
this together with Theorem 1.4.7 shows that there exists a finite field of order pd for every
prime p and positive integer d.

Next suppose F is a finite field with characteristic p > 0. Recall that we showed in
Theorem 1.2.8 that p is prime. It follows that the mapping Z/(p) → F which takes an
element n to 1 + 1 + · · · + 1 (n times) is a ring homomorphism. So we can view Z/(p) as
a subfield of F . Hence F has the structure of a finite dimensional vector space over Z/(p).
By Theorem 1.2.18, F has pd elements for some d.

Proposition 2.1.2 If F ⊆ E are two finite fields, then E and F have the same character-
istic. If p is the characteristic, then |F | = pd and |E| = pe for some integers d and e such
that d divides e.

Proof: If F has characteristic p and E has characteristic r, then |F | = pd and |E| = re for
some d and e. But E is a vector space over F , so re = (pd)k for some k. Thus r = p and
e = dk. 2
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To complete the picture of the set of finite fields we want to show that there is, up to
isomorphism, a unique finite field of a given cardinality. First we need a lemma.

Lemma 2.1.3 If F is a finite field, then every a ∈ F is a root of the polynomial x|F | − x
and we have

x|F | − x =
∏
a∈F

(x− a).

No other element of any extension field of F is a root of this polynomial.

Proof: The multiplicative group of F has order |F | − 1, so by Theorem 1.1.3 any nonzero
element a ∈ F satisfies a|F |−1 = 1. Therefore any element a ∈ F satisfies a|F | = a. That is,
every a is a root of the polynomial x|F |−x. It follows that x−a divides x|F |−x. Furthermore,
the degree of x|F | − x equals |F |, so there are no other roots of this polynomial in E. The
factorization follows from Theorem 1.4.3. 2

Corollary 2.1.4 Suppose E is a field, p is a prime number, and d is a positive integer.
Then E contains at most one subfield of order pd.

Proof: Suppose F is a subfield of E of order pd. By Lemma 2.1.3 every a ∈ F is a root of
xp

d − x, and there are no other roots of this polynomial in E.
Now suppose F ′ is another subfield of E of order pd. The same reasoning applies to F ′.

Thus F = F ′. 2

Proposition 2.1.5 Let p be a prime number and let d > 0 be an integer. Any two finite
fields with pd elements are isomorphic.

Proof: Let E = (Z/(p))[x]/(f(x)), where f(x) is an irreducible polynomial with degree d
and coefficients in Z/(p). It is enough to show that any field F with pd elements is isomorphic
to E.

By Lemma 2.1.3, every a ∈ E satisfies ap
d

= a. In particular, xp
d − x = 0 in E, so f(x)

divides xp
d − x as polynomials. That is, xp

d − x = f(x)g(x) for some g(x) ∈ (Z/(p))[x].
On the other hand, we can think of xp

d − x as a polynomial over F . By the same
reasoning, every element of F is a root of this polynomial, so

f(x)g(x) = xp
d − x =

∏
a∈F

(x− a).

In particular, f(x) factors into linear factors over F . Let a be a root of f(x) in F . If the
elements {1, a, a2, · · · , ad−1} were linearly dependent over (Z/(p))[x], a would be a root of
a lower degree polynomial, and this polynomial would divide f(x). That would contradict
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the irreducibility of f(x). Thus they are linearly independent and hence a basis (F has
dimension d over (Z/(p))[x]). That is, every b in F can be written

b =
d−1∑
i=0

cia
i,

with ci ∈ (Z/(p))[x]. We define a function

L(
d−1∑
i=0

cia
i) =

d−1∑
i=0

cix
i

from F to E. This function is one-to-one and it can be checked that it preserves multipli-
cation and addition. Hence it is an isomorphism. 2

Thus for each prime power q = pd there is a unique field Fq with q elements.

Proposition 2.1.6 Let p be prime, let d, e be positive integers, and suppose that d divides
e. Then the field Fpd may be realized as a subfield of Fpe.

Proof: Let F = Fpd and set q = pd = |F |. Let E = Fpe . Assume e = dk for some integer
k > 0. Then |E| = qk. Recall from Lemma 2.1.3 that E consists of the distinct roots of the
polynomial xp

e − x = xq
k − x. This polynomial is divisible by the polynomimal xq − x, for

the quotient is
x(qk−1)−(q−1) + x(qk−1)−2(q−1) + · · ·+ xq−1 + 1.

Thus E contains a set S of q distinct roots of the polynomial (xq−x). By Lemma 1.2.9, both
addition and multiplication commute with raising to the qth power, so the subset S ⊂ E is
a field. Therefore it is isomorphic to the field F = Fq. 2

Suppose q ∈ F [x] is irreducible. Recall that in the terminology of §1.4.a, the order of
q is the smallest T such that q(x)|(xT − 1). This is the order of x in the group of units
of F [x]/(q), a group that has |F |deg(q) − 1 elements. Thus by Theorem 1.1.3 the order of q
divides |F |deg(q) − 1.

This completes our picture of the set of finite fields and the proof of Theorem 2.1.1.

2.1.b Galois groups

Some of the preceding notions can be understood in terms of Galois groups (see §1.2.a for
the definition of Galois groups). From the proof of Proposition 2.1.6 we see that σ(a) = ap

defines an automorphism (that is, an invertible homomorphism that is both additive and
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multiplicative) of any finite field Fpd . If a is in Fpd , then we have σd(a) = ap
d

= a, so σd is
the identity on Fpd . If σe is the identity on Fpd for any e, then ap

e
= σe(a) = a for every a,

so Fpd ⊆ Fpe . In particular, d < e so the powers of σ constitute a cyclic group of order d.
Furthermore, if c is a divisor of d, then σc(a) = a if and only if a ∈ Fpc . That is,

Fpc =
{
a ∈ Fpd : σc(a) = a

}
is the subfield of Fpd fixed by the group generated by σc. Thus Fpc ⊂ Fpd is a Galois
extension.

Theorem 2.1.7 The Galois group Gal(Fpd/Fpc) is a cyclic group of order d/c, generated
by the automorphism σc : a 7→ ap

c
.

Proof: Suppose that τ is any automorphism of Fpd . It suffices to show that τ = σi for
some i. The theorem then follows from the fact that Fpc is the fixed field of the subgroup
generated by σc. Let f be an irreducible polynomial over Fp with degree d, and let a be a
root of f . Then Fpd = Fp[a] and 1, a, a2, · · · , ad−1 is a basis for Fpd over Fp. Thus to show
that two automorphisms are equal, it suffices to show that they are equal on a. We have
that σi(f) = f for every i, so σi(a) is a root of f . Similarly, τ(a) is a root of f . The σi(a)
are distinct – otherwise a and hence Fpd are in a proper subfield, which is a contradiction.
Thus there are d = deg(f) of them, and they account for all the roots of f . In particular,
τ(a) = σi(a) for some i. So τ = σi, proving the theorem. 2

Thus we have an inclusion reversing correspondence between the lattice of subfields of Fpd

and the lattice of subgroups of Gal(Fpd/Fp). The main theorem of Galois theory describes
the solutions of a polynomial equation in terms of the Galois group.

Theorem 2.1.8 Let F be a finite field and f(x) ∈ F [x] be a polynomial of degree d with
coefficients in F . Let E be an extension field of F and suppose α ∈ E is a root of f . Then
for any σ ∈ Gal(E/F ), the element σ(α) ∈ E is also a root of f . If f is irreducible in F [x]
and if E is the degree d extension of F then all the roots of f are contained in E. They
consist exactly of the Galois conjugates,

σi(α) = αq
i

,

where 0 ≤ i ≤ d− 1. That is, where σi ranges over all elements of Gal(E/F ).

Proof: Let q = |F |. The Galois group Gal(E/F ) is cyclic and it is generated by the
mapping σ : E → E given by σ(a) = aq. If f(x) =

∑d
i=0 aix

i and if α ∈ E is a root of f ,
then

0 = σ(f(α)) =

(
d∑
i=0

aiα
i

)q

=
d∑
i=0

aqiα
iq =

d∑
i=0

aiσ(α) = f(σ(α))
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(by Lemma 1.2.9), so σ(α) is also a root of f .
Now suppose f is irreducible and, without loss of generality, monic). Then it is the mini-

mal polynomial of α by Theorem 1.4.8. But the polynomial g(x) =
∏

g∈Gal(E/F )(x− g(α)) ∈
E[x] has the same degree as f , and it is clearly fixed under each element of Gal(E/F ). So
g ∈ F [x], and it has α as a root. Therefore g = f , so the roots of f are all the Galois
conjugates of α. 2

2.1.c Primitive elements

To work within a particular finite field F , it is useful to have some structural information.
An element a ∈ F is called primitive if every nonzero element of F can be written as a
power of a. A polynomial f ∈ Fp[x] of degree d is primitive if it is irreducible and if one
(and hence all) of its roots in Fpd are primitive elements.

The following lemma will be used in §??.)

Lemma 2.1.9 Let F = Fq be the field with q elements. Let f ∈ F [x] be a polynomial. Then
f is primitive if and only if its order is qdeg(f) − 1.

Proof: In the ring F [x]/(f) the element x is a root of the polynomial f(x). If x is primitive
then the order of x is T = |F | − 1 = qdeg(f) − 1. Thus T is the smallest integer such that
xT = 1 (mod f), which is to say that T is the smallest integer such that f divides xT − 1.
Thus the order of f is T . The converse is similar. 2

We next show that every finite field has primitive elements. This implies that the mul-
tiplicative group of a finite field is cyclic.

Proposition 2.1.10 The finite field Fpd has φ(pd − 1) primitive elements.

Proof: Suppose that a ∈ Fpd has order e. That is, ae = 1 and no smaller positive power of
a equals 1. Then the elements 1, a, a2, · · · , ae−1 are distinct and are all roots of xe− 1. That
is,

xe − 1 = (x− 1)(x− a)(x− a2) · · · (x− ae−1).

It follows that every element whose eth power equals 1 is a power of a, and an element b = ai

has order e if and only if gcd(i, e) = 1. Thus if there is at least one element of order e, then
there are exactly φ(e). That is, for every e there are either 0 or φ(e) elements of order e.

Furthermore, by Lemma 2.1.3 every nonzero a ∈ F is a root of the polynomial xp
d−1−1.

Thus if there is an element in F with order e, then e divides pd−1. It is a fact from number
theory that for any positive integer k∑

e|k

φ(e) = k.CITATION?
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Thus we have

pd − 1 =
∑
e|pd−1

|{a ∈ F : the order of a = e}|

≤
∑
e|pd−1

φ(e) = pd − 1.

Therefore the two sums are equal. Since each term in the first sum is less than or equal to
the corresponding term in the second sum, each pair of corresponding terms must be equal.

In particular, the number elements with order pd − 1 equals φ(pd − 1) > 0. 2

In fact, it can be shown that every finite field Fpd has a primitive normal basis over a

subfield Fpc . This is a basis of the form a, ap
c
, · · · , apd−c

with a primitive. The interested
reader can find the details in [15, §2.3].

2.1.d The Trace Function

The trace function is an important function from a field to a subfield. It is used, for example,
in the construction of binary sequences for a variety of engineering applications such as radar
ranging, spread spectrum communication, Monte Carlo simulation, and stream ciphers. We
define it here just for finite fields.

Definition 2.1.11 Let d and e be positive integers with d dividing e. The trace function
from Fpe to Fpd is defined by

Trp
e

pd(a) = a+ ap
d

+ ap
2d

+ · · ·+ ap
e−d

.

Lemma 2.1.12 Let d and e be positive integers with d dividing e. If a ∈ Fpe then

a+ ap
d

+ ap
2d

+ · · ·+ ap
e−d

=
∑

σ∈Gal(Fpe/F
pd )

σ(a)

is in Fpd.

Proof: Left as an exercise. 2

Thus the trace function from Fpe to Fpd does indeed have values in Fpd . If there is no
possibility of confusion, we simply write Tr for the trace function.

Theorem 2.1.13 Let d and e be positive integers with d dividing e.
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1. For all a, b ∈ Fpe and c ∈ Fpd we have Tr(a+ b) = Tr(a) +Tr(b) and Tr(ca) = cTr(a).
That is, Tr is Fpd-linear.

2. For all c ∈ Fpd, we have |{a ∈ Fpe : Tr(a) = c}| = pe−d.
3. For all a ∈ Fpe we have Tr(ap) = Tr(a)p.
4. Tr(1) ∈ Fp and Tr(1) ≡ e/d (mod p).
5. If L : Fpe → Fpd is an Fpd-linear function, then there is an element a ∈ Fpe such that

for every b ∈ Fpe, we have L(b) = Tr(ab). We denote this function by La(b).

Proof:

1. Since (a + b)p = ap + bp in any field of characteristic p, and ap
d

= a for any a ∈ Fpd ,
Tr is a sum of Fpd-linear functions.

2. For any c ∈ Fpd , the expression Tr(x)−c is a polynomial of degree pe−d. Thus it has at
most pe−d roots. Thus the total number of roots of all these polynomials is at most pe,
with equality only if every such polynomial has exactly pe−d roots. But every element
of Fpe is a root of exactly one such polynomial. Thus the total number of roots of all
these polynomials is equal to pe. It follows that there are exactly pe−d elements a of
Fpe such that Tr(a) = c.

3. All the operations used to define Tr commute with raising to the pth power.
4. We have Tr(1) = 1 + 1p

d
+ · · ·+ 1p

e−d
= 1 + 1 + · · ·+ 1, with e/d terms.

5. We prove this by counting. The field Fpe has dimension e/d over Fpd , so by Theorem
1.2.20, there are pe distinct Fpd-linear functions from Fpe to Fpd . On the other hand,
each function La : Fpe → Fpd is Fpd-linear. All that remains is to show that these are
distinct as a varies. So, suppose that for some a, b ∈ Fpe we have Tr(ac) = Tr(bc) for
every c ∈ Fpe . Then also Tr((a − b)c) = 0 for every c. But if a 6= b, this implies that
Tr(x) = 0 for all x, which is false. Thus a = b.

This completes the proof. 2

There is an alternative definition of the trace function. If a ∈ Fpe , then the function
κa : x 7→ ax is Fpd-linear, and thus can be represented by an (e/d)× (e/d) matrix Ma over
R once a basis for Fpe has been chosen. We denote by T (a) the trace of this matrix.

Proposition 2.1.14 For all a ∈ Fpe we have Trp
e

pd(a) = T (a).

Proof: Both maps T and Tr are R-linear, hence are equal if and only if they are equal on a
basis. This holds in particular for a primitive normal basis a, ap

d
, ap

2d
, · · · , ape−d

. In partic-
ular, we may assume that every element of the basis is a root of an irreducible polynomial
of degree e/d over Fpd . Thus it suffices to prove that T (a) = Tr(a) for every element a that
is a root of an irreducible polynomial of degree e/d over Fpd .
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Let a be such an element, with minimal polynomial f(x) = xd +
∑e/d−1

i=0 aix
i. Then Ma

is the matrix with 1 in each entry of the subdiagonal, a0, · · · , ad−1 in the last column, and
0s elsewhere. Its trace is ad−1. On the other hand, we have

f(x) =
∏

σ∈Gal(Fpe/F
pd )

(x− σ(a)),

so ad−1 =
∑

σ∈Gal(Fpe/F
pd ) σ(a) = Tr(a). 2

Similarly, the norm of an element a ∈ Fpe is defined to be

Npe

pd (a) =
∏

σ∈Gal(Fpe/F
pd )

σ(a) = a(pe−1)/(pd−1) ∈ Fpd .

It is a multiplicative function (that is, Npe

pd (ab) = Npe

pd (a)Npe

pd (b)). The norm can also be
defined in terms of the matrix Ma – it is simply the determinant. This can be seen by
checking it for any primitive element a, which is straightforward since the matrix of such an
element is as described in the proof of Proposition 2.1.14.

2.1.e Characters of finite fields

Let F be a finite field, say, |F | = pr where p is a prime number. Let F× be the group of
all nonzero elements of F under multiplication and let F+ be the group of all elements of
F under addition. A character of F+ is called an additive character. If χ is a nontrivial
additive character then every additive character is of the form ψ(x) = χ(Ax) for some
element A ∈ F . (Different values of A give distinct characters, and there are |F | of them,
which therefore account for all additive characters.)

A character of F× is called a multiplicative character of F . It is common to extend each
multiplicative character ψ : F× → C to all of F by setting ψ(0) = 0. There is a notion of
Fourier transform with respect to either the additive or the multiplicative structure. Since
the prime field Fp = Z/(p) is cyclic, and since the multiplicative group F× is cyclic, equation
(1.13) gives explicit formulae for these Fourier transforms. In this case they are sometimes
called the Hadamard and Walsh transforms (respectively). (See exercises?)

If ψ is a multiplicative character one can take its Fourier transform ψ̂ with respect to
the additive structure to obtain

ψ̂(χ) =
∑
g∈F

χ(g)ψ(g) =
∑
g∈F×

χ(g)ψ(g) (2.1)

for any additive character χ. Conversely, equation (2.1) may be interpreted as the Fourier
transform χ̂ of the additive character χ evaluated on the multiplicative character ψ. This
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sum is called a Gauss sum and is denoted G(ψ, χ). The results in §1.3.b therefore give a
number of simple facts concerning Gauss sums. For example, the Fourier expansion of a
multiplicative character ψ in terms of additive characters (1.11) gives

ψ(g) =
1

|F |
∑
χ

G(ψ, χ)χ(g) =
1

|F |
∑
χ

G(ψ, χ)χ(g).

Other basic properties of Gauss sums are described in [15] §5.2.

2.1.f The Discrete Fourier Transform

We can generalize the notion of a Fourier transform by generalizing equation (1.13). Suppose
that f is a function from Z/(N) into a finite field F = Fq, q = pe with p prime, and suppose
that N is relatively prime to p. Then there is a primitive Nth root of unity b in some
extension field Fr, r = qd. This is true since q is a unit in Z/(N), hence has finite order d.
That is, N divides qd − 1 for some d. If c is a primitive element in Fqd , then c has order

qd − 1, so b = c(q
d−1)/N has order N .

Definition 2.1.15 The discrete Fourier transform of f is defined to be the function

f̂(m) =
N−1∑
k=0

bmkf(k) ∈ Fqd .

This transform behaves similarly to the Fourier transform for characters defined in Sec-
tion 1.3.b. The discrete Fourier transform f̂ is itself a function from Z/(N) to Zqd . As such
we can take its discrete Fourier transform.

Theorem 2.1.16 Let b be a primitive N th root of unity in Fqd. If f is any function from
Z/(N) into Fqd, then

f(g) =
1

N

N−1∑
m=0

f̂(m)b−mg. (2.2)

This equation is known as the Fourier inversion formula

Proof: We have

1

N

N−1∑
m=0

f̂(m)b−mg =
1

N

N−1∑
m=0

N−1∑
k=0

bmkf(k)b−mg

=
1

N

N−1∑
k=0

f(k)
N−1∑
m=0

bm(k−g).

If k 6= g, then bk−g 6= 1 is a root of (xN − 1)/(x− 1) = 1 + x+ · · ·xN−1, so the inner sum is
N if k = g and is zero otherwise. The theorem follows from this. 2
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2.2 Algebraic Number Fields

2.2.a Basic properties

So far our examples of fields have consisted of finite fields and the familiar fields Q, the
rational numbers, R, the real numbers, and C, the complex numbers. Recall that we we
obtain the various finite fields of characteristic p > 0 from the prime field Fp by constructing
the quotient Fp[x]/(f(x)) where f(x) is an irreducible polynomial. We can think of this
construction as adjoining a root (the variable x) of f(x) to the field Fp. Similarly, we obtain
the complex numbers from the real numbers by adjoining a root of the polynomial x2 + 1.

In this section we study a class of fields, called algebraic number fields that are obtained
in the same way from the rational numbers. For the most part we omit proofs and leave the
interested reader to find them in other references.

Definition 2.2.1 An algebraic number field E is a finite extension of the rational numbers
Q.

This means that E is a field that contains Q and that as a vector space over Q it is finite
dimensional.

A complex number a ∈ C is said to be algebraic over Q, or simply algebraic, if it is
a root of some polynomial f(x) ∈ Q[x] with coefficients in Q. In this case, there exists a
unique monic polynomial f(x) ∈ Q[x], irreducible in Q[x], such that f(a) = 0. It is called
the minimal polynomial (over Q) of a; see Theorem 1.4.8. If Q(a) ⊂ C denotes the smallest
field that contains both Q and a then the mapping Q[x]→ Q(a) which takes x to a induces
an isomorphism

Q[x]/(f)→ Q(a),

where f is the minimal polynomial of a. The proof is left as an exercise. An important
result is the following:

Theorem 2.2.2 Suppose that E and F are algebraic number fields with F ⊆ E. Then there
is an element a ∈ E such that E = F (a). In particular, every algebraic number field is of
the form Q(a) for some algebraic number a.

A field F is said to be algebraically closed if every element that is algebraic over F is
already in F . This is equivalent to saying that every polynomial with coefficients in F splits
as a product of linear factors. Every field is contained in an algebraically closed field, and
any two minimal algebraically closed fields containing a given field F are isomorphic. Thus
in general we may speak of the algebraic closure of a field F .

For example, C is algebraically closed. The set Q of all algebraic numbers over Q is an
algebraically closed subfield of C, and we shall refer to this particular field as the algebraic
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closure of Q. It is not a finite extension of Q, so it is not a number field. However, this
observation allows us to embed any algebraic number field in the complex numbers. For any
prime number p, the set Fp∞ = ∪dFpd is a field. It is the algebraic closure of every Fpd .

Theorem 2.2.3 Let F be a number field. Then there are exactly [F : Q] embeddings of F
in C.

Proof: Let F = Q(a) and suppose there are k distinct embeddings of F in C. An embedding
σ of F in C is completely determined by its value on a. The image σ(a) is a root of the
minimal polynomial f ∈ Q[x] of a over Q (thinking of f as a polynomial over C). It is
straightforward to check that every root of f determines an embedding. The number of roots
of f is exactly its degree, since C is algebraically closed. Thus the number of embeddings
of F in C is exactly the degree of f , which equals [F : Q]. 2

More generally we can consider extensions of embeddings. If K is a subfield of the
algebraic number field F and τ is an embedding of K in C, then an extension of τ to F is
an embedding σ of F in C such that σ(b) = τ(b) for all b ∈ K.

Theorem 2.2.4 If K is a subfield of an algebraic number field F , then every embedding of
K in C extends to [F : K] distinct embeddings of F in C.

Proof: Left as an exercise. 2

Definition 2.2.5 Let F be a number field and let σ1, · · · , σd be the distinct embeddings of
F in C. Then the trace and norm of an element b ∈ F are defined as follows.

1. TrF (b) = σ1(b) + σ2(b) + · · ·+ σd(b).
2. NF (b) = σ1(b)σ2(b) · · ·σd(b).

Theorem 2.2.6 Let F be a number field with [F : Q] = d.

1. If b ∈ F and [Q(b) : Q] = e, then TrF (b) = (d/e)TrQ(b)(b) ∈ Q and NF (b) =
NQ(b)(b)

d/e ∈ Q. Furthermore, the minimal polynomial (over Q) of b is

f(x) = xe − TrQ(b)(b)x
e−1 +− · · · ±NQ(b)(b).

2. For every b, c ∈ F , TrF (b+ c) = TrF (b) + TrF (c).
3. For every b ∈ F and u ∈ Q, TrF (ub) = uTrF (b).
4. For every b, c ∈ F , NF (bc) = NF (b)NF (c).
5. For every u ∈ Q, NF (u) = ud.
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Proof: By Theorem 2.2.4, for each embedding τ of Q(b) in C, the number τ(b) occurs
exactly d/e times as a summand in the definition of TrF (b) and as a factor in the definition
of NF (b). Thus TrF (b) = (d/e)TrQ(b)(b) and NF (b) = NQ(b)(b)

d/e. It is apparent from the
proof of Theorem 2.2.3 that if τ1, · · · , τe are the distinct embeddings of Q(b) in C, then the
minimal polynomial (over Q) of b is

f(x) =
e∏
i=1

(x− τi(b)) = xe − TrQ(b)(b)x
e−1 +− · · · ±NQ(b)(b).

It follows that the trace and norm are in Q.
The arithmetic properties of the trace and norm follow from the properties of an embed-

ding σ of F in C: σ(b + c) = σ(b) + σ(c) and σ(bc) = σ(b)σ(c) if b, c ∈ F , and σ(u) = u if
u ∈ Q. 2

2.2.b Algebraic Integers

Just as algebraic number fields are generalizations of the rational numbers, there is a gen-
eralization of the rational integers Z.

Definition 2.2.7 An algebraic number a is an algebraic integer or is integral if its minimal
polynomial f ∈ Q[x] over Q has all its coefficients in Z.

Theorem 2.2.8 The following are equivalent

1. a is an algebraic integer.
2. Z[a] is a finitely generated Z-module.
3. a ∈ R for some ring R ⊆ C that is a finitely generated Z-module.
4. aM ⊆M for some finitely generated Z-module M ⊆ C.

Proof: If a is an algebraic integer, then ad is a linear combination of 1, a, · · · , ad−1 with
integer coefficients, and it follows that Z[a] is generated as a Z-module by 1, a, · · · , ad−1.
The implications (2) =⇒ (3) =⇒ (4) are straightforward.

To prove that (4) implies (1), suppose that M is generated by m1, · · · ,mk. Thus for
j = 1, · · · , k, we have

amj =
k∑
i=1

bi,jmj (2.3)

with bi,j ∈ Z. Let ci,j = bi,j if i 6= j, and ci,i = bi,i − x. It follows from equation (2.3) that
the determinant of the matrix [cij] is zero at x = a. But the determinant of this matrix is a
monic polynomial with integer coefficients, so a is algebraic. 2
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2.2.c Orders

Let F be an algebraic number field. If R ⊂ F is a sub-ring, then it is automatically
an integral domain. An order R ⊂ F is a subring of F such that its additive group R+

(meaning that we forget about the multiplication for the moment) is finitely generated and
has maximal rank in F . In this case, Corollary 1.1.17 implies that R+ is isomorphic to Zm

for some integer m. A standard result is the following.

Theorem 2.2.9 A sub-ring R in a number field F is an order in F if and only if it satisfies
the following three conditions,

1. R ∩Q = Z
2. The fraction field (§1.2.e) of R is F .
3. R+ is finitely generated, as an Abelian group.

Except when F = Q there are infinitely many orders in F . Every order R ⊂ F consists
entirely of algebraic integers and in fact the intersection ZF = F ∩ A (where A denotes
the set of all algebraic integers) is an order which contains all the other orders in F . This
maximal order ZF is called the ring of integers of F .

The ring of integers of Q is Z; the ring of integers of Q[i] is Z[i]. However the ring
of integers of Q[

√
5] is larger than Z[

√
5] (which is an order). Rather, the ring of integers

consists of all integer combinations of (1 +
√

5)/2 and (1 −
√

5)/2. For any number field
F the maximal order ZF has several particularly nice properties (it is a Dedekind ring, for
example). However in §?? we will consider algebraic shift registers whose entries come from
an arbitrary order in an arbitrary number field.

2.3 Local fields

There are two more types of fields that we will encounter: function fields and p-adic fields,
both of which contain a local ring R of “integers”. These will be discussed in more detail in
Chapter 4, however here is a preview. If F is a field, then the (local) function field F ((x))
consists of all formal Laurent series

∑∞
i=−k aix

i, with ai ∈ F . Such a series has finitely
many terms of negative degree and possibly infinitely many terms of positive degree. Its
ring of “integers” is the sub-ring F [[x]] of formal power series, that is, sums with no terms of
negative degree. Every formal Laurent series a(x) ∈ F ((x)) may be expressed as a quotient
a(x) = f(x)/g(x) of two formal power series f, g ∈ F [[x]] and in fact the denominator g(x)
may be chosen to be a power of x. Addition and multiplication in F ((x)) are performed in
the obvious way, analogous to that of addition and multiplication of polynomials.

Let p be a prime number. The p-adic field Qp consists of all formal Laurent series∑∞
i=−k aip

i (with finitely many terms of negative degree and possibly infinitely many terms
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of positive degree), where 0 ≤ ai ≤ p − 1, and where addition and multiplication are
performed “with carry”. It contains a ring Zp of “integers” consisting of formal power series
with no terms of negative degree. Every a ∈ Qp can be expressed as a fraction f/g with
f, g ∈ Zp and in fact the denominator g may be chosen to be a power of p.

2.4 Exercises

1. Lemma 2.1.12: Let d and e be positive integers with d dividing e. Prove that if a ∈ Fpe ,

then a+ ap
d
+ ap

2d
+ · · ·+ ap

e−d ∈ Fpa .

2. Suppose p is prime and c, d, and e are integers with c|d|e. Prove that Trp
d

pc ◦Trp
e

pd = Trp
e

pc .

3. Develop an alternate definition of the trace function for a finite field F in terms of
embeddings of F in its algebraic closure. Prove that your definition agrees with the previous
one.
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Chapter 3 Finite Rings and Galois Rings

3.1 Finite Local Rings

In this section we examine the structure of a commutative ring (with identity) which has
finitely many elements. The standard reference for this section is [17]. During the last decade
a considerable amount of effort has been directed towards developing linear feedback shift
register sequences based on a finite local ring R. The analysis of these sequences depends
on an understanding of the units in R (see Theorem ??).

Let R be a commutative ring. Recall from Definition 1.2.10 that R is said to be a local
ring if it contains a unique maximal ideal m. In this case (see §1.2.a), the maximal ideal m

consists precisely of the non-units of R. The quotient F = R/m is called the residue field of
R. For each i ≥ 0 the quotient mi−1/mi is naturally a vector space over F (because R acts
on this quotient by multiplication, and m acts trivially). For the remainder of this section
we assume that R is a finite local ring. The following are examples of finite local rings.

• any finite (Galois) field.
• Z/(pn) for any prime number p, with maximal ideal (p) and residue field Z/(p).
• F[x]/(fn), where F is a finite field and f is an irreducible polynomial, with maximal

ideal (f) and residue field F[x]/(f).
• R[x]/(fn) where R is a finite local ring and f is a basic irreducible polynomial (see

below).

Any commutative finite ring may be expressed as a direct sum of finite local rings.

Basic irreducible polynomials: Let R be a finite local ring with maximal ideal m. Let
µ : R → F = R/m be the projection. Applying µ to each coefficient of a polynomial gives
a mapping which we also denote by µ : R[x] → F [x]. A polynomial f(x) ∈ R[x] is regular
if it is not a zero divisor, which holds if and only if µ(f) 6= 0. Let f(x) ∈ R[x]. If µ(f) is
nonzero and is irreducible in F [x] then f is irreducible in R[x], and we refer to f as a basic
irreducible polynomial. In this case R[x]/(fn) is again a local ring for any n > 0 (see ([17],
XIV.10). Its maximal ideal is m[x] + (f) and its residue field is F [x]/(µ(f)), where m[x] is
the collection of those polynomials f ∈ R[x] all of whose coefficients are in m.

If the leading term of a basic irreducible polynomial f(x) ∈ R[x] is in the maximal ideal
m then the degree of the reduction µ(f) ∈ F [x] will be less than deg(f). If f(x) is a monic
polynomial then deg(f) = deg(µ(f)) since the leading term is 1. For this reason we will
often consider monic basic irreducible polynomials.
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Lemma 3.1.1 Let f ∈ R[x] be a regular polynomial and suppose ᾱ ∈ F is a simple zero of
µ(f) ∈ F [x]. Then f has one and only one root α ∈ R such that µ(α) = ᾱ.

Proof: This is proven in Lemma (XV.1) of [17]. 2

Further properties of polynomials over R are described in §3.3. The following is a pow-
erful tool for studying local rings.

Theorem 3.1.2 (Nakayama’s Lemma for local rings [17], [16, p. 11]) Let R be a finite local
ring with maximal ideal m. Let M be a module over R.

1. If M is finite and mM = M , then M = 0.
2. If N is a submodule of M and M = N + mM , then N = M .

3.1.a Units in a finite local ring

Let R be a finite local ring with maximal ideal m and residue field F . Let R× be the set
of invertible elements in R. Let 1 + m = {1 + a : a ∈ m}. By [17], Theorem (V.1) and
Proposition (IV.7),

• the ideal m consists precisely of the non-units of R,
• for every a ∈ R, at least one of a and 1 + a is a unit, and
• there is a positive integer n such that mn = 0.

The details are left as an exercise.

Proposition 3.1.3 There exists an isomorphism of Abelian groups

R× ∼= F× × (1 + m) (3.1)

Proof: Let n be the smallest integer such that mn = 0. It is called the degree of nilpotency
of m. As in [17] Exercise (V.9), we have a sequence of surjective ring homomorphisms

R = R/mn σn−−−→ R/mn−1 σn−1−−−→ · · · σ2−−−→ R/m = F.

For 2 ≤ i ≤ n, the kernel ker(σi) = mi−1/mi is a vector space over F . If |F | = q it follows
by induction that there exists an integer j such that

|m| = qj and |R| = qj+1. (3.2)

The natural ring homomorphism µ : R→ F = R/m gives an exact sequence of (multiplica-
tive) Abelian groups,

1→ 1 + m→ R× → F× → 1.
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The Abelian group F× is cyclic of order q − 1, and 1 + m has order qj, which is relatively
prime to q − 1. It follows (from the structure theorem for finite Abelian groups, Theorem
1.1.15) that there is a splitting ι : F× → R× and this gives the isomorphism (3.1). 2

The structure of 1 + m is often very complicated. However it is possible to identify the
cyclic group F× as a subgroup of R×.

Lemma 3.1.4 There is a unique (group homomorphism) splitting ι : F× → R× of the
projection µ, and its image consists of all elements α ∈ R such that αq−1 = 1.

Proof: Every element a ∈ F× satisfies aq−1 = 1 so if ι exists, the same must be true of ι(a).
Let g(x) = xq−1− 1. Then every element of F× is a (simple) root of µ(g) ∈ F [x]. Therefore
g is a regular polynomial, and Lemma 3.1.1 implies that every element a ∈ F× has a unique
lift ι(a) ∈ R such that ι(a)q−1 = 1. Hence the splitting ι exists, and there is only one such.

2

3.2 Examples

3.2.a Z/(pm)

Fix a prime number p ∈ Z and let R = Z/(pm). This is a finite local ring with maximal
ideal m = (p) and residue field F = Z/(p). The multiplicative group F× is cyclic, of order
p− 1. By Proposition 3.1.3 the group of units R× is the product F× × (1 + m).

Proposition 3.2.1 If p > 2 then 1+m is a cyclic group of order pm−1 so R× ∼= Z/(p−1)×
Z/(pm−1) ∼= Z/(pm−1(p − 1)). If p = 2 and if m ≥ 3 then 1 + m is a product of two cyclic
groups, one of order 2 (generated by the element −1), the other of order 2m−2 (generated by
the element 5).

Proof: The order of the group of units is easy to calculate: since every pth integer is a
multiple of p, there are pm/p = pm−1 non-invertible elements in R. So there are pm−pm−1 =
(p− 1)pm−1 units. It follows that 1 + m contains pm−1 elements.

Now consider the case p ≥ 3. Define E : Z→ R = Z/(pm) by E(a) = exp(pa) (mod pm).
That is,

E(a) = 1 + pa+
p2a2

2!
+
p3a3

3!
+ · · · (mod pm) (3.3)

Consider the nth term, anpn/n!. The number n! is not necessarily invertible in Z/(pm) but
the number pn/n! does make sense in Z/(pn) if we interpret it to mean that the factor pe

which occurs in the prime decomposition of n! should be canceled with the same factor pj
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which occurs in the numerator. In fact, the prime p occurs in the prime decomposition of n!
fewer than n/p+n/p2+n/p3 · · · = n/(p−1) times. Since it occurs in the numerator n times,
it is possible to cancel all occurrences of p from the denominator. This leaves a denominator
which is relatively prime to p and hence is invertible in Z/(pm). It follows, moreover, that
after this cancellation the numerator still has at least n(p − 2)/(p − 1) factors of p. So if
n ≥ m(p− 1)/(p− 2) the term anpn/n! is 0 in Z/(pm). Therefore the sum (3.3) is finite.

Since E(a+b) = E(a)E(b), the mapping E is a group homomorphism. Moreover E(a) =
1 if and only if a is a multiple of pm−1. So E induces to an injective homomorphism

E : Z/(pm−1)→ 1 + m.

This mapping is also surjective because both sides have pm−1 elements.
Now consider the case R = Z/(2m) with m ≥ 3. The element {−1} generates a cyclic

subgroup of order 2. The element 5 generates a cyclic subgroup of order 2m−2. To show
this, first verify by induction that

52m−3

= (1 + 22)2m−3 ≡ 1 + 2m−1 (mod 2m)

so this number is not equal to 1 in Z/(2m). However

52m−2 ≡ (1 + 2m−1)2 ≡ 1 (mod 2m).

So 5 has order 2m−2 in R. Since −1 is not a power of 5 (mod 4) it is also not a power
of 5 (mod 2m). Therefore the product of cyclic groups 〈−1〉〈5〉 has order 2m−1, and it
consequently exhausts all the units. 2

3.2.b F [x]/(xm)

Let F be a field and let R = F [x]/(xm). Then R is a local ring with maximal ideal m = (x)
and with residue field F . The mapping µ : R → F (which associates to each polynomial
its constant term) takes R× surjectively to F×. This mapping has a splitting F× → R×

which assigns to any nonzero a ∈ F the polynomial a + 0x. This gives an isomorphism
R× ∼= F×× (1+m), where 1+m is the (multiplicative) group of all polynomials of the form
1 + xh(x), h(x) a polynomial of degree ≤ m− 2. In the case that F is a finite field, the ring
R is a finite local ring, and we have recovered Proposition 3.1.3. The structure of the group
1 + m is fairly complicated in general, but it can be described simply in some cases.

Proposition 3.2.2 If char(F ) = 0 or if m < char(F ) then the group 1 + m is isomorphic
to the additive group Fm−2.
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Proof: If n < char(F ) or char(F ) = 0, then the number n! is invertible in F and, for any
a ∈ F we may define

exp(ax) = 1 + ax+ a2x2/2 + · · ·+ am−1xm−1/(m− 1)! (mod xm) ∈ 1 + m.

This mapping a 7→ exp(ax) is a homomorphism from (the additive group) F into (the
multiplicative group) 1 + m whose inverse π1 : (1 + m) → F assigns to any polynomial
h(x) = 1 + h1x + h2x

2 + · · · the coefficient h1. The kernel of π1 is the subgroup 1 + m2 of
R× consisting of all polynomials of the form 1 + x2h(x). The mapping F → 1 + m2 which is
given by a 7→ exp(ax2) is again a homomorphism, whose inverse π2 : 1 + m2 → F assigns to
any polynomial h(x) = 1+h2x

2 + · · · the coefficient h2. Continuing in this way we construct
an isomorphism Fm−2 → 1 + m given by

(a1, a2, · · · , am−2) 7→ exp(a1x) exp(a2x
2) · · · exp(am−2x

m−2).

This completes the proof of the Proposition. 2

If m ≥ char(F ) > 0 this argument fails. However it is still possible to describe the
structure of 1 + m Citation?.

more to say here???

3.2.c F [x]/(fm)

Let F be a finite field and let f ∈ F [x] be an irreducible polynomial. Fix m ≥ 1. The
ring R = F [x]/(fm) is a finite local ring with maximal ideal (f) and with quotient field
K = F [x]/(f). Let

µ : R = F [x]/(fm)→ K = F [x]/(f)

be reduction modulo f . It is a surjective ring homomorphism.

Proposition 3.2.3 There is a unique splitting of µ. That is, there is a unique injective
ring homomorphism ϕ : K → R so that µ(ϕ(a)) = a for all a ∈ K. Moreover the mapping
ϕ extends to a mapping ϕ : K[y]→ R by setting ϕ(y) = f . The resulting mapping

ϕ̄ : K[y]/(ym)→ R

is an isomorphism of rings.

Proof: Let q denote the number of elements in F and let Q = qd denote the number of
elements in K, where d = deg(f). First we show that the set

Zm =
{
g ∈ F [x]/(fm) : gQ = g

}
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is a lift of the field K into R and is therefore a candidate for the image of ϕ.
The set Zm is closed under addition and multiplication, because if g1, g2 ∈ Zm then

(g1 + g2)
Q = gQ1 + gQ2 = g1 + g2. Moreover the restriction µ : Zm → K is an injection,

for if g ∈ Zm lies in the kernel of µ and if ġ ∈ F [x] is any lift of g, then f divides ġ.
However fm divides ġQ − ġ = (ġQ−1 − 1)(ġ). Since these two factors are relatively prime, it
follows that fm divides ġ, which says that g = 0 in R. Now let us show that the restriction
µ : Zm → K is surjective. Fix a ∈ K. We need to find g ∈ Zm so that µ(g) = a. We use
induction on m, and the case m = 1 holds trivially. So let m be arbitrary and consider the
mapping µm : F [x]/(fm) → F [x]/(fm−1). By induction, there exists g′ ∈ F [x]/(fm−1) so
that (g′)Q = g′ and so that g′ maps to the given element a ∈ K, that is, g′ (mod f) = a.
Let ġ′ ∈ F [x] be any lift of g′; then fm−1 divides (ġ′)Q − ġ′, or

(ġ′)Q − ġ′ = fm−1h

for some polynomial h ∈ F [x]. Set g = ġ′ + hfm−1. Then

(g)Q − g = (ġ′)Q − ġ′ + hQf (m−1)Q − hfm−1 = hQf (m−1)Q

which is divisible by fm. This says that the class [g] ∈ F [x]/(fm) lies in the set Zm and
that g (mod f) = a as needed.

We have shown that there is a unique injective homomorphism ϕ : K → R. This function
extends to a function ϕ : K[y] → R by mapping y to f . We claim that the kernel of ϕ is
(ym) and that ϕ is onto. The kernel contains (ym) since fm = 0 in R. Let g(y) =

∑m−1
i=0 giy

i

with ϕ(g) = 0. Thus
m−1∑
i=0

gif
i = 0. (3.4)

As a vector space over K the ring R has dimension m since |R| = Qm = |K|m. R is
spanned over K by {1, f, f 2, · · · , fm−1}. Therefore these elements form a basis. As we have
seen in the preceding paragraph, the projection µm : F [x]/(fm)→ F [x]/(fm−1) takes Zm to
Zm−1 (both of which are lifts of the field K). Applying the projection µm to equation (3.4)
gives

m−2∑
j=0

gjf
j = 0

and by induction we conclude that g0 = g1 = . . . = gm−2 = 0. This leaves gm−1f
m−1 = 0 in

the ring R, which means that fm divides gm−1f
m−1 in the polynomial ring F [x]. But F [x]

is an integral domain, so we conclude that f divides gm−1, hence gm−1 = 0 as an element of
K.
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In conclusion, we obtain a well defined surjective ring homomorphism K[y] → R by
sending y to f . The kernel of this homomorphism is clearly the ideal (ym) so we obtain an
isomorphism K[y]/(ym)→ R. 2

3.3 Divisibility in R[x]

Throughout this subsection, R denotes a finite local ring with µ : R → F = R/m the
projection to its residue field. Let f, g ∈ R[x].

1. f is nilpotent if fn = 0 for some n ≥ 0.
2. f is a unit if there exists h ∈ R[x] so that fh = 1.
3. f is regular if f is not a zero divisor.
4. f is prime if the ideal (f) is a proper prime ideal.
5. f is irreducible if f is not a unit and, whenever f = gh then g or h is a unit.
6. f and g are coprime if R[x] = (f) + (g).

In [17] the following results are proven.

Theorem 3.3.1 Let f = a0 + a1x+ · · ·+ adX
d ∈ R[x]. Then

1. The following are equivalent:

(a) f is a unit.
(b) µ(f) ∈ F [x] is a unit.
(c) a0 is a unit and the remaining coefficients a1, · · · , ad are nilpotent.

2. The following are equivalent:

(a) f is nilpotent.
(b) µ(f) = 0.
(c) All the ai are nilpotent.
(d) f is a zero divisor.
(e) there exists a 6= 0 in R such that af = 0.

3. The following are equivalent:

(a) f is regular.
(b) µ(f) 6= 0.
(c) ai is a unit for some i (0 ≤ i ≤ d).

4. f and g are coprime if and only if µ(f) and µ(g) are coprime. In this case, f i and gj

are coprime for all i, j ≥ 1.
5. If µ(f) is irreducible then f is irreducible. If f is irreducible then µ(f) = agn where

a ∈ F and g ∈ F [x] is a monic irreducible polynomial.
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6. (Euclidean algorithm) If f 6= 0 and if g ∈ R[x] is regular then there exist (not neces-
sarily unique) elements q, r ∈ R[x] such that deg r < deg g and f = gq + r.

7. If f and g are monic and regular and if (f) = (g) then f = g.

Recall that an ideal I ⊂ R[x] is primary if I 6= R[x] and whenever ab ∈ I, then either
a ∈ I or bn ∈ I for some n ≥ 1. An element g ∈ R[x] is primary if (g) is primary.

Proposition 3.3.2 An element f ∈ R[x] is a primary regular non-unit if and only if f =
ugn + h where u ∈ R[x] is a unit, g ∈ R[x] is a basic irreducible, n ≥ 1, and h ∈ m[x] (that
is, all the coefficients of h lie in m).

Although R[x] is not necessarily a unique factorization domain, the following theorem
([17] Thm. XIII.11) states that regular polynomials have unique factorization.

Theorem 3.3.3 Let f ∈ R[x] be a regular polynomial. Then there exist unique (up to
reordering and multiplication by units) regular coprime primary polynomials g1, g2, · · · , gn ∈
R[x] so that f = g1g2 · · · gn.

3.4 Tools for Local Rings

In this section we develop several tools for the analysis of finite local rings – Galois theory,
the trace and norm, and primitive elements. These are all generalizations of the similarly
named tools for analyzing finite fields, and in most cases we use the finite field versions to
help construct the finite local ring version.

3.4.a Galois theory of local rings

In the next few paragraphs we will see that a finite local ring R has a distinguished collection
of Galois extensions GR(R, n), one for each positive integer n, which are themselves local
rings and for which many of the familiar properties of Galois fields continue to hold.

Extensions. Let R be a finite local ring. An extension ring is a finite local ring S which
contains R. Any extension S of R has the structure of an R-algebra, that is, R acts on S
such that a(c + d) = ac + ad and a(cd) = (ac)d for all a ∈ R and all c, d ∈ S. A (ring)
homomorphism ϕ : S → S is said to be an R-algebra automorphism of S provided it is both
surjective and injective, and provided ϕ(ac) = aϕ(c) for all a ∈ R and c ∈ S. Define the
Galois group

G = Gal(S/R) = AutR(S)

to be the set of R-algebra automorphisms of S. The Galois group G acts on S. Let SG

denote the set of elements which are fixed under the action of G (hence R ⊂ SG). An
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extension S of R is unramified if the maximal ideal m of R generates the maximal ideal
M of S; otherwise it is said to be ramified. If S is an unramified extension of R then mi

generates Mi so the degree of nilpotency of m equals the degree of nilpotency of M. An
unramified extension R ⊂ S is said to be a Galois extension if R = SG.

Example Let R be a finite local ring with maximal ideal m. Let f ∈ R[x] be a monic
basic irreducible polynomial. The extension S = R[x]/(fm) is again a finite local ring (see
§3.1). Its maximal ideal is M = m + (f). If m > 1 then S is a ramified extension of R. If
m = 1 then S is an unramified extension and M = mS is generated by m.

The following result is the main theorem in the Galois theory of finite local rings. The
proof may be found in [17].

Theorem 3.4.1 Let R be a finite local ring. Then every unramified extension R ⊂ S is a
Galois extension. Suppose R ⊂ S is such an extension, with corresponding maximal ideals
m ⊂M. Then the following diagram

S
ν−−−→ K = S/M⋃ ⋃

R
µ−−−→ F = R/m

(3.5)

induces an isomorphism Gal(S/R) ∼= Gal(K/F ) which is therefore a cyclic group. There
exists h ∈ S so that S = R[h]. The mapping determined by h 7→ h|F | generates Gal(S/R).
Let h = h1, h2, . . . , hd be the distinct images of h under Gal(S/R). Then the following
polynomial

f(x) = (x− h1)(x− h2) · · · (x− hd) (3.6)

actually lies in R[x]. It is a (monic) basic irreducible polynomial of degree d = |Gal(S/R)|.
The mapping R[x]/(f)→ S which takes x ∈ R[x] to h ∈ S is an isomorphism of rings (and
of R-algebras). The ring S is a free module of rank d over the ring R, hence |S| = |R|d and
we say that S is an extension of degree d. The above diagram induces a lattice preserving
bijection between the Galois extensions of R which are contained in S and the field extensions
of F which are contained in K. The ring S is a field if and only if the ring R is a field.
If f ′ ∈ R[x] is another monic basic irreducible polynomial of the same degree d then there
exists an R-algebra isomorphism S ∼= R[x]/(f ′). In particular, f ′ also splits into linear
factors over S.

Corollary 3.4.2 Let R be a finite local ring, let S be an unramified degree d extension of
R, and let f ∈ R[x] be a monic basic irreducible polynomial of degree d. Let α ∈ S be a root
of f . Then the collection

{
1, α, α2, · · · , αd−1

}
forms a basis of S over R. The element α is

invertible in S.
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Proof: According to Theorem 3.4.1, we may replace S with R[x]/(f) and we may replace
α with x. But it is clear that the set

{
1, x, x2, · · · , xd−1

}
forms a basis of R[x]/(f) over R.

If f(x) = a0 + a1x + · · · + adx
d then µ(a0) 6= 0 since µ(f) is irreducible. Therefore a0 is

invertible in S and

x−1 =
−1

a0

(a1 + a2x
2 + · · ·+ adx

d−1)

in R[x]/(f). 2

3.4.b The trace

Let R,m, F = R/m be a finite local ring with µ : R→ F the reduction map. Let S,M, K =
S/M be a Galois extension of degree d with ν : S → K the reduction map. Let a ∈ S. The
trace TrS/R(a) ∈ R and norm NS/R(a) ∈ R of a are defined to be

TrS/R(a) =
∑

σ∈Gal(S/R)

σ(a)

and
NS/R(a) =

∏
σ∈Gal(S/R)

σ(a).

Let σS ∈ Gal(S/R) be a generator of the Galois group. Then NS/R(a) = 1 if and only if
there is a unit b ∈ S so that a = bσ(b)−1, and TrS/R(a) = 0 if and only if there exists c ∈ S
such that a = c− σ(c).

Consider the mapping κa : S → S which is given by multiplication by a. Since S is a free
module over R it has a basis consisting of d elements, and the mapping κa may be expressed
as a d × d matrix Ma. Then the trace and norm of a equal the trace and determinant
(respectively) of this matrix (which are thus independent of the choice of basis).

Lemma 3.4.3 TrS/R(a) equals the trace of Ma and NS/R(a) equals the determinant of Ma.
Also, we have µ ◦ TrS/R = TrK/F ◦ ν and µ ◦NS/R = NK/F ◦ µ.

Proof: The last statement of the theorem follows from Theorem 3.4.1. We know the first
statement concerning the trace is true for the fields K and F by Proposition 2.1.14. Let N
be the set of elements a of S such that the trace of a equals the trace of Ma. Then N is
an R-submodule of S since the mapping from a to the trace of Ma is R-linear. Moreover
S = N + MS = N + mS. By Nakayama’s lemma (Theorem 3.1.2) we have S = N , which
proves the claim.

Next we consider the norm. Let us denote the determinant of Ma by D(a). We want to
show that D(a) = NS/R(a) for every a ∈ S. Since both NS/R and D are multiplicative, it
suffices to show this for a set V such that every element of S is a product of elements of V .
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If a ∈ R, then Ma = aI so D(a) = ad, and NS/R(a) = ad.
Suppose that a ∈ S reduces to a primitive element of K modulo M. If N is the R-

submodule of S spanned by 1, a, · · · , ad−1, then S = N + M, so by Nakayama’s lemma
S = N . That is, 1, a, · · · , ad−1 is an R-basis for S. With respect to this basis Ma has the
form described in Proposition 2.1.14. If f(x) = xd +

∑e/d−1
i=0 aix

i is the minimal polynomial
of a over R, then D(a) = a0 = NS/R(a). Thus D(ai) = NS/R(ai) for every i. If n is the
degree of nilpotency of S and R, then |S| = |K|n. We have thus far accounted for the
(|K| − 2)|K|n−1 elements of S that are congruent to some ai, i = 1, · · · , |K| − 2. We also
have D((a+ b)/a) = NS/R((a+ b)/a) if b ∈M. This accounts for the |M| = |K|n−1 elements
in 1 + M, and hence for all the units. Finally, since M = mS, every element of M can be
written in the form cb with c ∈ mi for some i and b a unit. Using multiplicativity again
completes the proof. 2

Corollary 3.4.4 The trace TrS/R : S → R is surjective.

Proof: First we show there exists an element s ∈ S so that Tr(s) is invertible in R. If
this were false, then we would have Tr(s) ∈ m for all s ∈ S which would imply that the
induced mapping S/M → R/m is 0. This would contradict the above lemma which states
that this induced mapping is the trace, TrK/F , which is surjective. So choose c ∈ S so
that TrS/R(c) is invertible and let a ∈ R denote its inverse. Then for any b ∈ R we have
TrS/R(bac) = baTrS/R(c) = b. 2

Suppose L : S → R is any R-linear mapping. Then for any i ≥ 1 we have L(Mi) ⊂ mi.
(Since M = mS, any element in Mi may be expressed as ac with a ∈ mi and c ∈ S, in which
case L(ac) = aL(c) ∈ mi.) In particular, L induces an F -linear mapping L̄ : K = S/M →
F = R/m and the diagram

S
ν−−−→ K = S/M

L

y yL̄
R

µ−−−→ F = R/m

(3.7)

commutes. Let us say that L is nonsingular if this mapping L̄ is surjective. This is equivalent
to saying that L̄ is not the zero map.

Theorem 3.4.5 Let L : S → R be an R linear mapping. Then

1. The mapping L : S → R is surjective if and only if L is nonsingular. (In particular,
the trace TrS/R is nonsingular.)

2. If L is nonsingular, then L(Mi) = mi for any i ≥ 1.
3. If L is nonsingular, b ∈ S and L(ab) = 0 for all a ∈ S, then b = 0.
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4. There exists b ∈ S so that L(a) = Tr(ba) for all a ∈ S. The element b is invertible if
and only if L is nonsingular.

Proof: If L is surjective then it is nonsingular by diagram (3.7). On the other hand, if
L is nonsingular then (as above) there exists b ∈ S such that L(b) is invertible in R. If
a = L(b)−1 then, for any c ∈ R, L(cab) = c so L is surjective. This proves (1). We already
know that L(Mi) ⊂ mi so let c ∈ mi and, by part (1), let a0 ∈ S be an element such that
L(a0) = 1. Then ca0 ∈Mi and L(ca0) = c, which proves (2).

To prove (3), let n be the degree of nilpotency of m. That is, mn = 0 but mn−1 6= 0. Then
n is also the degree of nilpotency of M. Let b 6= 0 ∈ S and suppose that L(ab) = 0 for all
a ∈ S. Let m < n be the largest integer so that b ∈Mm. Then b = db1 with d ∈ mm−mm+1

and b1 a unit in S. Therefore for all a ∈ S we have 0 = L(da) = dL(a). But m < n so we
must have L(a) ∈M which contradicts the nonsingularity of L, proving (3).

To prove (4), consider the mapping S → HomR(S,R) which assigns to any b ∈ S the
R linear mapping a 7→ TrS/R(ab). This mapping is injective, for if b′ ∈ S and TrS/R(ab) =
TrS/R(ab′) for all a ∈ S, then by part (3) this implies b = b′. Since S is a free module over R
of some rank d, there are |R|d elements in HomR(S,R). But this is the same as the number
of elements in S. Therefore every R-linear mapping L : S → R is of the form a 7→ TrS/R(ab)
for some b ∈ S. If b is invertible, then the mapping L is nonsingular, whereas if b ∈M then
L(ab) ∈ m so the resulting mapping L̄ : S/M→ R/m is zero. 2

3.4.c Primitive polynomials

Let R be a finite local ring with maximal ideal m and residue field µ : R → F = R/m. Let
S be a degree d Galois extension of R, with maximal ideal M and residue field ν : S →
K = S/M as in (3.5). Let f ∈ R[x] be a basic irreducible polynomial of degree d. Then f
is said to be primitive if the polynomial f̄ = µ(f) ∈ F [x] is primitive. That is, if for some
(and hence for any) root ā ∈ K of f̄ , the distinct powers of ā exactly account for all the
nonzero elements in K. Unfortunately this is not enough to guarantee that each root a ∈ S
of f generates the cyclic group ι(K×) ⊂ S.

Lemma 3.4.6 Let f ∈ R[x] be a basic irreducible polynomial of degree d and let S be a
degree d Galois extension of R, so that f splits into linear factors over S. Let a ∈ S be a
root of f . If µ(f) is primitive (in F [x]) then the elements

{
1, a, a2, · · · , aQ−2

}
are distinct,

where Q = |K| = |F |d. The roots of f lie in ι(K×) ⊂ S× if and only if f divides xQ − 1.
Thus, if µ(f) is primitive and f divides xQ − 1, then ι(K×) ⊂ S× consists of the Q − 1
distinct powers

{
1, a, a2, · · · , aQ−2

}
of a.

Proof: The element µ(a) ∈ K is a root of µ(f) ∈ F [x]. If µ(f) is primitive, then µ(a) is a
primitive element in K and the elements µ(a)i (0 ≤ i ≤ Q− 2) are distinct, so the same is
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true of the elements ai (0 ≤ i ≤ Q − 2). By 3.1.4 the polynomial g(x) = xQ−1 − 1 factors
completely in S as

g(x) =
∏
b∈K×

(x− ι(b)).

Since f also factors completely over S, we see that the roots of f lie in ι(K×) if and only if
f divides g(x). 2

3.5 Galois rings

Let p ∈ Z be a prime number. According to Theorem 3.4.1, for each n, d ≥ 1 the ring
Z/(pn) has a unique Galois extension of degree d. This extension S = GR(pn, d) is called
the Galois ring of degree d over Z/(pn). For n = 1 it is the Galois field Fpd . For d = 1 it is
the ring Z/(pn). Let us review the general facts from §3.4 for the case of a Galois ring S.

The Galois ring S = GR(pn, d) is isomorphic to the quotient ring Z/(pn)[x]/(f) where
f ∈ Z/(pn)[x] is a monic basic irreducible polynomial. That is, it is a monic polynomial such
that its reduction f (mod p) ∈ Z/(p)[x] is irreducible. The ring S contains pnd elements.
For each divisor e of d the Galois ring S contains the ring GR(pn, e) and this accounts for
all the subrings of S. For any m ≤ n there is a projection S → GR(pm, d) whose kernel is
the ideal (pm), and this accounts for all the nontrivial ideals in S. In particular the maximal
ideal M = (p) = pS consists of all multiples of p. The quotient S/M ∼= Fpd is isomorphic
to the Galois field with pd elements. If µ denotes the projection to this quotient, then it is
compatible with the trace mapping in the sense that the following diagram commutes,

S = GR(pn, d)
µ−−−→ K = Fq

Tr
y yTr

Z/(pn) −−−→
µ

Fp

where q = pd. There is a natural (multiplication-preserving) splitting ι : K → S of the
mapping µ whose image is the set all elements x ∈ S such that xq = x. The group of units
of S is the product

S× = ι(K×)× (1 + M).

If p ≥ 3 then
1 + M ∼= Z/(pn−1)× · · · × Z/(pn−1) (d times).

If p = 2 and n ≥ 3 then

1 + M ∼=
(
Z/(2n−1)

)d−1 × Z/(2n−2)× Z/(2)
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If p = 2 and n = 1, 2 then in this equation, each factor Z/(2m) should be dropped whenever
m ≤ 0.

It follows that, in general, S× contains cyclic subgroups of order (pd − 1)pn−1 and that
|S×| = (pd − 1)pd(n−1).

Lemma 3.5.1 For any x ∈ S there are unique elements a0, a1, · · · , an−1 ∈ ι(K) such that

x = a0 + a1p+ · · ·+ an−1p
n−1. (3.8)

The coefficients a0, a1, · · · an−1 in (3.8) are called the coordinates of x, and the expansion
(3.8) is called the p-adic expansion of x.

Proof: First note that if t ∈ ι(K) and if 1 − t is not a unit, then t = 1. Next, according
to the comments in the first paragraph of this section, |Mi/Mi+1| = q for 1 ≤ i ≤ n − 1.
We claim that every element of Mi/Mi+1 has a unique representative of the form api where
a ∈ ι(K). Certainly api ∈ Mi and there are no more than q such elements, so we need
to show these elements are distinct modulo Mi+1. Suppose api ≡ bpi (mod Mi+1) with
a, b ∈ ι(K). Then pi(1 − ba−1) ∈ Mi+1 from which it follows that 1 − ba−1 ∈ M. But
ba−1 ∈ ι(K) so the above note implies that a = b.

It now follows by induction that every x ∈ Mi has a unique expression x = pi(a0 +
a1p + · · · + an−i−1p

n−i−1) with ai ∈ ι(K). The coefficient a0 is the unique representative of
x (mod Mi+1), while the inductive step applies to x− pia0 ∈Mi+1. 2

The advantage of Lemma 3.5.1 is that multiplication by elements in ι(K) is described
coordinatewise. That is, if b ∈ ι(K) and if x is given by 3.8, then ba0 +ba1p+ · · ·+ban−1p

n−1

is the p-adic expansion of bx. Multiplication by p is given by a “shift” of the coefficients ai.
However addition is described using a generalized “carry” procedure: if a, b ∈ ι(K) and if
a+ b = c0 + c1p+ · · ·+ cn−1p

n−1 is the p-adic expansion of a+ b then we may think of the
coefficient c0 as the “sum” and the coefficients ci (for i ≥ 1) as being higher “carries”.

3.6 Exercises

1. Let R be a finite local ring with maximal ideal m. Show that

a.the ideal m consists precisely of the non-units of R,
b.for every a ∈ R, at least one of a and 1 + a is a unit, and
c.there is a positive integer n such that mn = 0.

2. Let R be a finite local ring with maximal ideal m and residue field F = R/m. Show that
mi−1/mi naturally admits the structure of a vector space over F .
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3. If R is a local ring and g ∈ R[x] is regular, then use Nakayama’s Lemma to show that for
every f ∈ R[x] there exist q, r ∈ R[x] with f = gq + r and deg(r) < deg(g).

4. Show that for p = 3 and m = 3, the mapping E : Z/(32)→ Z/(33) of §3.2.a is given by

E(a) = 1 + 3a+ 18a2 + 18a3.
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Chapter 4 Sequences, Power Series and Adic Rings

The central theme of this work is the design and analysis of sequences by identifying them
with algebraic structures. The most common example of such a structure is a generat-
ing function. This is a power series whose coefficients are the elements of the sequence.
Generating functions have been used to analyze sequences that arise in probability theory,
cryptography, analysis of recurrences, combinatorics, random number generation, algebraic
topology, and many other areas. In this chapter we develop an algebraic framework for
generalizing generating functions.

4.1 Sequences

In this section we review the basic combinatorial notions concerning sequences. See also
§??.

4.1.a Periodicity

Let A be a set and let a = (a0, a1, a2, · · ·) be a sequence of elements ai ∈ A. If the set A
is discrete (meaning that it is finite or countable) then we refer to A as the alphabet from
which the symbols ai are drawn. The sequence a is periodic if there exists an integer T > 0
so that

ai = ai+T (4.1)

for all i = 0, 1, 2, · · ·. Such a T is called a period of the sequence a and the least such T is
called the period, or sometimes the least period of a. The sequence a is eventually periodic
if there exists N > 0 and T > 0 so that equation (4.1) holds, for all i ≥ N . To emphasize
the difference, we sometimes refer to a periodic sequence as being purely periodic or strictly
periodic. A period (resp. the least period) of an eventually periodic sequence refers to a
period (resp. least period) of the periodic part of a.

Lemma 4.1.1 Suppose a is a periodic (or eventually periodic) sequence with least period T .
Then every period of a is a multiple of T .

Proof: If T ′ is a period of a, then dividing by T gives T ′ = qT + r for some quotient q ≥ 1
and remainder r with 0 ≤ r ≤ T−1. Since both T and T ′ are periods, ai+T ′ = ai+qT+r = ai+r
for all i ≥ 0. Therefore r is a period also, but r < T which contradicts the minimality of T .
Therefore r = 0. 2
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4.1.b Distinct sequences

Let A be an alphabet and let a = (a0, a1, · · ·) and b = (b0, b1, · · ·) be periodic sequences
of elements of A with the same period. We say that b is a cyclic shift of a if there exists
τ ≥ 0 so thatbi = ai+τ for all i ≥ 0. If no such shift τ exists then we say that a and b are
cyclically distinct. We say that a and b are isomorphic if there exists a (single) permutation
σ : A→ A so that bi = σ(ai) for all i ≥ 0. We say they are isomorphic up to a shift if there
exists a permutation σ : A → A and a shift τ such that bi = σ(ai+τ ) for all i ≥ 0. If no
such pair σ, τ exists then we say that a and b are strongly distinct sequences, or that they
are non-isomorphic, even after a possible shift. Similarly if a = (a0, a1, · · ·) is a periodic
sequence taken from an alphabet A and if b = (b0, b1, · · ·) is a periodic sequence taken from
an alphabet B then we say that a and b are isomorphic up to a shift if there exists a mapping
σ : A → B and a shift τ such that bi = σ(ai+τ ) for all i ≥ 0. If no such σ, τ exists then a
and b are strongly distinct.

4.1.c Sequence generators and models

The sequences described in this book are generated by algebraic methods involving rings.
We formalize constructions of this type by defining a sequence generator. In the models we
encounter, the state space of the sequence generator usually corresponds to a cyclic subgroup
of the group of units in a ring.

Definition 4.1.2 A sequence generator, or discrete state machine with output U consists
of a set Σ of states, an alphabet A of output values, a state transition function τ : Σ → Σ
and an output function out : Σ→ A.

Such a generator is depicted as follows:

τ
��- Σ -out

A

The set Σ of states is assumed to be discrete, meaning that it is either finite or countably
infinite. We also assume the alphabet A of possible output values is discrete. Given an
initial state s ∈ Σ, such a sequence generator outputs an infinite sequence

U(s) = out(s), out(τ(s)), out(τ 2(s)), · · ·

with elements in A. A state s ∈ Σ is aperiodic if, starting from s, the generator never
returns to this state. The state s is periodic of period L if starting from s, after L steps,
the generator returns to the state s, that is, τLs = s. The least period of such a periodic
state is the least such L ≥ 1. A state s is eventually periodic if, starting from s, after a finite
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number of steps, the generator arrives at a periodic state. If Σ is finite then every state is
eventually periodic. We say a set of states is closed if it is closed under state change. It is
complete if it consists of all the periodic states.

If R is a ring, and if b ∈ R denote by κb : R → R the multiplication by b, that is,
κb(x) = bx.

Definition 4.1.3 Let U = (Σ, A, τ, out) be a sequence generator. An algebraic model or
simply a model for U is a ring R, an element b ∈ R, a mapping ψ : R→ Σ, and an output
mapping T : R→ A such that the following diagram commutes:

R Σ-
ψ

��
?

κb ��
?

τ

HHH
HHHj

T

���
����

out

A

which means that out(ψ(a)) = T (a) and ψ(ba) = τ(ψ(a)) for all a ∈ R.

Each a ∈ R then corresponds to an initial state ψ(a) ∈ Σ, and the output sequence generated
from this initial state is then described by the following exponential representation,

T (a), T (ba), T (b2a), · · · .

If the ring R is finite and if it is an integral domain then every such sequence is strictly
periodic (because bka = bk+ra implies that a = bra). We say the model is complete if every
periodic state s ∈ Σ may be realized as the image s = ψ(a) of some element a ∈ R. A
complete model, if one exists, allows us to analyze the behavior of the sequence generator
using the algebraic structure of the ring R. In this book we will encounter many different
types of sequence generators and their models.

In some circumstances it is more convenient to specify a mapping φ : Σ → R (rather
than the other way around) so that the corresponding diagram commutes:

R Σ�
φ

��
?

κb ��
?

τ

H
HHH

HHj
T

�
���

���
out

A
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To distinguish between these two types of models, we will sometimes refer to the first
one as an injective and the second as a projective model. If (R,ψ) is a complete injective
model, then the inverse mapping φ = ψ−1 is a complete projective model (and vice versa).
However it may require a nontrivial amount of computation to describe the inverse mapping,
particularly when attempting to describe the initial state of the generator, cf. (??), (??),
(??).

4.2 Power Series

4.2.a Definitions

Throughout this section we fix a commutative ring R.

Definition 4.2.1 A (formal) power series over R is an infinite expression

a(x) =
∞∑
i=0

aix
i,

where x is an indeterminate and a0, a1, · · · ∈ R. As with polynomials, the ais are called
coefficients. The sequence (a0, a1, · · ·) of coefficients of a power series a(x) is denoted seq(a).
If b(x) =

∑∞
i=0 bix

i is a second power series over R, then define

(a+ b)(x) = a(x) + b(x) =
∞∑
i=0

(ai + bi)x
i

and

(ab)(x) = a(x)b(x) =
∞∑
i=0

(
i∑

j=0

ajbi−j)x
i.

The set of power series over R is denoted R[[x]]. The order of a non-zero power series
a(x) =

∑∞
i=0 aix

i is the least index i such that ai 6= 0. The order of 0 is ∞.

These operations make R[[x]] into a ring with zero given by the power series all of whose
coefficients are zero, and with identity (1) given by the power series 1 + 0x + 0x2 + · · ·.
The set of polynomials over R is the sub-ring of R[[x]], consisting of those power series with
finitely many nonzero coefficients. In fact there is a tower of sub-rings,

R ⊂ R[x] ⊂ E ⊂ R0(x) ⊂ R[[x]] ⊂ R((x))

which we now describe.
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Definition 4.2.2 The ring R((x)) of formal Laurent series consists of infinite sums

a(x) = a−mx
−m + a−m+1x

−m+1 + · · ·+ a0 + a1x+ · · ·

with coefficients ai ∈ R and at most finitely many non-zero terms of negative degree. Addi-
tion and multiplication are defined as with power series.

The ring R((x)) is obtained from R[[x]] by inverting x, that is, R((x)) = S−1R[[x]] where
S = {x, x2, x3, · · ·}.

4.2.b R0(x)

Lemma 4.2.3 Let b(x) =
∑∞

i=0 bix
i ∈ R[[x]] be a power series. Then the following state-

ments are equivalent: (1) b is invertible in R[[x]], (2) the constant term b0 ∈ R is invertible
in R, and (3) the elements b and x are relatively prime in R[[x]].

Proof: The proof is straightforward except possibly for (2) =⇒ (1). If b0 is invertible then
the equation b(x)c(x) = 1 may be solved inductively for c(x) =

∑∞
i=0 cix

i because c0 = b−1
0

and
ci = −b−1

0 (b1ci−1 + b2ci−1 + · · ·+ bic0) . �

Let S ⊂ R[x] denote the multiplicative subset consisting of all polynomials b(x) such
that the constant term b0 = b(0) ∈ R is invertible in R. Then the ring of fractions (§1.2.d)

R0(x) = S−1R[x]

consists of all formal symbols a(x)/b(x) with b(x) ∈ S, under the equivalence relation that
a(x)/b(x) ∼ a′(x)/b′(x) if a(x)b′(x) = a′(x)b(x). We obtain an injective homomorphism
ψ : R0(x)→ R[[x]] by mapping a(x)/b(x) to the product a(x)c(x) where c(x) ∈ R[[x]] is the
power series inverse of b(x) which was constructed in Lemma 4.2.3. Henceforth we identify
R0(x) with its image in R[[x]]. If R is a field then every nonzero element is invertible, so
R0(x) consists of all fractions a(x)/b(x) with b(0) 6= 0. In this case, R0(x) is a field; it is
usually denoted R(x) and is referred to as the field of rational functions over R.

Definition 4.2.4 Let a(x), b(x) ∈ R[x] and suppose b(0) is invertible in R. We refer to the
power series ψ(a(x)/b(x)) ∈ R[[x]] as the power series expansion of the fraction a(x)/b(x).

Definition 4.2.5 (See also §??.) A sequence a = a0, a1, · · · of elements of R is linearly
recurrent (of degree d) if there exists q1, · · · , qd ∈ R such that for all n ≥ d we have

an = q1an−1 + · · ·+ qdan−d. (4.2)

66



Theorem 4.2.6 Let a = a0 + a1x+ · · · ∈ R[[x]] be a formal power series. Then a ∈ R0(x)
(that is, a(x) is a quotient f(x)/g(x) of two polynomials, where g(0) is invertible in R) if
and only if the sequence of coefficients an, an+1, an+2, · · · satisfies a linear recurrence, for n
sufficiently large.

Proof: First suppose that a(x) = f(x)/g(x) with g(x) = g0 + g1x + · · · + gdx
d. Then

f(x) = a(x)g(x) which gives fn =
∑d

i=0 gian−i. Since f(x) is a polynomial, these coefficients
vanish for sufficiently large n which leaves

an = −g−1
0 (g1an−1 + g2an−2 + · · ·+ gdan−d)

which is a linear recurrence (of degree d = deg g). Conversely, suppose the coefficients
of f satisfy a linear recurrence an = g1an−1 + · · · + gdan−d for all n ≥ N . Let g(x) =
−1 + g1x + · · · + gdx

d (so g0 = −1.) Then the product f(x) = g(x)a(x) is a polynomial,
because for sufficiently large n its term of degree n is

d∑
i=0

gian−i = 0.

Consequently a(x) = f(x)/g(x) and g0 is invertible. 2

4.2.c Eventually periodic power series

Definition 4.2.7 The ring E ⊂ R[[x]] is the collection of all power series a(x) =
∑∞

i=0 aix
i

such that the sequence of coefficients seq(a) = (a0, a1, · · ·) is eventually periodic.

Theorem 4.2.8 Let a(x) =
∑∞

i=0 aix
i be a power series over a ring R and let n ≥ 1. Then

the following are equivalent. (See also Lemma 1.4.4.)

1. The sequence seq(a) = (a0, a1, · · ·) is eventually periodic and n is a period of seq(a).
2. a(x) = h(x)/(xn − 1) for some h(x) ∈ R[x].
3. a(x) = f(x)/g(x) for some f, g ∈ R[x] such that g(x) is monic and g(x)|(xn − 1).
4. a(x) = f(x)/g(x) for some f, g ∈ R[x] such that g(x)|(xn − 1).

These statements imply

5. a(x) = f(x)/g(x) for some f, g ∈ R[x] such that g(0) is invertible in R,

hence E ⊂ R0(x). The eventual period is the least n for which (2), (3), or (4) holds. If R
is finite then statement (5) implies the others (for some n ≥ 1.)

The sequence seq(a) is purely periodic if and only if (2) holds with deg(h(x)) < n or (3)
or (4) holds with deg(f(x)) < deg(g(x)).
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Proof: To see that condition (1) implies condition (2), suppose a(x) is eventually periodic
with ai = ai+n for all i ≥ N . Then we have

a(x) =
N−1∑
i=0

aix
i + xN

∞∑
j=0

(
n−1∑
k=0

anj+i+Nx
i)xnj

=
N−1∑
i=0

aix
i +

xN
∑n−1

k=0 anj+i+Nx
i

1− xn
.

This can be written as a rational function with denominator xn − 1.
Conditions (2), (3) and (4) are clearly equivalent. In case (3) or (4), deg(b(x)f(x)) < n

if and only if deg(f(x)) < deg(g(x)), which reduces the statements about purely periodic
power series to the statement about purely periodic power series in case (2).

To see that condition (2) implies condition (1), suppose a(x) = h(x)/(xn − 1) with
h(x) ∈ R[x]. By the division theorem we can write h(x) = (xn − 1)u(x) + v(x) with
u(x), v(x) ∈ R[x] and deg(v(x)) < n. Thus

a(x) = u(x) +
v(x)

xn − 1

= u(x) + (v(x) + xnv(x) + x2nv(x) + · · ·).

The power series v(x) + xnv(x) + x2nv(x) + · · · is strictly periodic since there is no overlap
among the degrees of the monomials in any two terms xinv(x) and xjnv(x). The addition of
u(x) only affects finitely many terms, so the result is eventually periodic. Also, the sequence
is periodic if and only if u(x) = 0, which is equivalent to deg(h(x)) < n.

It follows immediately that the eventual period is the least n for which (2), (3), or (4)
holds. Lemma 1.4.4 says that (4) implies (5), and if R is finite, then (5) implies (4) (for
some n). 2

4.2.d When R is a field

Theorem 4.2.9 Suppose R is a field. Then the rings E and R0(x) = R(x) coincide. (In
other words, every eventually periodic sequence eventually satisfies a linear recurrence and
vice versa.) The only non-trivial ideals in R[[x]] are the principal ideals (xm) for m ≥ 1.
Moreover, R(x) and R((x)) are also fields: they are the fraction fields of R[x] and of R[[x]]
respectively.

Proof: The only nontrivial statement in this theorem concerns the ideal structure of R[[x]].
Suppose that I is a non-zero ideal in F [[x]]. Let a(x) be an element of I whose order n is as
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small as possible. Then we have a(x) = xnb(x) for some b(x) ∈ F [[x]], and the constant term
of b(x) is nonzero. By Lemma 4.2.3, b(x) is invertible in F [[x]]. Hence xn ∈ I. Moreover,
every element of I has order at least n, so can be written as xnc(x) for some c(x) ∈ F [[x]].
Hence I = (xn). 2

4.2.e R[[x]] as an inverse limit

The quotient ring R[x]/(x`) may be identified with the collection of all polynomials of
degree ≤ ` − 1. Let φ` : R[[x]] → R[x]/(x`) be the homomorphism that associates to each
a =

∑∞
i=0 aix

i the partial sum (that is, the polynomial)
∑`−1

i=0 aix
i. These homomorphisms

are compatible in the sense that if k ≤ ` then T `k(φ`(a)) = φk(a) where T `k : R[x]/(x`) →
R[x]/(xk) is reduction modulo xk. The next lemma says that every element of R[[x]] can be
described in terms of such a sequence of partial sums.

Lemma 4.2.10 Suppose s1, s2, · · · is a sequence with si ∈ R[x]/(xi). Assume these elements
are compatible in the sense that T `k(s`) = sk for every pair k ≤ `. Then there is a unique
element a ∈ R[[x]] such that φi(a) = si for all i ≥ 1.

Proof: The element a =
∑∞

i=0 aix
i is given by a` = (φ`+1(a)− φ`(a)) /x`. 2

For the readers who knows about limits, this lemma says that

R[[x]] = lim←−{R[x]/(xi)}

is the inverse limit of the system of rings R[x]/(xi).

4.3 N-Adic Numbers

4.3.a Definitions

In this section we see a somewhat different way to identify an infinite sequence with an
algebraic object. Fix an integer N ≥ 2.

Definition 4.3.1 An N -adic number is an infinite expression

a =
∞∑
i=0

aiN
i,

where a0, a1, · · · ∈ {0, 1, · · · , N − 1}. The set of N-adic numbers is denoted by ZN . The
order of an non-zero N-adic number a =

∑∞
i=0 aiN

i is the least index i such that ai 6= 0.
The order of 0 is ∞.
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Again, the ai are called coefficients. When writing N -adic numbers we may omit terms
whose coefficient is zero. We may also write the terms in a different order.

So far, N -adic numbers look just like power series. The difference lies in the algebra.
Addition and multiplication are defined so as to take into account the “carry” operation.
If b =

∑∞
i=0 biN

i is a second N -adic number, then the sum a + b is the N -adic number
c =

∑∞
i=0 ciN

i defined as follows. There exists a unique c0 (0 ≤ c0 ≤ N − 1) and t0 ≥ 0 so
that a0+b0 = c0+Nt0 (namely c0 = (a0+b0) (mod N) and t0 = (a0+b0) (div N), where we
have identified Z/(N) with the set {0, 1, 2, · · · , N − 1} and where x (div N) = bx/Nc. The
quantity t0 is the “carry” at the zeroth stage. Assume by induction that c0, c1, · · · , cn−1 and
t0, t1, · · · , tn−1 have been found with 0 ≤ ci ≤ N − 1 and ti ≥ 0 and ai + bi + ti−1 = ci +Nti.
Then there exist unique cn, tn such that 0 ≤ cn ≤ N − 1; tn ≥ 0, and

an + bn + tn−1 = cn +Ntn,

namely cn = (an + bn + tn−1) (mod N) and tn = (an + bn + tn−1) (div N). The product
ab = c is defined similarly with

n∑
i=0

aibn−i + tn−1 = cn +Ntn. (4.3)

It is easy to see that these operations make ZN into a ring. As with power series,
we refer to the sequence (a0, a1, · · ·) of coefficients as seqN(a). We say that a is periodic
(resp. eventually periodic) if the sequence seqN(a) of coefficients is periodic (resp. eventually
periodic).

If a =
∑∞

i=0 aiN
i is an N -adic number, then the coefficient a0 is called the reduction

of a modulo N and it is denoted a0 = a (mod N). This gives a ring homomorphism
ZN → Z/(N). We also refer to

∑∞
i=0 ai+1N

i = (a − a0)/N as the integral quotient of a by
N , denoted quo(a,N) or a (div N). Thus

a = (a (mod N)) +Nquo(a,N).

In the ring ZN we have an identity,

−1 = (N − 1) + (N − 1)N + (N − 1)N2 + · · · ,

which can be verified by adding 1 to both sides. There is an explicit formula for multiplication
by −1. If a = Nd(1 +

∑∞
i=0 aiN

i) then

−a = Nd((N − a0) +
∞∑
i=1

(N − ai − 1)N i) (4.4)

which may be verified by adding a to both sides of the equation.
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4.3.b The ring ZN,0

The nonnegative integers may be identified with the set of N -adic numbers with finitely
many nonzero coefficients. Since we have negation, this identification extends to a ring
homomorphism Z→ ZN . Its kernel is an ideal that does not contain any positive integers,
so it must be (0). So this homomorphism is an injection, and we may view the integers as
a sub-ring of ZN . As with the case of power series, there is an intermediate ring,

Z ⊂ ZN,0 ⊂ ZN

which we will now describe.

Lemma 4.3.2 Let a ∈ Z. Then the following statements are equivalent: (1) a is relatively
prime to N , (2) N is invertible in Z/(a), (3) a is invertible in Z/(N), (4) there exists n ≥ 0
so that a|(Nn − 1).

Proof: The proof is the same as the proof of Lemma 1.4.4. 2

Lemma 4.3.3 Let a =
∑∞

i=0 aiN
i ∈ ZN . Then a is invertible in ZN if and only if a0 is

relatively prime to N .

Proof: The proof is essentially the same as that of Lemma 4.2.3. Suppose a0 is relatively
prime to N . We search for b =

∑∞
i=0 so that ab = 1, and 0 ≤ bi ≤ N − 1. By equation

4.3 this means a0b0 = 1 + Nt0 (which has the unique solution b0 = a−1
0 (mod N) and

t0 = a0b0 − 1 (div N)) and
∑n

i=0 aibn−i + tn−1 = cn +Ntn, which has the (unique) solution

bn = a−1
0

(
cn − tn−1 −

n∑
i=1

aibn−i

)
(mod N)

tn =

(
n∑
i=0

aibn−i − cn

)
(div N).

This completes the proof of Lemma 4.3.3. 2

Definition 4.3.4 Let ZN,0 denote the set of all rational numbers a/b ∈ Q (in lowest terms)
such that b is relatively prime to N .

Lemma 4.3.3 says that ZN,0 is naturally contained in the N -adic numbers ZN . It is easy
to see that it forms a sub-ring of ZN . The next theorem says that this ring of fractions f/g
(with g relatively prime to N) is exactly the collection of N -adic numbers a ∈ ZN such that
seqN(a) is eventually periodic.
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Theorem 4.3.5 Let a =
∑∞

i=0 aiN
i ∈ ZN and let n ≥ 1. Then the following statements are

equivalent.

1. seqN(a) is eventually periodic and n is a period of a.
2. a = h/(Nn − 1) for some h ∈ Z.
3. a = f/g for some f, g ∈ Z such that g|(Nn − 1).

The eventual period is the least n for which (2) or (3) holds. The N-adic number a is purely
periodic if and only if −(Nn − 1) ≤ h ≤ 0 in case (2) or −g ≤ f ≤ 0 in case (3).

Proof: To see that condition (1) implies condition (2), suppose seqN(a) is eventually
periodic with ai = ai+n for all i ≥M . Then we have

a =
M−1∑
i=0

aiN
i +NM

∞∑
j=0

(
n−1∑
k=0

anj+i+MN
i)Nnj

=
M−1∑
i=0

aiN
i +

NM
∑n−1

k=0 anj+i+MN
i

1−Nn
.

This is can be written as a rational number with denominator Nn − 1.
Condition (2) trivially implies condition (3). If a = f/g and g|Nn− 1, then bg = Nn− 1

for some b ∈ Z, so a = bf/(Nn − 1). Thus condition (3) implies condition (2). In case (3)
−(Nn − 1) ≤ bf ≤ 0 if and only if −g ≤ f ≤ 0, which reduces the statements about purely
periodic N -adic numbers to the statement about purely periodic N -adic numbers in case
(2).

Now suppose case (2) holds, that is, a = h/(Nn−1) with h ∈ Z. By the division theorem
we can write h = (Nn − 1)m− k with m, k ∈ Z, and 0 ≤ k < Nn − 1. Thus

a = m− k

Nn − 1

= m+ (k +Nnk +N2nk + · · ·). (4.5)

The N -adic number k+Nnk+N2nk+ · · · =
∑∞

i=0 kN
in is strictly periodic since there is no

overlap among the exponents in two terms N ink and N jnk. In particular we see that the
N -adic expansion of a = h/(Nn− 1) is strictly periodic if and only if (a) m = 0 or (b) k = 0
and m = 0,−1. These conditions are equivalent to the statement that −(Nn − 1) ≤ h ≤ 0.

Now let us prove that (2) =⇒ (1). There are several cases to consider.
First, suppose m is positive. Then the addition of m affects only finitely many terms in

equation (4.5) because the carries eventually reach a place where k ≤ Nn − 2, and there is
no carry beyond this place . Thus in this case the result is eventually periodic.
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Suppose m is negative and k is not zero. Then there is an integer j, such that −m <∑j
i=0 kN

in. Thus

a = (

j∑
i=0

kN in +m) +
∞∑

i=j+1

kN in.

The first expression on the right hand side has an N -adic expansion with terms only up to
degree jn, so seqN(a) is eventually periodic.

If m is negative and k = 0, then a is a negative. It follows from equation (4.4) that the
N -adic expansion of a negative integer eventually becomes (N − 1)N i + (N − 1)N i+1 + · · ·,
which is periodic. This completes the proof that (2) =⇒ (1). It follows immediately that
the eventual period is the least n for which (2) or (3) holds. 2

Corollary 4.3.6 If gcd(f, g) = 1, then the period of the N-adic expansion seqN(f/g) is
the multiplicative order of N modulo g.

4.3.c Structure of ZN

Let φ` : ZN → Z/(N `) be the homomorphism that associates to each a =
∑∞

i=0 aiN
i the

partial sum
∑`−1

i=0 aiN
i. These homomorphisms are compatible in the sense that if k ≤ `

then NT
`
k(φ`(a)) = φk(a) where NT

`
k : Z/(N `)→ Z/(Nk) is reduction modulo Nk. The next

lemma says that every N -adic number can be described as such a sequence of partial sums.
It is an exact parallel of Lemma 4.2.10.

Lemma 4.3.7 Suppose s1, s2, · · · is a sequence with si ∈ Z/(N i). Assume these elements
are compatible in the sense that NT

`
k(s`) = sk for every pair k ≤ `. Then there is a unique

N-adic number a ∈ ZN such that φi(a) = si for all i ≥ 1.

Proof: The desired number a =
∑∞

i=0 aiN
i is given by a` = (φ`+1(a)− φ`(a)) /N `. 2

(This lemma says that ZN is the inverse limit lim←−{Z/(N
i)} of the system of rings Z/(N i).)

Theorem 4.3.8 Let N =
∏k

i=1 p
ni
i be the prime factorization of N (where the pi are distinct

primes and ni ≥ 1). Then the ring ZN is isomorphic to the product of rings,
∏k

i=1 Zpi
.

Proof: First suppose that N = AB with A,B relatively prime. We construct an isomor-
phism ψ : ZN

∼= ZA × ZB as follows. For each ` ≥ 1 there is a mapping

H` : Z/(N `)→ Z/(A`)× Z/(B`)
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given by s 7→ (s (mod A)`, s (mod B)`). Let a =
∑∞

i=0 aiN
i ∈ ZN . The sequence of partial

sums si = φi(a) ∈ Z/(N i) therefore correspond to pairs of elements

Hi(si) = (xi, yi) = (si (mod A)i, si (mod B)i) ∈ Z/(Ai)× Z/(Bi),

and it is easy to see that these elements are compatible in the sense that AT
`
k(x`) = xk and

BT
`
k(y`) = yk for any k ≤ `. It follows from Lemma 4.3.7 that the pairs (xi, yi) determine a

unique element ψ(a) ∈ ZA × ZB. This mapping ψ is both injective and surjective because,
according to Theorem 1.2.14 (Chinese Remainder Theorem) each of the mappings H` is an
isomorphism.

By repeatedly applying the isomorphism ψ corresponding to different prime factors of N
we obtain an isomorphism or rings ZN

∼=
∏k

i=1 Zp
ni
i

. This reduces the theorem to the case
where N = pn for some prime p. However it is easy to see why Zpn is the same as Zp : Given
any element

a = a0 + a1p
n + a2p

2n + · · · ∈ Zpn (4.6)

(with 0 ≤ ai ≤ pn−1) just expand each ai = ai,0 +ai,1p+ · · ·+ai,n−1p
n−1 and substitute this

into equation (4.6) to obtain an element of Zp. The inverse mapping Zp → Zpn is obtained
by grouping the terms of a p-adic number, n at a time. 2

There are many irrational algebraic numbers in ZN . For example, suppose that u(x) is
a polynomial with integer coefficients that has a root modulo N . Then u(x) has a root in
ZN . This is proved in the next section using Hensel’s Lemma.

If p is a prime number then the ring Zp is an integral domain so its ring of fractions
(denoted Qp) (cf. §1.2.e) is a field. It is called the field of p-adic numbers. Elements of Qp

can be expressed as fractions p−ra (where a ∈ Zp and r is an integer) or, alternatively, as
formal Laurent series

∑∞
i=−r aip

i. Because Qp is a field, and because of Theorem 4.3.8, the
ring ZN (for composite N) is seldom encountered in the mathematical literature. However
we will make use of it when studying sequences generated by an FCSR in Chapter ??.

4.4 π-Adic Numbers

In this section put the constructions from Subsections 4.2 and 4.3 into a larger context that
enables us to build very general algebraic sequence generators. Let R be an integral domain
with field of fractions F . Let π ∈ R.

Definition 4.4.1 A pre-π-adic number over R is an infinite expression

a =
∞∑
i=0

aiπ
i,

with a0, a1, · · · ∈ R.
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Again, the ais are called coefficients and the sequence (a0, a1, · · ·) is referred to as
seqN(a). When writing π-adic numbers we may omit terms whose coefficient is zero. We
may also write the terms in a different order.

If b =
∑∞

i=0 biπ
i is a second pre-π-adic number, then we let a + b =

∑∞
i=0(ai + bi)π

i,

−a =
∑∞

i=0−aiπi, and ab =
∑∞

i=0

∑i
j=0(ajbi−j)π

i. It is straightforward to see that these
operations make the set R′

π of pre-π-adic numbers into a ring whose zero is the element
all of whose coefficients are 0, and with identity the element with 0th coefficient 1 and all
remaining coefficients zero (it is really nothing more than the ring of power series over R).

Let

I =

{
∞∑
i=0

aiπ
i : ∀n : πn|

n−1∑
i=0

aiπ
i

}
.

Then I is closed under addition and if a ∈ I and b is arbitrary, then we have

n−1∑
i=0

(ab)iπ
i ≡

(
n−1∑
i=0

aiπ
i

)(
n−1∑
i=0

biπ
i

)
(mod πn),

so ab ∈ I. Thus I is an ideal.

Definition 4.4.2 The ring of π-adic numbers over R is the ring of pre-π-adic numbers
modulo the ideal I. This ring is denoted by Rπ.

If the context is clear we may simply refer to a π-adic number. There is a homomorphism
from R to Rπ – map an element a to the π-adic number

∑∞
i=0 aiπ

i with a0 = a and ai = 0
for i ≥ 1. The kernel of this homomorphism is the set of a ∈ R such that πn|a for all n.
Thus this homomorphism is injective if and only if

∞⋂
i=0

(πi) = (0). (4.7)

In studying sequences we are generally only interested in rings that satisfy equation (4.7)
since we could replace R by R/ ∩∞i=0 (πi).

The element π of course generates an ideal in Rπ, and Rπ/(π
n) ∼= R/(πn). To see

this consider the homomorphism from R to Rπ. This induces an injection from R/(πn) to
Rπ/(π

n). Any a =
∑∞

i=0 aiπ
i ∈ Rπ/(π

n) is the image of
∑n−1

i=0 aiπ
i ∈ R/(πn), so it is also a

surjection, hence an isomorphism.
There are ways to represent π-adic numbers that are sometimes more convenient. By

a complete set of representatives for R modulo π we mean a set S such that for all a ∈ R
there is a unique b ∈ S so that a ≡ b (mod π).
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Theorem 4.4.3 Let S be a complete set of representatives for R modulo π. Then for every
π-adic number there is a unique representative all of whose coefficients are in S.

Proof: Let a =
∑∞

i=0 aiπ
i ∈ Rπ. We need to construct a sequence b0, b1, · · · ∈ S so that for

all n,

πn|
n−1∑
i=0

(ai − bi)πi. (4.8)

Let b0 ∈ S be the unique element so that a0 ≡ b0 (mod π). Inductively assume that we have
found b0, · · · , bn so that equation (4.8) holds. Then

∑n−1
i=0 (ai − bi)πi = πnc for some c ∈ R.

Let bn ∈ S be congruent to an + c modulo π, so there is a d ∈ R such that an + c = bn + πd.
Then

n∑
i=0

(ai − bi)πi = (an − bn)πn +
n−1∑
i=0

(ai − bi)πi

= (an − bn)πn + cπn

= dπn+1.

This proves the existence part of the theorem.
Suppose c0, c1, · · · ∈ S is a second set of coefficients such that πn|

∑n−1
i=0 (ai − ci)π

i for
all n. Then also πn|

∑n−1
i=0 (bi − ci)π

i for all n. Then π|(b0 − c0) which implies b0 = c0.
Inductively suppose that bi = ci for i < n. Then πn+1|(bn − cn)π

n. But R is an integral
domain, so π|(bn − cn), so bn = cn. 2

From this theorem it is apparent that the power series ring R[[x]] over a ring R is the
ring of x-adic numbers over the polynomial ring R[x]. Also, the ring of N -adic numbers
(in the terminology of the preceding section) is the ring of N -adic numbers over Z (in the
terminology of this section).

Relative to a fixed complete set of representatives S for R modulo π, there is a well
defined notion of the reduction of an element of Rπ modulo π in R, and of the integral
quotient of an element of Rπ by π. If

a =
∞∑
i=0

aiπ
i,

is a π-adic number with a0, a1 · · · ∈ S, then the reduction of a modulo π is a0 and the integral
quotient of a by π

quoS(a, π) =
∞∑
i=0

ai+1π
i.
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If the set S is clear we simply write quo(a, π). Thus in general

a = (a (mod π)) + πquo(a, π).

Note that if a ∈ R, then quo(a, π) ∈ R.

4.5 Examples

4.6 Alternate Definitions

In this section we describe several other ways to define the π-adic numbers over a ring R.

4.6.a Inverse Limits

The ring Rπ can be defined using inverse limits. The set of rings {Ri = R/(πi+1) : 0 ≤
i < ∞} is a directed system with the reduction functions τi : Ri → Ri−1. We also have
ψi : Rπ → Ri by reduction modulo πi−1, and ψi−1 = τi◦ψi. Thus there is a homomorphism ψ
from Rπ to lim←−{R

i} so that if ϕi : lim←−{R
i} → Ri is the projection function, then ψi = ϕi◦ψ.

We claim that ψ is an isomorphism. If a =
∑∞

i=0 aiπ
i ∈ Rπ is nonzero, then πn does not

divide
∑n−1

i=0 aiπ
i for some n. Thus ψn(a) 6= 0, and therefore ψ(a) 6= 0. This implies ψ is

injective. Let b = (b0, b1, · · ·) ∈ lim←−{R/(π
i)}. For each i let ci ∈ R reduce to bi modulo πi.

Thus πi|ci− ci−1. Let ai = (ci− ci−1)/π
i. Then a =

∑∞
i=0 aiπ

i reduces to bi modulo πi+1 for
every i. That is, ψ(a) = b and ψ is a surjection and an isomorphism.

4.6.b Valuations

In some cases we can also describe Rπ in terms of discrete valuations. This notion is central
to much of algebraic geometry where valuations are used to explain the local structure of
an algebraic variety.

Definition 4.6.1 Let F be a field. A valuation on F is a function ν : F → Z ∪ {∞} such
that for all a, b ∈ F

1. ν(a+ b) ≥ min(ν(a), ν(b)).
2. ν(ab) = ν(a) + ν(b).
3. ν(a) =∞ if and only if a = 0.

If F is the field of fractions of a ring R, then to define a valuation on F it is sufficient to
define it on R since it will then extend to F by ν(a/b) = ν(a)− ν(b).
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It follows from the second axiom that ν(1) = 0. It then also follows that if a has finite
order (i.e., ak = 1 for some k), then ν(a) = 0. Also, ν(a−1) = −ν(a) for every a ∈ F . Thus
if ν is a valuation on a field F , then the set Rν = {a : ν(a) ≥ 0} is a ring, and the set
Iν = {a : ν(a) > 0} is a maximal ideal in Rν . We denote the residue field Rν/Iν by Kν . An
element a in Rν is a unit if and only if ν(a) = 0.
Examples:

1. Let p be a prime integer. If a is a nonnegative integer then we have a = pnb for some
nonnegative integer n and integer b that is relatively prime to p. If we define νp(a) = n,
then νp is a valuation on Z.

2. More generally, let R be a UFD and let π ∈ R be prime. If a ∈ R, then a = πnb for
some nonnegative integer n and some b ∈ R such that the gcd of π and b is 1. If we define
νπ(a) = n, then νπ is a valuation on R.

It is not in general the case that Rν = R. For instance, in the first example Rν = {a/b :
a, b ∈ Z, gcd(b, p) = 1}, a ring we encountered when we studied N -adic numbers (with
N = p). Notice that it is essential to take p or π prime. For suppose π = ab and a and b
are not units, and suppose that the function ν as defined in example 2 is a valuation. Then
ν(a) = ν(b) = 0, so a and b are units in Rν . But it follows that π = ab is also a unit, which
is impossible since it is a generator of the maximal ideal Iν .

We observe that in any valued field F with valuation ν, there is an element π of Iν whose
valuation is minimal, say ν(π) = c. If x ∈ Rν , then ν(x) is a multiple of c, for otherwise we
would have ν(x) = ac+ d with 0 < d < c and ν(x/πa) = d. Thus ν(x) = ac for some a, and
ν(x/πa) = 0, so x/πa is a unit. Furthermore, π is prime in Rν . For if π = uv with neither
u nor v a unit, then ν(π) = ν(u) + ν(v) ≥ 2c, a contradiction. Thus the second example is
completely general. It follows also that in any valued field F , every element is of the form
πax with ν(x) = 0.

Let us recall the definition of a metric space.

Definition 4.6.2 A metric space is a set X with a function δ : X×X → R (called a metric
function) such that for all a, b, c ∈ X

1. δ(a, b) = 0 if and only if a = b.
2. δ(a, b) ≤ δ(a, c) + δ(c, b) (triangle inequality).

A sequence of points x1, x2, · · · in a metric space X is a Cauchy sequence if for every
ε > 0 there exists a k so that xi− xj < ε if i, j ≥ k. A sequence x1, x2, · · · converges if there
is some element z ∈ X such that for every ε > 0 there exists a k so that xi − z < ε if i ≥ k.
A metric space is complete if every Cauchy sequence converges.
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Theorem 4.6.3 Let ν be a valuation on a field F and let q > 1 be a positive real number.
Then δ(a, b) = q−ν(a−b) is a metric function on F .

Proof: For any a, b ∈ F we have 0 = δ(a, b) = q−ν(a−b) if and only if ν(a − b) = ∞, which
holds if and only if a = b. For any a, b, c ∈ F , we have

δ(a, b) = q−ν(a−b)

= q−ν(a−c+c−b)

≤ q−min(ν(a−c),ν(c−b))

= max(q−ν(a−c), q−ν(ac−b))

≤ q−ν(a−c) + q−ν(ac−b)

= δ(a, c) + δ(c, b).

2

The particular choice of q > 1 does not matter in what follows. To say that x = x1, x2, · · ·
is a Cauchy sequence in F amounts to saying that for all n ∈ Z there is a k such that
ν(xi − xj) > n if i, j ≥ k.

Theorem 4.6.4 Let F be a field with a discrete valuation ν. There is a field F̂ containing
F such that the following hold.

1. ν extends to ν̂ on F̂ .
2. F̂ is complete with respect to ν̂.
3. Suppose E is a field, µ is a valuation on E, E is complete with respect to µ, and there

is a homomorphism ϕ : F → E such that µ(ϕ(a)) = ν(a) for all a ∈ F . Then there is
a homomorphism ϕ̂ : F̂ → E such that ϕ̂(a) = ϕ(a) for all a ∈ F and µ(ϕ̂(a)) = ν̂(a)
for all a ∈ F̂ .

In this case F̂ is unique in the sense that any other ring satisfying (1), (2), and (3) is
isomorphic to F̂ , and we say that F̂ is the completion of F with respect to ν.

Proof: Let R = Rν and let π have minimal valuation c in Iν . Let T be the set of all Cauchy
sequences in F . Then T is a subring of the product of infinitely many copies of R. The set
of Cauchy sequences with limit 0 is an ideal I in T , and we let R̂ = T/I. Thus two sequence
x = x1, x2, · · · and y = y1, y2, · · · are equivalent if for every ε > 0 there is a k such that
δ(xi, yi) < ε if i > k. The ring R embeds in R̂ as the set of constant sequences, and so F
embeds in the field of fractions F̂ of R̂.

We extend ν to R̂ as follows. Let x = x1, x2, · · · ∈ R̂. If ν(xi) tends to infinity as i
tends to infinity, we let ν(x) = ∞. Otherwise there is some n ∈ Z such that ν(xi) ≤ n
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for infinitely many i. But ν(xi) ≥ 0, so we may assume that ν(xi) = n for infinitely many
i. Let k be large enough that ν(xi − xj) ≥ n + 1 if i, j ≥ k, and suppose that i ≥ k with
ν(xi) = n. Let j ≥ k. Then ν(xj) = ν(xi + (xj − xi)) ≥ min(ν(xi), ν(xj − xi)) = n. Also,
ν(xi) = ν(xj + (xi − xj)) ≥ min(ν(xj), ν(xi − xj)). That is, n ≥ min(ν(xj), n + 1). Thus
n ≥ ν(xj), so ν(xj) = n. Note in particular that for every Cauchy sequence x, the limit of
ν(xi) exists. We let ν̂(x) = n. It is straightforward to verify that ν̂ is a valuation and agrees
with ν on F .

To see that F̂ is complete, let ẑ = z1, z2, · · · be a Cauchy sequence in F̂ . We have
zi = πaixi with ν̂(xi) = 0. As we have seen, the ais either have infinite limit or are constant
after some point. In the former case the sequence ẑ converges to 0. In the latter case
x̂ = x1,x2, · · · is a Cauchy sequence and it suffices to show that x̂ has a limit y. If the limit
of the ais is a, then the limit of ẑ is πay.

So let x̂ = x1,x2, · · · be a Cauchy sequence in R̂, with xi = xi1, xi2, · · ·, and xij ∈ R. For
each n there is a kn so that ν̂(xi − xj) > n if i, j ≥ kn. We may assume kn ≤ kn+1 for all
n. Since the sequence xkn is a Cauchy sequence, we also have k′n so that ν(xkni − xknj) > n
if i, j ≥ k′n. Furthermore, by the definition of ν̂ and the fact that there are finitely many
m < kn, we can choose k′n so also ν(xmi−xkni) > n if i ≥ k′n and m ≤ n and we may assume
k′n ≤ k′n+1 for all n. Let yn = xknk′n . Then we claim that y = y1, y2, · · · is a Cauchy sequence

in R and y is the limit of x̂ in R̂.
Suppose n ≤ m. Then

ν(yn − ym) = ν(xknk′n − xkmk′m)

= ν(xknk′n − xknk′m + xknk′m − xkmk′m)

≥ min(ν(xknk′n − xknk′m), ν(xknk′m − xkmk′m))

≥ n.

Thus y is a Cauchy sequence.
Now let i > kn. Then

ν̂(xi − y) ≥ min(ν̂(xi − xkn), ν̂(xkn − y))

≥ min(n+ 1, ν̂(xkn − y))

= min(n+ 1, lim
m→∞

ν(xknm − xknk′n))

≥ min(n+ 1, lim
m→∞

min(ν(xknm − xknk′m), ν(xknk′m − xknk′n)))

> n.

Thus F̂ is complete.
Finally, suppose E, µ, and ϕ are as in the hypotheses. It suffices to extend ϕ to ϕ̂ on

F . Let x = x1, x2, · · · be a Cauchy sequence in F . Then the sequence w = ϕ(x1), ϕ(x2), · · ·
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is a Cauchy sequence in E. By the completeness of E, w has a limit z in E. We define
ϕ̂(x) = z. It is straightforward to check that this function has the properties desired, and
that it is in fact unique. The uniqueness of F̂ also follows. 2

Theorem 4.6.5 Let R be a UFD with field of fractions F and a discrete valuation νπ as in
example 2 of §4.6.b. Then the field of fractions Fπ of Rπ is the completion of F with respect
to νπ.

Proof: We extend νπ to Fπ as follows. Let S be a complete set of representatives in R
modulo π. Let a =

∑∞
i=m aiπ

i, with am 6≡ 0 (mod π). Then νπ(a) = mνπ(π). Alternatively,
if a ∈ Rπ and we think of Rπ as the inverse limit of {R/(πi+1)}, then νπ(a) is νπ(π) times
the least i such that the image of a in R/(πi+1) is nonzero. We leave it to the reader to
verify that this is a valuation.

Let x = x1, x2, · · · ∈ Fπ be a Cauchy sequence. As in the proof of Theorem 4.6.4 in
showing that x converges we may assume that each xi is in Rπ. Let xi =

∑∞
i=0 xijπ

j with
xij ∈ S. Then νπ(xi − xi′) is the least j such that xij 6= xi′j. Thus for every n there is a kn
so that xij = xi′j for all i, i′ ≥ kn and all j ≤ n. Let an = xknn. Then a =

∑∞
i=0 aiπ

i is the
limit of x. Therefore Fπ is complete.

Finally we show that Fπ is the completion of F . If E is the completion of F and
a =

∑∞
i=0 aiπ

i, we map a to the limit of the Cauchy sequence
∑1

i=0 aiπ
i,
∑2

i=0 aiπ
i, · · · in E.

It is straightforward to check that this is a homomorphism that preserves valuations, and
by uniqueness considerations it is an isomorphism. 2

In order to choose representations that result in efficient implementations, we need an
old result, known as Hensel’s lemma, which allows factorizations of polynomials to be lifted
from the residue field. Let F be a complete valued field with valuation ν. If f(x) is a
polynomial over Rν , we denote by f̄(x) the reduction of f(x) modulo Iν .

Lemma 4.6.6 (Hensel) Suppose f(x) is a monic polynomial over Rν, and f̄(x) = g0(x)h0(x)
in Kν [x], where g0(x) and h0(x) are monic and relatively prime. Then there exist monic poly-
nomials g(x) and h(x) in Rν [x] such that f(x) = g(x)h(x), ḡ(x) = g0(x), and h̄(x) = h0(x).

Corollary 4.6.7 With the same hypotheses, if f̄(x) has a simple root a0, then f(x) has a
simple root a such that a (mod Iν) = a0.

Proofs of Hensel’s Lemma and the corollary can be found in Jacobson’s book [10, pp. 573-
4].
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4.6.c Adic Topology

The approach using valuations only works when R is a UFD and π is prime. More generally,
we can use a topological approach. Recall that a topology on a set X is a collection T of
subsets of X (called the open sets ) such that ∅ and T are open sets; the intersection of any
finite collection of open sets is an open set; and the union of an arbitrary collection of open
sets is an open set. A set with a topology is called a topological space. The functions that
are of interest in topology are those functions ϕ : X → Y from a topological set X to a
topological set Y such that whenever U is open in Y , ϕ−1(U) is open in X. One way to
specify a topology on a set X is to specify a base. That is, a subset B ⊆ T such that every
open set is a union of sets in B. For example, the set of open intervals is a base for the
standard topology on R.

If R is a ring and I is an ideal, then we can construct a topology by taking B = {x+ In :
x ∈ R, n ≥ 1} as a base. To see that the set of unions of sets in B is a topology, it suffices to
see that the intersection of any two sets in B is again in B. Indeed, suppose (x+In)∩(y+Ik)
is nonempty, and without loss of generality assume n ≤ k. Then there are elements u ∈ In
and v ∈ Ik such that x + u = y + v. It follows that x − y ∈ In, so y + Ik ⊆ x + In. Thus
(x+ In)∩ (y+ Ik) = x+ In ∈ B. This topology is called the I-adic topology on R. It is left
as an exercise to show that addition, multiplication, and negation are continuous functions
in the I-adic topology. Thus R is a topological ring. If I = (π) is principal, we refer to the
(π)-adic topology as the π-adic topology.

A sequence of points x1, x2, · · · in a ring R is a Cauchy sequence (with respect to the
I-adic topology) if for every n there exists a k so that xi − xj ∈ In if i, j ≥ k. We are
to think of the elements of In for large n as small, so xi − xj ∈ In means that xi and xj
are close to each other. The definition of Cauchy sequence says that beyond some place in
the sequence, all pairs are arbitrarily close. A sequence x1, x2, · · · converges if there is some
element z such that for every n there exists a k so that xi − z ∈ In if i ≥ k. A topological
ring is complete if every Cauchy sequence converges.

Finally, R is separable in the I-adic topology if equation (4.7) holds. This is equivalent
to saying that for every pair of elements x, y ∈ R, there is an open set containing x and not
containing y.

Theorem 4.6.8 Let R be an integral domain, π ∈ R, and suppose R is separable in the
π-adic topology. Then Rπ is complete in the π-adic topology. Suppose Q is a ring, I is an
ideal of Q, Q is complete in the I-adic topology, and there is a continuous homomorphism
ϕ : R → Q. Then there is a unique continuous homomorphism ϕ̂ : Rπ → Q such that
ϕ̂(a) = ϕ(a) for all a ∈ R. In particular, Rπ is the smallest ring that is complete in the
π-adic topology and contains R.

Proof: Suppose that x1, x2, · · · is a Cauchy sequence in Rπ. Then for every n there exists

82



a kn so that πn|xi − xj if i, j ≥ kn, and we may assume that the sequence k1, k2, · · · is
increasing. Let

x = xk1 +

(
xk2 − xk1

π

)
π +

(
xk3 − xk2

π2

)
π2 + · · · .

Then for every n, x ≡ xn (mod πn). For all j ≥ n we have

x− xj = x− xkn + xkn − xj

=

((
xkn+1 − xkn

πn

)
πn +

(
xkn+2 − xkn+1

πn+1

)
πn+1 + · · ·

)
+ xkn − xj.

Thus πn divides x− xj and the sequence converges to x.
Now suppose Q is a ring, I is an ideal of Q, Q is complete in the I-adic topology, and

there is a continuous homomorphism ϕ : R → Q. Let a =
∑∞

i=0 aiπ
i ∈ Rπ. For each n, let

xj =
∑j−1

i=0 aiπ
i ∈ R. Let yj = ϕ(xj). Let n be any positive integer. Since ϕ is continuous,

ϕ−1(In) = (πm) for some m. For all i, j ≥ m we have xi−xj ∈ (π)m. Therefore yi−yj ∈ In.
That is, the sequence y1, y2, · · · is a Cauchy sequence in Q. By the completeness of Q, this
sequence converges to some y ∈ Q. Define ϕ̂(a) = y.

It remains to show that ϕ(a) is independent of the representation of a, that this definition
makes ϕ a continuous homomorphism from Rπ to Q, and that ϕ̂ is unique. We leave these
details as an exercise. 2

Thus we can refer to Rπ as the completion of R in the π-adic topology. Rν is separable
in the Iν-adic topology.

4.7 Exercises

1. Let F be a field and suppose that k is a positive integer that is invertible in F . Let
a(x) =

∑∞
i=0 aix

i ∈ F [[x]] be a power series such that a0 is a kth power in F . Show that a
is a kth power in F [[x]].

2. Let F be a field that is not algebraically closed. Show that F [[x]] does not contain the
algebraic closure of F .

3. If a, b ∈ ZN , make the definition of ab precise and show that ZN is a ring.

4. Prove that ZN = lim←−{Z/(N
i)}.

5. Use (4) to give an alternate proof that there is a surjective homomorphism

{f/g : f, g ∈ Z, gcd(g,N) = 1} → ZN .
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6. Complete the details of the proof of Theorem 4.3.8, showing that all the appropriate
homomorphisms commute.

7. Finish the proof of Theorem 4.6.8.

8. Let R be a finite ring and let I be an ideal of R. Prove that the completion of R at I is
a quotient ring of R.
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