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Abstract

In order to build spread spectrum communication systems based on the CDMA
paradigm, it is necessary to have large families of binary sequences with low pairwise
correlation values. For these systems to have resistance to certain cryptanalytic attacks
and resistance to jamming, the sequences must have large linear span. In this paper
we describe certain families of sequences that have these desirable properties. The
sequences are based on families of quadratic forms over finite fields.

1 Introduction

In recent years there has been hope that Code Division Multiple Access (CDMA) systems
would provide the capacity and reliability necessary to make spread spectrum communica-
tions viable [13]. The volume of communication traffic has been steadily increasing, and will
continue to do so. In order for these systems to work, however, it is essential to find large
families of easily generated binary sequences with low correlation function values. The smaller
the pairwise cross-correlations and the larger the family, the higher the capacity of the system.
For these systems to resist jamming and certain cryptanalytic attacks, the sequences must
have large linear spans.
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Size of Maximum Maximum Range of
Family n Family Correlation Linear Span Imbalance

Gold 2m+ 1 2n + 1 1 + 2
n+1

2 2n [1, 2
n+1

2 + 1]

Gold 4m+ 2 2n − 1 1 + 2
n+2

2 2n [1, 2
n+2

2 + 1]

Kasami 2m 2
n
2 1 + 2

n
2

3n
2

[1, 2
n
2 + 1]

(Small Set)

Kasami 4m+ 2 2
n
2 (2n + 1) 1 + 2

n+2
2 ≤ 5n

2
[1, 2

n+2
2 + 1]

(Large Set)

Bent 4m 2
n
2 1 + 2

n
2

(
n/2
n/4

)
2

n
4 1

No 2m 2
n
2 1 + 2

n
2 m(2m − 1) [1, 2

n
2 + 1]

TN 2km 2
n
2 1 + 2

n
2 > 3mk(3k − 1)m−2 [1, 2

n
2 + 1]

(0, j)-QF me 2n + 1 1 + 2
n+m

2 ∼ n2m−1(e− 2)m−2 [1, 2
n+m

2 + 1]

Table 1: Comparison of Properties of Families of Sequences of Period 2n − 1

There is a spectrum of families of sequences exhibiting tradeoffs among the size of the
family, the maximum cross-correlations, and the linear span. For families of sequences of
period 2n − 1, with 2n/2 sequences in the family, various constructions have been described
with successively greater linear spans. These include bent function sequences [6, 7, 11, 12],
No sequences [9, 10], and TN sequences (also known as generalized No sequences) [4, 9]. The
linear spans of these sequences are summarized in Table (1).

If we want larger families of sequences, we must weaken the bound on the maximum
correlations. A number of such families have been studied, such as Gold sequences and large
sets of Kasami sequences [1, 2], but the linear spans of these sequences are only linear in n.

In this paper we describe new families of binary sequences which we call QF sequences
(QF stands for “quadratic form”). The size of these families is 2n + 1 when the period is
2n − 1. Certain of these sequences, (0, j)-QF sequences, have maximum correlations that
are slightly greater than 2n/2 − 1, and linear spans which are larger than Gold, Kasami, and
GMW sequences by a factor that is exponential in n. A parameter can be chosen that makes
possible various combinations of maximum linear span and maximum correlation. Generally,
the larger the linear span, the larger the maximum correlation that must be tollerated with
these families. These results are also summarized in Table (1).

The construction of QF sequences is based on algebra over finite fields. They are special
cases of the sequences known as d-form sequences [4]. The ith element of a QF sequence
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is given by starting with the ith power of a primitive element in the Galois field GF (2n),
applying a quadratic form to GF (2m) (m a divisor of n), raising the result to some power,
and mapping to GF (2) by a trace function. We describe here the correlation and balance
properties of (0, j)-QF sequences, based on previous results on TN sequences [4]. We also give
lower bounds on the linear span of (0, j)-QF sequences, count the number of distinct families
of such sequences, and discuss their implementation.

2 Definitions

Throughout this paper let e and m be positive integers, let n = em. For convenience we write
q = 2m. Let Trnm be the trace function from GF (2n) to GF (2m),

Trnm(x) =
e−1∑
i=0

xq
i

.

By a quadratic form on GF (q) we mean a homogeneous polynomial of degree 2 in several
variables.

By choosing coordinates, we can treat GF (qe) as e-dimensional affine space over GF (q).
Then any polynomial in e-variables with coefficients in GF (q) defines a function from GF (qe)
to GF (q), and any such function is representable by a polynomial. Under this identification,
the quadratic forms correspond precisely to sums of functions of the form

H(x) = Trnm(γxt),

where the sum of the coefficients in the base q expansion of t is 2, t < 1+2e/2, and γ ∈ GF (qe);
and, if e is even, functions of the form

H(x) = Trn/2m (γx1+qe/2

),

where γ ∈ GF (qe/2).
QF sequences are generated in three steps. We start with a sequence of powers of a

primitive element in GF (qe). To this sequence we apply a quadratic form H mapping to
GF (q). We then raise the result to some power. Finally, we apply the trace function Trm2 .
The precise definition of QF sequences is as follows.

Definition 2.1 Let e and m be positive integers, and let q = 2m. Let r be a positive integer
such that gcd(r, q− 1) = 1. Let α be a primitive element in GF (qe). Let H(x) be a quadratic
form on GF (qe) over GF (q). Then the sequence S whose ith term is

si = Trm1 ((H(αi))r) (1)

is a QF sequence.
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QF sequences are a special case of d-form sequences, in which the quadratic form H is
replaced by a homogeneous polynomial of degree d [4].

The particular QF sequences we are interested in here are those of the form

si = Trm1 ((Trnm(γα2i) + Trnm(δα(1+qj)i))r).

We call such a sequence a (0, j)-QF sequence. We require that gcd(e, j) = 1. We sometimes
also require that gcd(qj+1, qe−1) = 1. If gcd(e, j) = 1, this is equivalent to the condition that
e is odd. We show that, for fixed n, m, j, and r, the family of all such (0, j)-QF sequences has
near optimal cross-correlations and very high linear span. The number of cyclically distinct
sequences in such a family is 2n − 1.

3 Cross-Correlations

In this section we determine the cross-correlations of the (0, j)-QF sequences defined in Section
2. Recall that the cross-correlation with shift τ of two sequences S = (s1, s2, · · ·) and T =
(t1, t2, · · ·) of period N , is defined by

ΘS,T(τ) =
N∑
i=1

(−1)si+ti+τ . (2)

In our case N = qe − 1. The cross-correlations of two d-form sequences have been described
in terms of the zeros of d-forms [4].

Theorem 3.1 (Klapper [4]) Let the integers m, e, and r, and primitive element α ∈ GF (qe)
be fixed, and let H1 and H2 be d-forms on GF (qe) over GF (q) defining d-form sequences S1

and S2. For any shift τ , let zτ = |{x 6= 0 ∈ GF (qe) : H1(x) +H2(α
τx) = 0}|. Then

ΘS1,S2(τ) =
qzτ − (qe − 1)

q − 1
.

In case d = 2 and H is a quadratic form, the number of zeros of H is well understood.
Recall that the rank of a quadratic form H is the smallest integer t such that there is a set of
coordinates in which H can be represented using only t variables. The number of solutions
x to the equation H(x) = 0 (or, more generally, H(x) = a) is determined by the rank and,
in the case of even rank, whether H is of one of two types. A nice treatment of this analysis
can be found in Lidl and Niederreiter’s book [8].

Let r, α, and j be fixed satisfying gcd(r, q−1) = 1. Consider a pair of (0, j)-QF sequences

ski = Trm1 ((Trnm(γkα
2i) + Trnm(δkα

i(1+qj)))r),
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where γk, δk ∈ GF (qn), and k = 1, 2. To compute the cross-correlations of S1 and S2, we need
only count the number zτ of zeros of the quadratic form

Trnm((γ1 + γ2α
2τ )x2) + Trnm((δ1 + δ2α

(1+qj)τ )x1+qj

)
def
= Trnm(γx2) + Trnm(δx1+qj

),

which we denote by H(x).
If we could determine the rank of H(x), we would be essentially done. Unfortunately,

we have been unable to do so directly. However, the rank of the second summand has been
analyzed [5], and we can use this analysis. We can determine zτ from the numbers of solutions
to certain systems of equations as follows. We have

Trnm(γx2) + Trnm(δx1+qj

) = 0

if and only if for some u ∈ GF (q)

Trnm(γx2) = u and Trnm(δx1+qj

) = u. (3)

Recall that every γ in GF (qn) can be written as a square, γ = β2, with β in GF (qn), and
that for any y, we have Trnm(y2) = Trnm(y)2. Letting v2 = u, it follows that equation (3) holds
if and only if

(Trnm(βx))2 = v2 and Trnm(δx1+qj

) = v2,

which holds if and only if

Trnm(βx) = v and Trnm(δx1+qj

) = v2. (4)

Thus we can compute zτ by solving a system consisting of a linear equation and a homogeneous
quadratic equation. Such systems have been completely analyzed in terms of the rank and
type of the quadratic form Trnm(δx1+qj

), and the rank and type of this quadratic form have
been analyzed as well [5]. We quote the relevant results. In general, quadratic forms can
be classified into three types. For simplicity, we write x = (x1, · · · , xe). Let Bt(x̄) = x1x2 +
x3x4 + · · ·+ xt−1xt. The function η(v) is defined by

η(v) =

{
−1 if v 6= 0
q − 1 if v = 0.

Proposition 3.2 Every quadratic form R of rank t in e variables over GF (q), q even, is
equivalent under a change of coordinates to one of the following three standard types:

Type I: Bt(x̄);

Type II: Bt−1(x̄) + x2
t ;

Type III: Bt−2(x̄) + bx2
t−1 + xt−1xt + bx2

t .
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The number of solutions to the equation R(x̄) = v is:

Type I: qe−1 + η(v)qe−t/2−1;

Type II: qe−1;

Type III: qe−1 − η(v)qe−t/2−1.

For the quadratic forms in question, we have the following.

Theorem 3.3 (Klapper [5]) Let R(x) = Trnm(δx1+qj
).

1. If e/ gcd(e, j) is even and δ is not a (1 + qj)th power in GF (qe), then the rank of R is
e, hence even. Moreover, if e/(2 gcd(e, j)) is odd, then R is a Type III quadratic form,
while if e/(2 gcd(e, j)) is even, then R is a Type I quadratic form.

2. If e/ gcd(e, j) is even and δ is a (1 + qj)th power in GF (qe), then the rank of R is
e − 2 gcd(e, j), hence even. Moreover, if e/(2 gcd(e, j)) is odd, then R is a Type I
quadratic form, while if e/(2 gcd(e, j)) is even, then R is a Type III quadratic form.

3. If e/ gcd(e, j) is odd, then the rank of R is e− gcd(e, j) + 1, hence odd. Moreover, R is
a Type II quadratic form.

Thus if gcd(e, j) = 1, then there are three possibilities:

1. Suppose e ≡ 0 (mod 4). R has rank e − 2 and Type III if δ is a (1 + qj)th power in
GF (qe). Otherwise R has rank e and Type I.

2. Suppose e ≡ 2 (mod 4). R has rank e − 2 and Type I if δ is a (1 + qj)th power in
GF (qe). Otherwise R has rank e and Type III.

3. Suppose e is odd. R has rank e− 1 and Type II.

Furthermore, the solutions to systems of equations such as (4) have been determined. We
first choose coordinates x1, · · · , xe so that R(x) is one of the three standard types. Then we
can write

Trnm(βx) =
e∑
i=1

aixi

for some ai ∈ GF (q). We let t be the rank of R and let N(v) be the number of solutions to
the system of equations (4). We also let ε = 1 if R has even rank and Type I, and ε = −1
if R has even rank and Type III. By applying Propositions 3.3 and 3.4 of [5], we have the
following.
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Proposition 3.4 Suppose that for some i > t, ai 6= 0.

1. If R has Type I or Type III, then

N(v) = qe−2 + εη(v)qe−t/2−2.

2. If R has Type II then
N(v) = qe−2.

Proposition 3.5 Suppose that at+1 = at+2 = · · · = ae = 0, or t = e.

1. Let R have Type I or Type III.

a. If R(ā) 6= 0, then

N(v) =

{
qe−2 + ε(−1)φqe−t/2−1 if v 6= 0
qe−2 if v = 0,

where φ = Trq2(R(ā)).

b. If R(ā) = 0, then

N(v) =

{
qe−2 if v 6= 0
qe−2 + ε(q − 1)qe−t/2−1 if v = 0.

2. Let R have Type II.

a. If at = 0, then N(v) = qe−2.

b. Otherwise N(v) = qe−2 + (−1)ψη(v(1 + at))q
e−t/2−3/2, where ψ = Trq2(Bt−1(ā)/a

2
t ).

These results can be combined with Theorems 3.1 and 3.3 to give the cross-correlations
of quadratic form sequences. If S is a cyclic shift of T, and τ is a shift so that S coincides
with T shifted by τ , then the cross-correlation of S and T with shift τ is 2n− 1. We call this
a trivial cross-correlation.

Theorem 3.6 Let j and r be integers satisfying gcd(e, j) = gcd(r, q − 1) = 1. Let S and T
be two (0, j)-QF sequences with exponent r.

1. If e is even, then the nontrivial cross-correlations of S and T are {−1,±qe/2−1,±qe/2+1−
1}.

2. If e is odd then the nontrivial cross-correlations of S and T are {−1,±q(e+1)/2 − 1}.
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Proof: The proof is completed by summing the appropriate entry in Proposition 3.4 or
Proposition 3.5. In case 1 we have t = e or t = e− 2. In case 2 we have t = e. We treat case
2 in detail and leave case 1 to the reader.

Since t = e, only Proposition 3.5 applies. If ae = 0, then N(v) = qe−2. Thus zτ =∑
v q

e−2 − 1 = qe−1 − 1, and

ΘS,T(τ) =
qzτ − (qe − 1)

q − 1
= −1.

If ae 6= 0, then
N(v) = qe−2 + (−1)ψη(v(1 + ae))q

(e−3)/2,

where ψ = Trq2(Be−1(ā)/a
2
e) is independent of v. If ae = 1, then this reduces to

N(v) = qe−2 + (−1)ψ(q − 1)q(e−3)/2.

Thus zτ = qe−1 + (−1)ψ(q − 1)q(e−1)/2 − 1, and

ΘS,T(τ) =
qzτ − (qe − 1)

q − 1

= (−1)ψq(e+1)/2 − 1.

If ae 6∈ {0, 1}, then
N(v) = qe−2 + (−1)ψη(v)q(e−3)/2.

Thus

zτ =
∑
v 6=0

(qe−2 − (−1)ψq(e−3)/2) + qe−2 + (−1)ψ(q − 1)q(e−3)/2 − 1,

= qe−1 − 1,

and ΘS,T(τ) = −1. 2

The imbalance of a binary sequence is the number of times the sequence equals zero minus
the number of times it equals one. The imbalances of (0, j)-QF sequences are in the same set
of values as the cross-correlations.

Corollary 3.7 Let j and r be integers satisfying gcd(e, j) = gcd(r, q − 1) = 1. Let S be a
(0, j)-QF with exponent r.

1. If e is even, then the imbalance of S is in the set {−1,±qe/2 − 1,±qe/2+1 − 1}.

2. If e is odd then the the imbalance of S is in the set {−1,±q(e+1)/2 − 1}.
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We can also use Theorem 3.1 to show that the period of a quadratic form sequence is
2n − 1.

Theorem 3.8 If S is a (0, j)-QF sequence based on the primitive element α ∈ GF (2n), then
the period of S is 2n − 1.

Proof: Suppose S has period τ . Then the correlation of S with its own τ -shift (that is,
the autocorrelation of S with shift τ) equals 2n − 1. By Theorem 3.1, this can only happen
if Trnm(γ(1 + α2τ )x2 + δ(1 + ατ(1+qj))x1+qj

) is identically zero, where γ, δ, m, and j are the
parameters defining S. Therefore, 1 + α2τ = 0 or 1 + ατ(1+q

j) = 0 (one of γ and δ may be
zero). But 2n− 1 is relatively prime to both 2 and 1+ qj, so 2n− 1 must be a divisor of τ . 2

4 Linear Span

In this section we show that the linear span, λS, of a (0, j)-QF sequence S is at least that of
a GMW sequence with the same period, and that when γ and δ are nonzero, the linear span
asymptotically exceeds the linear span of a GMW sequence by a factor of 2wt(r), where wt(r)
is the number of ones in the binary expansion of r. If γ = 0 or δ = 0, then S is a GMW
sequence and, as is well known, the linear span is mewt(r).

The binary expansion of the exponent r in the definition of a (0, j)-QF sequence is a series
of runs of ones separated by zeros. We let U be the number of runs of ones and let Ri be the
length of the ith run.

Theorem 4.1 Let S be a (0, j)-QF sequence with

si = Trm1 ((Trnm(γαi)2 + Trnm(δαi(1+q
j)))r).

Suppose γ and δ are nonzero. Let π = (e2 − 4e+ 1)1/2. If e > 3, then the linear span of S is
at least

m
U∏
i=1

(
(e+ 1 + π)(e− 1 + π)Ri − (e− 1− π)(e+ 1− π)Ri

2π

)

≥

 2n · 4wt(r)−1 if e = 4

n ·∏U
i=1(2

Ri(e− 2)Ri−1 − 2 · 4Ri−1) otherwise.

This last product is maximized when r = 2m−1 − 1 at n(2m−1(e− 2)m−2 − 2 · 4m−2). If e = 3,
then the linear span of S is at least

m6U · 4wt(r).

This is maximized at m · 6m/2 · 4m/2 when m is even by taking r = 1 + 22 + 24 + · · · 2m−2. It
is maximized at m · 6(m−1)/2 · 4(m+1)/2 when m is odd by taking r = 1 + 2 + 23 + 25 + · · · 2m−2.
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Proof: Key [3] showed that if we express the ith term of a sequence S as a polynomial in αi,
then λS is the number of monomials in that polynomial. Equivalently, the linear span is the
number of monomials in the polynomial

s(x) = Trm1 ((Trnm(γx)2 + Trnm(δx1+qj

))r).

We show that, when this expression is expanded to a sum of monomials, all but a small
number of monomials are distinct. We explicitly describe those monomials that coincide with
others, and count the remaining monomials.

Let the binary expansion of r be r =
∑m−1
`=0 a`2

`, a` ∈ {0, 1}. Let L = {` : a` 6= 0}. Let
∆ be the set of wt(r)-tuples of elements of {0, · · · , e− 1}, indexed by L, and let Γ be the the
set of wt(r)-tuples of elements of {2, 1 + qj}, indexed by L. For I ∈ ∆ and K ∈ Γ, we write
i` and k` for the `th components of I and K, respectively.

Lemma 4.2 The polynomial s(x) can be expanded to a sum of monomials of the form xµ(t,I,K),
where

µ(t, I,K) = 2t
∑
`∈L

2`k`q
i` ,

0 ≤ t < m, I ranges over ∆, and K ranges over Γ.

Proof: We have

s(x) = Trm1 ((Trnm(γx)2 + Trnm(δx1+qj

))r)

= Trm1 ((
e−1∑
i=0

γ2qi

x2qi

+
e−1∑
i=0

δq
i

xq
i+qj+i

)r)

= Trm1 (
∏
`∈L

e−1∑
i=0

(γ2`+1qi

x2`+1qi

+ δ2`qi

x2`(qi+qj+i)))

= Trm1 (
∑
I∈∆

∏
`∈L

(γ2`+1qi`x2`+1qi` + δ2`qi`x2`(qi`+qj+i` )))

= Trm1 (
∑
I∈∆

∑
K∈Γ

cI,K
∏
`∈L

x2`k`q
i` )

= Trm1 (
∑
I∈∆

∑
K∈Γ

cI,Kx
∑

`∈L
2`k`q

i`
)

=
m−1∑
t=0

∑
I∈∆

∑
K∈Γ

dt,I,Kx
2t
∑

`∈L
2`k`q

i`
,

where cI,K and dt,I,K are nonzero elements of GF (qe). Thus the exponent of the general term
is of the form

µ(t, I,K) = 2t
∑
`∈L

2`k`q
i` .
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2

We use the following terminology. Each µ(t, I,K) is an exponent. It is a sum of terms
2`k`q

i` , with k` ∈ {2, 1 + qj}. Each term is a sum of one or two summands, 2`+1qi` ; or 2`qi`

and 2`qi`+j.
Let µ(t, I,K) and µ(t′, I ′, K ′) be two exponents. We say (t, I,K) is equivalent to (t′, I ′, K ′),

written (t, I,K) ∼ (t′, I ′, K ′), if

µ(t, I,K) ≡ µ(t′, I ′, K ′) (mod q)e − 1. (5)

Two index triples are equivalent if and only if they correspond to the same powers of x,
but with possibly different coefficients. Their resulting monomials may (or may not) cancel.
Thus we want to count the number of (t, I,K) that are equivalent to other index triples, and
subtract this number from the total number of index triples. This gives us a lower bound on
the number of monomials in s(x) with nonzero coefficients, and hence a lower bound on λS.

If we reduce equation (5) modulo q − 1, then it becomes to 2t+1r ≡ 2t
′+1r (mod q) − 1.

Since gcd(r, q − 1) = 1 and q − 1 is odd, it follows that 2t−t
′ ≡ 1 (mod q) − 1 = 2m − 1.

Thus m divides t− t′. But t and t′ are between 0 and m− 1, so we must have t = t′. Thus it
suffices to consider the case when t = t′ = 0. From now on we drop t from the notation and
simply write µ(I,K). The following lemma is useful.

Lemma 4.3 Let J and J ′ be index sets, and, for each j ∈ J (respectively, j ∈ J ′) let ij
(respectively, i′j) be a nonnegative integer. Suppose that

∑
j∈J

2ij =
∑
j∈J ′

2i
′
j (6)

and that the i′j are distinct. Then there is a partition of J into disjoint sets, J = ∪u∈J ′Ju
such that ∑

j∈Ju

2ij = 2i
′
u .

Proof: The proof is by induction on |J |. If |J | = 1, then |J ′| = 1, and the result is trivial.
Let |J | > 1 and let ij1 be the minimal element of {ij : j ∈ J}. If there is a j0 ∈ J ′ such

that i′j0 = ij1 , then we let Jj0 = {ij1}. By induction, we can partition the remainder of J as
required.

If there is no such j0 ∈ J ′, then i′j > ij1 for every j ∈ J ′. The right hand side of equation
(6) is divisible by 2ij1+1, so a positive even number of the ij equal ij1 . Let j2 ∈ J satisfy
ij2 = ij1 . Let d be a new index not in J , and let id = ij1 + 1. Then J − {j1, j2} ∪ {d} and
J ′ satisfy the hypotheses of the lemma, so by induction the conclusions hold for this set of
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indices. By replacing d by j1 and j2 in the partition containing d, we get a partition of J
satisfying the lemma. 2

It follows that for any µ(I,K), either all summands are distinct, or there is a subset
of the summands that forms a partition as in the lemma. Let J be such a partition, with∑
j∈J 2ij = 2d, and |J | 6= 1. Let ij1 be the least element in {ij}. There must be a second j2 ∈ J

with ij2 = ij1 . The term in µ(I,K) contributing ij1 is of the form 2`xqi, with x ∈ {1, 2, qj},
and the term in µ(I,K) contributing ij2 is of the form 2`

′
yqi

′
, with y ∈ {1, 2, qj}.

We must have ` 6= `′. Reducing modulo q−1, it is apparent that ` and `′ must differ by 1,
and x or y (whichever corresponds to the smaller of ` and `′) equals 2. Thus we may assume
x = 2, y ∈ {1, qj}, and `′ = `+1. If y = 1, then i′ = i, while if y = qj, then i′ = i−j (mod e).
Furthermore, these are the only terms contributing summands whose exponents are congruent
to `+ 1 modulo m. Thus the two terms contributing these summands are

2` · 2 · qi + 2`+1(1 + qj)qi = 2` · 2 · qi+j + 2`+1 · 2 · qi

or
2` · 2 · qi + 2`+1(1 + qj)qi−j = 2` · 2 · qi−j + 2`+1 · 2 · qi.

In either case, replacing the terms on the left hand side by the terms on the right hand side
results in an exponent µ(I ′, K ′) = µ(I,K) with (I ′, K ′) 6= (I,K), and the new exponent has
fewer summands.

Thus any exponent with a nontrivial partition of its summands, as in Lemma 4.3, is
equivalent to another exponent, and must contain consecutive terms with k` = 2, k`+1 = 1+qj,
and i`+1 ∈ {i`, i` − j}. Any exponent that is equivalent to another exponent with fewer
summands must contain a notrivial partition of its summands. Conversely, any exponent
with consecutive terms with k` = k`+1 = 2, and i`+1 ∈ {i` − j, i` + j} is equivalent to another
exponent with more summands. Any exponent that is equivalent to another exponent with
more summands must have terms of this form.

Thus if we exclude all exponents with consecutive terms of these four types, the only re-
maining equivalences are between exponents with no nontrivial partitions of their summands.
Assume µ(I,K) and µ(I ′, K ′) is such a pair of distinct equivalent exponents. The set of
summands of µ(I ′, K ′) must be a permutation of the set of summands of µ(I,K).

Since these exponents are distinct, there is at least one ` for which k` = 2 and either
k` 6= k′` or i` 6= i′`. Fix this ` and suppose k′` = 1 + qj. Then µ(I,K) has at most one
summand of the form 2`qi (arising from the term with index ` − 1), but µ(I ′, K ′) has two
such summands. Thus it must be that k′` = 2, and so i` 6= i′`.

The term with index ` in each exponent has the form 2`+1qi, and these terms are distinct,
so each exponent must have other summands with this form. The only other terms such
summands can come from are those with index `+1, and so we must have k`+1 = k′`+1 = 1+qj.
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Thus in each exponent there is a set of three summands of the form 2`+1qi, and these sets are
permutations of each other. The only possibilities are

µ(I,K) = 2`+1qi + 2`+1(1 + qj)qi+j = 2`+1qi+2j + 2`+2(1 + qj)qi = µ(I ′, K ′)

and the reverse.
If we exclude all exponents with consecutive terms of these two types as well as the

preceding four types, we will have excluded exactly those exponents that are equivalent to
other exponents.

Proposition 4.4 The only exponents that are equivalent to other exponents are those con-
taining consecutive terms of one of the following six types:

1. k` = 2, k`+1 = 1 + qj, i`+1 = i`;

2. k` = 2, k`+1 = 1 + qj, i`+1 = i` − j;

3. k` = 2, k`+1 = 2, i`+1 = i` − j;

4. k` = 2, k`+1 = 2, i`+1 = i` + j;

5. k` = 2, k`+1 = 1 + qj, i`+1 = i` + j;

6. k` = 2, k`+1 = 1 + qj, i`+1 = i` − 2j.

Thus the linear span of S is at least the number of exponents with no such consecutive terms
of these types. We call these good exponents.

Note that if e = 3, then i`− 2j ≡ i` + j (mod e), so the fifth and sixth types coincide and
there is no distinct pair of equivalent exponents. Otherwise all six types are distinct.

Any exponent for which all k` = 1 + qj is good. Thus there are at least ewt(r) good
exponents for each t, 0 ≤ t < m, and the linear span is at least mewt(r).

Consider a single run of ones of length R in the binary expansion of r. We can count the
number of (i`, k`) for ` in this run that give good exponents by building them up a term at a
time, from small ` to large `. Given an exponent that is good up to its `th term, we count
the ways it can be extended to a good exponent by adding a term for the next bit of r. If the
next bit of r is the first in a run of ones, or if k` = 1 + qj, then there are no restrictions, so
there are 2e ways of extending. Otherwise, there are e − 4 ways of extending the exponent
with k`+1 = 1 + qj (one way if e = 3), and e− 2 ways of extending it with k`+1 = 2.

It follows that the good choices of {k`} and {i`} for one run are independent of those
for other runs. The total number of good exponents is therefore the product of the number
of good choices for the different runs. For each run, we can count the good choices by a

13



recurrence. Only the length of the run matters, so we can assume the run is a sequence of
consecutive indices 0, 1, 2, · · · , R − 1. We let A(`) be the number of good runs up to index
`, ending with k` = 2, and let B(`) be the number of good runs up to index `, ending with
k` = 1 + qj. Then, for e > 3, we have the system of recurrences

A(`) = (e− 2)A(`− 1) + eB(`− 1)

B(`) = (e− 4)A(`− 1) + eB(`− 1),
(7)

for 1 ≤ ` < R. For e = 3, we have the system

A(`) = A(`− 1) + 3B(`− 1)

B(`) = A(`− 1) + 3B(`− 1),

for 1 ≤ ` < R. In both cases the initial conditions are A(0) = B(0) = e.
First consider the case when e = 3. We have A(`) = B(`) for all `, so A(`) = 4A(` − 1).

The solution to this recurrence is A(`) = 3 ·4`, so A(`)+B(`) = 6 ·4`. Thus the total number
of good exponents for a run of length R when e = 3 is 6 · 4R. The total number of good
exponents for a given r is the product

U∏
i=1

6 · 4Ri = 6U · 4wt(r),

where i ranges over the set of runs of ones in the binary expansion of r, Ri is the length of
the ith run, and U is the number of runs. For each good exponent µ(I,K) and each t, we
have a monomial

x2t
∑

`∈L
2`k`q

i`

that must appear in s(x) with a nonzero coefficient. Thus the linear span is at least

m6U · 4wt(r).

This is maximized at m · 6m/2 · 4m/2 when m is even by taking r = 1 + 22 + 24 + · · · 2m−2. It
is maximized at m · 6(m−1)/2 · 4(m+1)/2 when m is odd by taking r = 1 + 2 + 23 + 25 + · · · 2m−2.

The general case is somewhat more complicated. Equation (7) can be interpretted as a
matrix equation, (

A(`)
B(`)

)
=

(
e− 2 e
e− 4 e

)
·
(
A(`− 1)
B(`− 1)

)
. (8)

Let M be the matrix

M =

(
e− 2 e
e− 4 e

)
.
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Equation (8) is solved by diagonalizing M . Let π = (e2 − 4e + 1)1/2. Then M = D−1ND,
where

D =

(
−1 + π e
−1− π e

)
,

and

N =

 e+ π − 1 0

0 e− π + 1

.

The total number of good exponents for a run of length R is therefore given by

(
1 1

)
MR−1

(
e
e

)
=

(
1 1

)
D−1NR−1D

(
e
e

)

=
(
e+ 1 + π

2π
(e− 1 + π)R − e− 1− π

2π
(e+ 1− π)R

)
The total number of good exponents for a given r is therefore the product

∏
i

(
e+ 1 + π

2π
(e− 1 + π)Ri − e− 1− π

2π
(e+ 1− π)Ri

)
.

This is maximized when wt(r) = m− 1, and r has a single run of ones. In this case the linear
span is at least (

e+ 1 + π

2π
(e− 1 + π)m−1 − e− 1− π

2π
(e+ 1− π)m−1

)
.

The estimates in the statement of the theorem follow from the observations that e− 3 < π <
e− 2 when e ≥ 5, and that π = 1 when e = 4. 2

Note that the linear span may be larger than these estimates. Each bad exponent is in
a family of two or more exponents that contribute to the same term in the final polynomial
expansion. Each of these exponents contributes a coefficient. If these sum to zero, then the
linear span is unaffected by this term. Otherwise, it is increased by one. The coefficient of
such a term is a sum of monomials in γ and δ (when k` = 2, γ occurs with exponent 2`+1qi` ,
otherwise δ occurs with exponent 2`qi`). These expressions appear quite difficult to analyze,
though it is conceivable that one could upper bound the number that can vanish.
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5 Implementation of (0, j)-QF Sequence Generators

Consider the (0, j)-QF sequence S with

si = Trm1 ((Trnm(γα2i + δαi(1+2mj)))r)

= Trm1 ((Trnm(γα2i) + Trnm(δαi(1+2mj)))r)

Since α is a primitive element in GF (2n), α2 and α1+2mj
are also primitive elements in GF (2n).

It follows that the sequences
Trnm(α2i)

and
Trnm(αi(1+2mj))

are m-sequence of elements in GF (2m), and can be generated by linear feedback shift registers
(LFSRs) of length n/m over GF (2m). That is, the elements of the registers are elements of
GF (2m), and the feedback functions are linear functions in n/m variables. Such a register
requires only n bits of storage. The arithmetic required is at most n/m multiplications by
constants in GF (2m) (the coefficients of the minimum polynomial of α2 or α1+2mj

, some
of which may be zero), and at most n/m − 1 additions in GF (2m). The arithmetic can
be minimized if α is chosen to minimize the number of nonzero coefficients in the minimal
polynomials of α2 and α1+2mj

over GF (2m).
One extra addition is required to combine the outputs of the two LFSRs. The result is

then raised to the rth power, and the trace to GF (2) computed. However, in representing
elements of GF (2m) as m-bit vectors, we can choose a basis so that the trace of an element
is always given by projection onto a fixed component, say the first. Thus we only need to
compute a single bit of the rth power.

The different choices of γ and δ correspond to different initial loadings of the LFSRs. Thus
an entire family of TN sequences can be implemented by a single hardware circuit. Changing
to a new sequence is possible by simply resetting the initial loading of the LFSRs.

6 The Number of Distinct Families of (0, J)-QF Sequences

It is useful to know how many distinct families of (0, j)-QF sequences there are with a given
period 2n − 1. In this section we keep n fixed and let the factorization n = me vary. We
show that each choice of parameters m (dividing n, with e = n/m), j (relatively prime to
e and less than e/2), r (up to multiplication by a power of 2), and α (up to raising to an
exponent which is a power of two) gives rise to a distinct family of sequences, in the sense
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that no sequence in one family is a cyclic shift of a sequence in another family. For any fixed
even integer n we write

S(m, j, α, r) = {Sγ,δ : si = Trm1 ((Trnm(γα2i + δαi(1+2mj)))r) and γ, δ ∈ GF (2n)},

where m divides n, e = n/m, gcd(j, e) = 1, j < e/2, α is a primitive element of GF (2n),
and r is relatively prime to 2m − 1. The family does not change when r is multiplied by a
power of two, so we can assume that r < 2m−1 and is odd. Note that a cyclic shift of one of
these sequences by τ places replaces γ by γα2τ , and replaces δ by δατ(1+2mj), and hence gives
another sequence in the family.

Proposition 6.1 Let n be a positive integer, N = 2n − 1, m1, and m2 be divisors of n such
that m1 and m2 divide n, and e1 = n/m1 and e2 = n/m2. Let r1, r2, j1, and j2 be integers such
that 1 ≤ rk < 2mk−1, rk is relatively prime to 2mk − 1, jk < ek/2, and jk is relatively prime to
ek for k = 1, 2. Let α1 and α2 be primitive elements in GF (2n). Then S(m1, j1, α1, r1) and
S(m2, j2, α2, r2) are disjoint unless either

1. m1 = m2, j1 = j2, and for some integers u and v, 0 ≤ u < n, and 0 ≤ v < m1,
α2 = α2u

1 , and r1 = 2v · r2, or

2. m1j1 = m2j2, r1 and r2 are powers of 2, and for some integer u, 0 ≤ u < n and
α2 = α2u

1 .

In each of these cases
S(m1, α1, r1) = S(m2, α2, r2).

Proof: Suppose that we have a pair of sequences in S1 = S(m1, j1, α1, r1) and S2 =
S(m2, j2, α2, r2) respectively, such that one is a cyclic shift of the other. Since shifting a
sequence gives another one in the same family, we can assume S1 = S2.

If r1 and r2 are powers of two, they can be factored out of the trace functions. Thus in
this case we can assume r1 = r2 = 1, and m1 = m2 = 1. For some k, we have α2 = αk1, so for
every x ∈ GF (2n),

Trn1 (γ1x
2 + δ1x

1+2j1 ) = Trn1 (γ2x
2k + δ2x

k(1+2j2 )).

Expanding the traces and comparing the degrees of the terms on each side of the equality,
we see that k must be a power of two, and j1 = j2. Furthermore, if only one of r1 and r2 is
power of two, then the two sequences have different linear span, which is impossible.

In what remains we assume that neither r1 nor r2 is a power of two. Since n is fixed,
there are integers a, b, c, and d with abcd = n and b relatively prime to c, such that m1 = ab
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and m2 = ac. By symmetry we can assume b < c. Let Lv be the set of indices of nonzero
coefficients in the binary expansion of rv, v = 1, 2.

The sequences S1 and S2 are equal if and only if the associated polynomials s1(x) and
s2(x) are equal. When we expand s1(x) and s2(x) as sums of monomials, the typical term in
s1(x) has exponent µ1(t, I,K) = 2t

∑
`∈L1

2`k`2
abi` with 0 ≤ t < ab, k` ∈ {2, 1 + 2abj1}, and

0 ≤ i` < cd. The typical term in s2(x) has exponent µ2(t, I,K) = 2t
∑
`∈L2

2`k`2
aci` , with

0 ≤ t < ac, k` ∈ {2, 1 + 2acj1}, and 0 ≤ i` < bd. For some choices of parameters there may be
cancellation, but, as we have seen, if all k` = 1 + 2abj1 in the first case, and all k` = 1 + 2acj1

in the second case, then the terms with these exponents are not cancelled. Moreover, these
exponents are the only ones whose base two expansions have the maximum weight in each
sv(x). Thus their weights, 2 ·wt(r1) and 2 ·wt(r2) must be equal. Hence wt(r1) = wt(r2), and
the set of these exponents for s1(x) is a permutation of the set of these exponents for s2(x).

In particular, there are t and I = 〈i`〉 such that∑
`∈L1

2`(1 + 2abj1) = 2t
∑
`∈L2

2`(1 + 2acj2)2aci` .

We can simplify this by replacing r2 by 2tr2. This has no effect on the sequences, but changes
L2. Thus we can assume that t = 0, so∑

`∈L1

2`(1 + 2abj1) =
∑
`∈L2

2`(1 + 2acj2)2aci` .

This implies that for each ` ∈ L1 there is an `′ ∈ L2 such that one of the two following cases
holds.

1. ` = `′ + aci`′ : Since 0 ≤ ` < ab < ac, and 0 ≤ `′ < ac, this is only possible if i`′ = 0 and
` = `′. Also, we must have `+ acj2 = `′′ + abj1 for some `′′ ∈ L1. Thus

b− 1 ≥ |(`− `′′)/a| = |bj1 − cj2|. (9)

2. ` ≡ `′ + aci`′ + acj2 (mod a)bcd: This implies ` ≡ `′ (mod a)c. But 0 ≤ ` < ac and
0 ≤ `′ < ac, so ` = `′. We must have i`′ = bd−j2 > bd/2. Then `+aci`′ = `+acb− j2 =
`′′ + abj1 for some `′′ ∈ L1. As in case (1), it follows that

b− 1 ≥ |c(bd− j2)− bj1|. (10)

Note that for each ` ∈ L1, whichever case holds we have ` ∈ L2, i.e., L1 ⊆ L2. These

sets have the same cardinality, so L1 = L2
def
= L, which means that r1 = r2

def
= r. Moreover,

equations (9) and (10) together imply that c(bd − 2j2) ≤ 2(b − 1). But j2 ≤ bd/2 − 1, so
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2c ≤ c(bd− 2j2) ≤ 2(b− 1), i.e., c < b, contrary to our assumption. Therefore either case (1)
holds for every `, or case (2) holds for every `.

If case (1) holds, then
∑
`∈L 2`(1 + 2abj1) =

∑
`∈L 2`(1 + 2acj2) so that

∑
`∈L 2`+abj1 =∑

`∈L 2`+acj2 . Each ` + abj1 and each ` + acj2 is less than abcd, so the sequence of ` +
abj1 (mod a)bcd increases monotonically with `. The same holds for the sequence of `+ acj2.
The only possibility is that, for each `, 2`+abj1 = 2`+acj2 , so abj1 = acj2. The relative primality
of b and c implies that there is a j < d with j1 = cj, and j2 = bj. A similiar argument in
case (2) leads to the equation abj1 = abcd − acj2. This is impossible, since j1 < cd/2 and
j2 < bd/2.

It follows that

s1(x) = Trab1 ((Trnab(γ1x
2 + δ1x

1+2abcj

))r)

= Trac1 ((Trnac(γ2x
2 + δ2x

1+2abcj

))r) (11)

= s2(x).

Let ψ be an element of GF (2abcd) such that

Trnabc(γ1ψ
2 + δ1ψ

1+2abcj

)
def
= β1 6= 0,

and let
Trnabc(γ2ψ

2 + δ2ψ
1+2abcj

)
def
= β2.

Such a ψ must exist since Trnabc(γ1x
2 + δ1x

1+2abcj
) is a nonzero quadratic form. If we restrict

x to be of the form x = ψy, with y ∈ GF (2abc) then equation (11) reduces to

Trab1 ((Trabcab (β1x
2)r) = Trac1 ((Trabcac (β2x

2))r). (12)

Since β1 is nonzero, β2 must also be nonzero. However, the sequence associated with the left
hand side of equation (12) has linear span ab · cwt(r), while the sequence associated with the
right hand side of equation (12) has linear span ac · bwt(r). Since these are equal, the weight
of r must be one. That is, r must be a power of two. 2

It is now straightforward to determine the number of distinct families of (0, j)-QF se-
quences.

Theorem 6.2 Let n be a nonnegative integer. The number NQF of distinct families of (0, j)-
QF sequences of period 2n − 1 is given by

NQF =
φ(2n − 1)

n
·

 ∑
e|n,e>1

φ(e)

2

(
eφ(2n/e − 1)

n
− 1

)
+
φ(n)

2

 ,
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where φ(·) is Euler’s phi function.
If n is not a power of 2, The number N′

QF of distinct families of (0, j)-QF sequences of

period 2n − 1 with correlations in {±q(e+1)/2 − 1,−1} is given by

N′
QF =

φ(2n − 1)

n
·

 ∑
e|n

e>1 odd

φ(e)

2

(
eφ(2n/e − 1)

n
− 1

)
+
φ(n′)

2

 ,
where n′ is the maximal odd divisor of n.

Proof: If α1 and α2 are primitive elements in GF (2n), then they are equivalent for purposes of
generating families of (0, j)-QF sequences if they are in the same Galois coset, i.e., if α2 = α2k

1

for some k. If e|n is chosen with e odd, and 0 ≤ r1, r2 < 2m− 1, then there are φ(e)/2 choices
for j. We say r1 is equivalent to r2, written r1 ∼e r2, if r2 ≡ 2kr1 (mod 2)n/e − 1 for some k.
By Proposition 6.1, a family of (0, j)-QF sequences is uniquely determined by the following:
a choice of Galois coset of primitive elements of GF (2n); a choice of divisor e of n; a choice
of j relatively prime to e; and a choice of ∼e equivalence class r, with r 6∼e 1. In addition,
there is a family of (0, j)-QF sequences for each choice of Galois equivalence class of primitive
elements, each j < n relatively prime to n, and r = 1.

The number of Galois equivalence classes of primitive elements is φ(2n−1)/n. For a given
e, the number of j < e/2 and relatively prime to e is φ(e)/2, and the number of ∼e equivalence
classes is eφ(2n/e − 1)/n, which proves the theorem.

Similar arguments apply in the second case, with e restricted to be odd. 2

7 Tables

The values of NQF and the lower bound on the maximum linear span for the first few n are
summarized in Table (2). The values for the linear span refer to sequences for which the
correlations are bounded by q(e+1)/2 + 1. This means that e is odd. If n is a power of two,
then it has no odd divisors. If n is prime or is twice a prime, then r must be a power of two,
so the lower bound on the linear span is 2n. These values have been omitted from the table.

For the values included, not all families achieve the stated lower bound on the maximum
linear span – this bound is simply the best that can be achieved. Also, for a given n, the
maximum correlation varies as the factorization n = me varies. In fact, there is a tradeoff
between linear span and maximum correlation. For a fixed n, the linear span is large when
e is small and m is large (and wt(r) is large). The maximum correlation, however, exceeds
the square root of the period by about 2m/2 when e is odd, and by about 2m when e is even.
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n Period NQF Max λ(S)
9 511 192 ≥ 288
12 4 095 288 ≥ 2 304
15 32 767 19 800 ≥ 11 520
18 262 143 62 208 ≥ 82 944
20 1 048 575 9 600 ≥ 1 795
21 2 097 151 3 101 748 ≥ 387 072
24 16 777 215 5 840 180 ≥ 2 654 208
25 33 554 431 25 920 000 ≥ 14 670
27 134 217 727 247 947 264 ≥ 11 943 936
28 268 435 455 28 449 792 ≥ 6 591
30 1 073 741 823 17 820 000 ≥ 79 626 240
33 8 589 934 591 61 194 714 240 ≥ 350 355 456
35 34 359 738 367 56 686 248 360 ≥ 864 473
36 68 719 476 735 108 113 522 688 ≥ 2 293 235 712
39 549 755 813 887 7 717 446 434 880 ≥ 9 937 354 752
40 1 099 511 627 775 378 961 920 000 ≥ 6 386 596

Table 2: Distinct Families of (0, j)-QF Sequences of Period 2n− 1 with Minimal
Correlations and Large Linear Span
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m e wt(r) Max. λ(S) Max. Θ No. of Families
1 36 ≤ 1 ≥ 72 219 + 1 6N
2 18 ≤ 1 ≥ 72 220 + 1 3N
3 12 ≤ 2 ≥ 1511 221 + 1 N
4 9 ≤ 3 ≥ 15974 220 + 1 N
6 6 ≤ 5 ≥ 415941 224 + 1 N
9 4 ≤ 8 ≥ 1179648 227 + 1 N
12 3 ≤ 11 ≥ 5314392 224 + 1 N

Table 3: Optimal Families for n = 36 and Various Factorizations of n

Thus the maximum correlation is small when m is small. Making a choice of factorization
n = me depends on which statistic is most important.

Table (3) summarizes the effects of this choice for n = 36. The assumption is that wt(r)
is as large as possible. N denotes the number of distinct Galois cosets of primitive elements
in GF (236). That is, N = φ(236 − 1)/36 = 725, 594, 112. From the table we see that there
are only three reasonable choices, m = 1, 4, or 12. Every other value of m gives a maximum
correlation and linear span that are worse than those given by at least one of these three
values.
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