Chapter 5: Basic Communications Operations

Jun Zhang

Laboratory for High Performance Computing & Computer Simulation
Department of Computer Science
University of Kentucky
Lexington, KY 40506
5.1a: Communication in Parallel System

- **Nearest neighbor communication:** Communication between two directly link nodes

- **Remote node communication:** With more than one links between the communicating nodes
 1. Store-and-forward routing
 2. Cut-through routing
5.1b: Basic Communication Operations

- One to one communication
- One to all communication (broadcasting)
- All to all communication
- All to one communication (reduction)

- These basic communication operations are commonly used on various parallel architectures
- It is crucial that they be implemented efficiently on a particular parallel system
5.1c: Commonly Used Interconnections

- Linear array
- Two-dimensional mesh
- Hypercube
5.1d: Mesh Topology

- A large number of processors can be connected relatively inexpensively with mesh topology.
- Many applications map naturally onto a mesh network.
- The disadvantage of high diameter of mesh topology can be diminished for networks with cut-through routing.
- Several commercially available parallel computers are based on mesh network.
- T3D, SGI, IBM Blue Gene.
5.1e: Hypercube Topology

- The fastest hypercube algorithms are asymptotically as fast as the fastest PRAM algorithms.
- Hypercubes tap maximum concurrency and impose data locality.
- The best hypercube algorithm is also the best for other networks such as fat trees, meshes, and multistage networks.
- Hypercube has an elegant recursive structure that makes it attractive for developing a wide class of algorithms.
5.2a: Basic Assumptions

- Network supports store-and-forward routing and cut-through routing
- The communication links are bidirectional
- Single-port communication model
 One node can only send one message at a time
 It can only receive one message at a time
 Send and receive can be done simultaneously
5.2b: Dual Operations

- A **dual** of a communication is the opposite of the original operation.
- It can be performed by reversing the direction and sequence of messages in the original operation.

E.g., All-to-one communication (reduction) is the dual of one-to-all broadcast.
5.3a: One-to-All Broadcast and All-to-one Reduction (Single Node Accumulation)

- A single process sends identical data to all other processes or to a subset of them e.g., distributing common parameters

- All-to-one reduction: Each of the p participating processes sends a data of size m to be accumulated at a single destination process into one m word data e.g., sum, maximum, inner product, etc.
5.3b: Ring Network

Message of size m at node 0, to be sent to all other nodes in the network

Naïve algorithm
Better algorithm
Fast algorithm
Recursive doubling
5.3c: Mesh Network

One-to-all broadcast in a 2D mesh can be performed in two steps, each step is a one-to-all broadcast using the ring algorithm.
5.3d: Hypercube

Use recursive doubling algorithm

No difference with different routing algorithm
5.3e: Balanced Binary Tree

Only the root nodes are processing nodes, map the hypercube algorithm directly
5.3f: Communication Cost

- If we assume cut-through routing and ignore the per hop time, all one-to-all broadcast communications can be viewed as log p steps of point-to-point communications.

- The communication cost for all networks is the same:

$$T_{comm} = (t_s + t_wm) \log p$$
5.4a: All-to-All Broadcast and Reduction

- **All-to-all broadcast** can be viewed as a generalization of one-to-all broadcast
- All p nodes simultaneously initiate a broadcast
- Each node sends the same m-word message to every other node
- Different node may broadcast different messages
- **Applications** include matrix-multiplication and matrix-vector multiplication
- The dual of all-to-all broadcast is **all-to-all reduction**
- Every node is the destination of an all-to-one reduction
5.4b: Ring and Linear Array

- All-to-all broadcast is achieved by a pipelined point-to-point nearest neighbor communication
- For linear array, bi-directional link is necessary
- For all-to-all reduction, the procedure is reversed, each node needs to perform the operation at each step
- The total communication cost is:

\[T_{ring} = (t_s + t_w m)(p - 1) \]
5.4c: All-to-All on a Ring Network
5.4d: 2D Mesh Network

- All-to-all broadcast algorithm for the 2D mesh is based on the ring algorithm.
- The rows and columns of the mesh are treated as rings in two steps.
- First, each row of the mesh performs an all-to-all broadcast using the ring algorithm, collecting \sqrt{p} messages corresponding to the \sqrt{p} nodes of their respective rows.
- Second, each column performs an all-to-all broadcast, with a single message of size $m\sqrt{p}$.
5.4e: Illustration of 2D Mesh All-to-All
5.4f: Cost of 2D Mesh All-to-All

- In the first phase, the message size is m, the number of links is $(\sqrt{p} - 1)$.
- In the second phase, the message size is $m\sqrt{p}$, and the number of links is $(\sqrt{p} - 1)$.
- The total communication cost is the sum of both phases:

$$t_{comm} = (t_s + twm)(\sqrt{p} - 1) + (t_s + twm\sqrt{p})(\sqrt{p} - 1)$$

$$= 2t_s(\sqrt{p} - 1) + twm(p - 1)$$
5.4g: All-to-All on Hypercube

- The all-to-all broadcast needs $\log p$ steps
- Communication takes place along a different dimension of the hypercube at each step
- At each step, pairs of processors exchange their data
- The size of the message to be transmitted at the next step is doubled by concatenating the received message with their current data
5.4h: All-to-All on Hypercube Illustration
5.4i: Cost of All-to-All on Hypercube

- \(\log p \) steps in which message size doubles at every step
- The total communication cost is:

\[
T_{\text{comm}} = \sum_{i=1}^{\log p} \left(t_s + t_w m 2^{i-1} \right) = t_s \log p + t_w m (p - 1)
\]
5.4j: Comments on All-to-All Broadcast

\[t_w m(p - 1) \]

- This is the lower bound for the communication time of all-to-all broadcast on all network.
- Each node will receive \(m(p-1) \) words of data, regardless of the architecture.
- The hypercube algorithm cannot be mapped to run on the ring network, due to congestion.
- All communication procedures are nearest neighbor communication, there is no difference between cut-through routing and store-and-forward routing.
5.5a: All Reduce Operation

- Each node starts with a buffer of size m.
- Final results of the operation are identical buffers of size m on each node that are formed by combining the original p buffers using an associative operator.
- It can be done by an all-to-one reduction, followed by a one-to-all broadcast.
- All-reduce operation can be used to implement barrier synchronization on a message-passing computer.
5.5b: All-Reduce Implementation

- On a hypercube, one-to-all broadcast and all-to-one reduction cost the same, the total cost of all reduce is:

\[T = 2(t_s + t_{wm}) \log p \]

- By performing an all-to-all broadcast and performing the associative operation after each step at each node, the message size does not increase and the total cost is:

\[T = (t_s + t_{wm}) \log p \]
5.6: Prefix Sum Operation

- Initially, each processor has a data
- Finally, each processor collect the sum of its data and the data from all processors with lower labels
- This operation can be performed by an all-to-all broadcast, with data being summed locally in each processor
- Each processor needs two copies of data, one for its own sum, the other to send out
5.7a: One-to-All Personalized Communication

- The source node starts with p unique messages, one is intended for each node
- One-to-all personalization does not involve any duplication of data
- This operation is commonly called **scatter** operation
- The dual of the scatter operation is the **gather** operation, or **concatenation**
- No reduction operation is performed
5.7b: Implementation of Scatter Operation on Hypercube

- Use all-to-all broadcast procedure with $\log p$ steps
- At each step, the nodes have data send a half of their data to a directly linked node
- Each step, the size of the messages communicated is halved.
- The total communication cost is:

$$T_{comm} = t_s \log p + t_w m(p - 1)$$
5.7c: Illustration of Scatter Operation
5.7d: Scatter Operations for Ring and Mesh

- The hypercube algorithm for one-to-all personalized communication can be mapped to ring and mesh networks with the same cost.
- The gather operation can be performed analogously.
- Note that the communication time lower bound is still:

\[t_{wm}(p - 1) \]
5.8a: All-to-All Personalized Communication

- Each node sends a distinct message of size m to every other node
- This is **not** an all-to-all broadcast operation
- All-to-all personalized communication is also called **total exchange**
- It can be used in fast Fourier transform, matrix transpose, sample sort, etc., applications
5.8b: All-to-All Personalized Communication on Ring Network

- The procedure is the same as the all-to-all broadcast, only the size of the data communicated is changed.

- It uses pipelined communication, each node sends data to its neighboring node in \((p-1)\) steps.

- Each node receives data from its neighboring node, extracts the piece belongs to it, and forwards the remaining part to its neighboring node.

- At the end of the procedure, every node has the same data of ensemble.
5.8c: Illustration of All-to-All Personalized Communication on a Ring

![Ring Diagram]

0 1 2 3 4 5 6 7
5.8d: Cost of All-to-All Personalized Communication

- Note that there are log p steps of nearest neighbor communication
- At each step, the message size is reduced by m words. The total cost is:

$$T_{com} = \sum_{i=1}^{p-1} (t_s + twm(p - i))$$

$$= t_s (p - 1) + \sum_{i=1}^{p-1} i twm$$

$$= (t_s + twm p / 2) (p - 1)$$
5.8e: Optimality in the Ring Algorithm

- Each node sends $m(p-1)$ words of data
- The average distance of communication is $p/2$
- The total traffic on the network is $m(p-1) \times p/2 \times p$.
- The total number of communication link is p
- The lower bound for the communication time is

\[
(t_w \times m(p - 1) \times p^2 / 2) / p = t_w m(p - 1) / 2
\]
5.9a: All-to-All Personalized Communication on a 2D Mesh

- Using the ring algorithm twice, one with respect to the rows, another to the columns
- Each node assembles its message into \sqrt{p} groups of \sqrt{p} messages
- Row operation is performed simultaneously with clustered messages of size $m\sqrt{p}$
- Regroup is required after the row operation, so that regrouped messages are column oriented
5.9b: Illustration of All-to-All Personalized Communication on 2D Mesh
5.9c: Cost of All-to-All Personalized Communication on 2D Mesh

- Use ring algorithm with \(\sqrt{p} \) nodes, and message size of \(m\sqrt{p} \), the time of the first step is:

\[
T_{\text{comm}} = (t_s + t_w mp / 2)(\sqrt{p} - 1)
\]

The column-wise communication step costs the same, so the total cost of all-to-all personalized communication is:

\[
T_{\text{comm}} = (2t_s + t_w mp)(\sqrt{p} - 1)
\]
5.10a: All-to-All Personalized Communication on Hypercube

- Communication takes place in $\log p$ steps
- Each step along a different communication link (different dimension)
- At each step, every node sends $p/2$ of consolidated packets, meant for other half of the hypercube
- Data are re-grouped every step so that appropriate data pieces are sent to the correct nodes
5.10b: Illustration of All-to-All Personalized on Hypercube
5.10c: Cost of All-to-All Personalized Communication on Hypercube

- Log p directly connected node communication
- At each step, a half of the p pieces of data are exchanged
- The total cost is:

$$T_{comm} = (t_s + twmp / 2) \log p$$
5.10d: Non-optimality in Hypercube algorithm

- Each node send $m(p-1)$ words of data
- Average distance of communication $(\log p)/2$
- Total network traffic is $p*m(p-1)*(\log p)/2$
- Total number of links is $(p \log p)/2$
- The lower bound for communication time is

$$T = \frac{t_w p m (p - 1) (\log p) / 2}{(p \log p) / 2} = t_w m (p - 1)$$
5.10e: Optimal Algorithm for All-to-All Personalized Hypercube Communication

- Allows all pairs of nodes exchange some data
- Every pair of nodes directly communicate with each other, with a total of \((p-1)\) steps
- A congestion-free schedule can be used
 1.) At the \(j\)-th step communication, node \(i\) exchanges data with node \((i \text{ XOR } j)\)
 2.) Use E-cube routing scheme to establish communication paths
5.10f: Illustration of Optimal Algorithm
Based on the communication pattern, the cost of the optimal algorithm, with \((p-1)\) pair-wise communication is:

\[
T_{\text{comm}} = (t_s + t_w m)(p - 1)
\]

The startup time term has a larger factor, but the per word time has a smaller factor. For large size message communication, this algorithm is seen to be better.