1. (10 points) There exists a unique polynomial \(p(x) \) of degree 2 or less such that
\(p(0) = 0 \), \(p(1) = 1 \), and \(p'(\alpha) = 2 \) for any value of \(\alpha \) between 0 and 1 (inclusive),
except one value of \(\alpha \), say \(\alpha_0 \). Determine \(\alpha_0 \) and give this polynomial for \(\alpha \neq \alpha_0 \).

2. (10 points) Suppose \(\cos x \) is to be approximated by an interpolating polynomial
of degree \(n \), using \(n + 1 \) equally spaced nodes in the interval \([0,1]\). How accurate
is the approximation? (Express your answer in terms of \(n \).) How accurate is the
approximation when \(n = 9 \)? For what values of \(n \) is the error less than \(10^{-7} \)?

3. (10 points) Establish the formula
\[
f''(x) \approx \frac{2}{h^2} \left[\frac{f(x_0)}{1 + \alpha} - \frac{f(x_1)}{\alpha} + \frac{f(x_2)}{\alpha(\alpha + 1)} \right]
\]
in the following two ways using the unevenly spaced points \(x_0 < x_1 < x_2 \), where
\(x_1 - x_0 = h \) and \(x_2 - x_1 = \alpha h \). Notice that this formula reduces to the standard
central-difference formula in the notes when \(\alpha = 1 \).

(a) Approximate \(f(x) \) by the Newton form of the interpolating polynomial of degree
2.

(b) Calculate the undetermined coefficient \(A \), \(B \), and \(C \) in the expression
\[
f''(x) \approx Af(x_0) + Bf(x_1) + Cf(x_2)
\]
by making it exact for the three polynomials \(1 \), \(x - x_1 \), and \((x - x_1)^2 \) and thus
exact for all polynomials of degree \(\leq 2 \).

4. (10 points) Show that if a function \(g \) interpolates the function \(f \) at \(x_0, x_1, \ldots, x_{n-1} \)
and \(h \) interpolates \(f \) at \(x_1, x_2, \ldots, x_n \), then
\[
g(x) + \frac{x_0 - x}{x_n - x_0}[g(x) - h(x)]
\]
interpolates \(f \) at \(x_0, x_1, \ldots, x_n \).

5. (10 points) Find a polynomial \(p(x) \) of degree at most 3 such that \(p(0) = 1 \), \(p(1) = 0 \),
\(p'(0) = 0 \), and \(p'(-1) = -1 \).

6. (10 points) Use a divided-difference table to show that the following data can be
represented by a polynomial of degree 3:

<table>
<thead>
<tr>
<th>(x)</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td>1</td>
<td>4</td>
<td>11</td>
<td>16</td>
<td>13</td>
<td>-4</td>
</tr>
</tbody>
</table>