Homework 1: CS321, Fall 2014

Answer Sheet

1. Check the binary-octal table, we have

\[(45653.127664)_8 = (100 101 110 101 011.001 010 111 110 110 100)_2\]

For conversion to decimal numbers, we need to treat the integer and fractional parts separately. For the integer part:

\[(45653)_8 = 3 \times 8^0 + 5 \times 8^1 + 6 \times 8^2 + 5 \times 8^3 + 4 \times 8^4\]
\[= 3 + 8(5 + 8(6 + 8(5 + 4(8)))) = (19371)_{10}\]

For the fractional part, we compute

\[(.127664)_8 = 1^{-1} + 2 \times 8^{-2} + 7 \times 8^{-3} + 6 \times 8^{-4} + 6 \times 8^{-5} + 4 \times 8^{-6}\]
\[= (1 \times 8^0 + 2^4 + 7 \times 8^3 + 6 \times 8^2 + 6 \times 8^1 + 4) 8^{-6}\]
\[= ((((((1)8 + 2)8 + 7)8 + 6)8 + 6)8 + 7) 8^{-6}\]
\[= \frac{44980}{262144} = (.17158508...)_{10}\]

Checking the binary-hexadecimal table, we have

\[(C553E000)_{16} = (1100 0101 0101 0011 1110 0000 0000 0000)_{2}\]

Note that this problem is NOT to convert this hexadecimal number to a decimal number. This hexadecimal number is an IEEE 32 bit representation of a binary number.

The first bit is “1”, so this number is negative. The next 8 bits, (10001010)₂, represent the exponent, which is (using the binary-octal table)

\[(010 001 010)_2 = (212)_8 = 2 \times 8^0 + 1 \times 8^1 + 2 \times 8^2 = (138)_{10}\]

Because of the 127 shift convention, the actual exponent is 138 − 127 = 11. It follows that the decimal number is

\[-(1.101 001 111 100)_2 \times 2^{11} = -(110 100 111 110)_2 = -(6476)_8 = -(3390)_{10}\]

2. When \(x\) and \(y\) are machine numbers, they can be stored exactly. However, their operations may result in a number that cannot be stored exactly. We can see that

\[\text{fl}(xy) = xy(1 + \delta_1), \quad \text{with} \quad |\delta_1| \leq 2^{-24}\]
Because xy is computed first, it follows that
\[
\text{fl}((xy)z) = \text{fl}(\text{fl}(xy)z) = \text{fl}(xy(1 + \delta_1)z) = (xy(1 + \delta_1)z)(1 + \delta_2) \\
= xyz(1 + \delta_1)(1 + \delta_2) = xyz(1 + \delta_1 + \delta_2 + \delta_1\delta_2) \\
\approx xyz(1 + \delta)
\]
Here $|\delta_1| \leq 2^{-24}$, $|\delta_2| \leq 2^{-24}$, and $|\delta| = |\delta_1 + \delta_2| \leq |\delta_1| + |\delta_2| \leq 2^{-23}$. We ignored them higher order term $\delta_1\delta_2 \leq 2^{-48}$.

3. This problem just needs you to give an example. First assume your computer works on two (or more) decimal digit arithmetic. Let $a = 0.51$, $b = 0.52$, $c = 0.54$, we have
\[
a + (b + c) = 0.51 + (0.52 + 0.54) = 0.51 + 1.1 = 1.6
\]
Note that $0.52 + 0.54 = 1.06 \approx 1.1$, $0.51 + 1.1 = 1.61 \approx 1.6$, since the computer can only store two decimal digits and will do correct rounding after each step of the computations.
\[
(a + b) + c = (0.51 + 0.52) + 0.54 = 1.0 + 0.54 = 1.5
\]

4. The most important point here is to realize that if a number is divided by 2, it is equivalent to moving the binary point to the right by one position. Thus, the best way to compute the machine ϵ is to set up a loop to check if the identity $1 + \epsilon = 1$ holds, with initially setting $\epsilon = 0.1$. If the identity holds, you exit the loop, otherwise you divide ϵ by 2, i.e., by setting $\epsilon = \epsilon/2$. Note that in binary computation $0.1/2 = 0.01$, moving the binary point to the right by one position, When the loop exits, you get your machine ϵ.

Note that, in order to prevent the code from running indefinitely due to coding error, you may want to set a maximum number of iterations for the loop, and check the value of ϵ to see if it is small upon exit.

5. The computation with double precision will have $f(0.1) = 0.10333 \times 10^{-1}$.

Straightforward evaluation with five decimal digits is
\[
f(0.1) = e^{0.1} - \cos(0.1) - \sin(0.1) = 0.11052 \times 10^1 - 0.99500 - 0.99833 \times 10^{-1} = 0.10367 \times 10^{-1}
\]
The difference is 0.34×10^{-4}. Note that at each step, only five decimal digits are kept.

However, using Taylor series, we have
\[
e^x = 1 + x + \frac{x^2}{2} + \frac{x^3}{3!} + \frac{x^4}{4!} + \frac{x^5}{5!} + \frac{x^6}{6!} + \cdots
\]
\[
\cos x = 1 - \frac{x^2}{2} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots
\]
\[
\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots
\]

so

\[
f(x) = x^2 + \frac{x^3}{3} + \frac{x^6}{2600} + \cdots
\]

Taking the first two terms, we have \(f(0.1) = 0.01 + 0.33333 \times 10^{-3} = 0.10333 \times 10^{-1} \).

Therefore, Taylor series computation yields more accurate result.

6. When \(x \) is large, \(\sqrt{x + 2} \approx \sqrt{x} \), so the direct evaluation of \(f(x) \) will lose significant digits. We can use rationalization to avoid the subtraction of two almost equal numbers.

\[
f(x) = \frac{(\sqrt{x + 2} - \sqrt{x})(\sqrt{x + 2} + \sqrt{x})}{\sqrt{x + 2} + \sqrt{x}} = \frac{2}{\sqrt{x + 2} + \sqrt{x}} \approx \frac{1}{\sqrt{x}}
\]

This rationalization process transforms the subtraction two almost equal numbers into the summation of two almost equal numbers. (The last step of approximation is not necessary).