
Information and Computation 158, 29�52 (2000)

Tally NP Sets and Easy Census Functions

Judy Goldsmith1

Department of Computer Science, University of Kentucky, Lexington, Kentucky 40506

E-mail: goldsmit�cs.uky.edu

Mitsunori Ogihara2

Department of Computer Science, University of Rochester, Rochester, New York 14627

E-mail: ogihara�cs.rochester.edu

and

Jo� rg Rothe3

Institut fu� r Informatik, Friedrich-Schiller-Universita� t Jena, 07740 Jena, Germany
E-mail: rothe�informatik.uni-jena.de

We study the question of whether every P set has an easy (i.e., polyno-
mial-time computable) census function. We characterize this question in
terms of unlikely collapses of language and function classes such as
*P1 �FP, where *P1 is the class of functions that count the witnesses
for tally NP sets. We prove that every *P1

PH function can be computed
in FP*P1

*P1. Consequently, every P set has an easy census function if and
only if every set in the polynomial hierarchy does. We show that the
assumption *P1 �FP implies P=BPP and PH�MODkP for each k�2.
We also relate a set's property of having an easy census function to other
well-studied properties of sets, such as rankability and scalability (the
closure of the rankable sets under P-isomorphisms). Finally, we prove
that it is no more likely that the census function of any set in P can be
approximated (more precisely, can be n:-enumerated in time n; for fixed
: and ;) than that it can be precisely computed in polynomial time.
] 2000 Academic Press

doi:10.1006�inco.1999.2810, available online at http:��www.idealibrary.com on

29 0890-5401�00 �35.00
Copyright � 2000 by Academic Press

All rights of reproduction in any form reserved.

1 Supported in part by NSF Grant CCR-9610348.
2 Supported in part by NSF CAREER Award CCR-9701911.
3 Supported in part by Grants NSF-INT-9513368�DAAD-315-PRO-fo-ab, NSF-CCR-9322513, and

NSF-INT-9815095�DAAD-315-PPP-gu� -ab, and by a NATO Postdoctoral Science Fellowship from the
Deutscher Akademischer Austauschdienst (``Gemeinsames Hochschulsonderprogramm III von Bund
und La� ndern''). Work done in part while visiting the University of Rochester and the University of
Kentucky.

1. INTRODUCTION

Does every P set have an easy (i.e., polynomial-time computable) census function?
Many important properties similar to this one were studied during the past decades
to gain insight into the nature of feasible computation. Among the questions that
were previously studied are the question of whether or not every P set has an
easy-to-compute ranking function [GS91, HR90], whether every P set is
P-isomorphic to some rankable set [GH96], whether every sparse set in P is
P-printable [HY84, AR88, RRW94], whether every infinite set in P has an infinite
P-printable subset [AR88, HRW97a], whether every P-printable set is P-iso-
morphic to some tally set in P [AR88], and whether every P set admits easy
certificate schemes [HRW97a, HRW97b], to name just a few. Some of those questions
arise in the field of data compression and are related to Kolmogorov complexity,
some are linked to the question of whether one-way functions exist.

Extending this line of research, the present paper studies the complexity of
computing the census functions of sets in P. Census functions have proven to be a
particularly important and useful notion in complexity theory, and their use has
had a profound impact upon almost every area of the field. In particular, consider
the extensive literature related to the isomorphism conjecture of Berman and
Hartmanis (e.g., [BH77, Mah82], and many other papers), the work on the
existence of Turing-hard sparse sets (or of polynomial-size circuits) for various
complexity classes (e.g., [KL80, KS85, BBS86, HR97]), the results relating the
computation times for NP sets to their densities and the results on P-printability
[HY84, AR88, RRW94, GH96], the upward separation technique (e.g., [Har83,
HIS85, All91, RRW94, HJ95]; see [HHH99] for more recent advances that are not
based on census functions), the results on positive relativization and relativization
to sparse oracles (e.g., [Lon85, LS86, BBS86]), the unexpected collapse of the
strong exponential-time hierarchy [Hem89], and applications to extended lowness
[HJRW98].

Valiant, in his seminal papers [Val79a, Val79b], introduced *P, the class of
functions that count the solutions of NP problems, and its tally version *P1 for
which the inputs are given in unary. Although *P1 has not become as prominent
as *P, it contains a number of quite interesting and important problems such as
the problem Self-Avoiding Walk (see [Wel93]): Given an integer n in unary,
compute the number of self-avoiding walks on the square lattice having length n
and rooted at the origin. Self-Avoiding Walk is a well-known classical problem
of statistical physics and polymer chemistry, and it is an intriguing open question
whether Self-Avoiding Walk is *P1 -complete (see [Wel93]). Known
problems complete for *P1 [Val79b] have the form: Given an integer n in unary,
compute the number of graphs having n vertices and satisfying a fixed graph
property ?.

In Section 3, we will characterize the question of whether every P set has an easy
census function in terms of collapses of language and function classes that are con-
sidered to be unlikely. In particular, every P set has an easy census function if and
only if *P1 �FP. The main technical contribution in Section 3 is Theorem 3.7:
*P1

PH is contained in FP*P1
*P1. An immediate consequence of this result are

30 GOLDSMITH, OGIHARA, AND ROTHE

upward collapse results of the form: The collapse *1 } P�FP implies the collapse
*1 } PH�FP. Thus, every P set has an easy census function if and only if every
set in the polynomial hierarchy has an easy census function. Note that the corre-
sponding upward collapse for the * operator applied to the levels of PH follows
immediately from the upward collapse property of the polynomial hierarchy itself:
* } P�FP implies NP=P and, thus, PH=P; so, * } PH=* } P�FP. However,
for the *1 operator this upward collapse property is not so clear, since the assump-
tion *1 } P�FP merely implies that all tally NP sets are in P (equivalently,
NE=E), from which one cannot immediately conclude that *1 } PH or even
*1 } NP is contained in FP. In fact, Hartmanis, Immerman, and Sewelson [HIS85]
show that in some relativized world, NE=E and yet the (weak) exponential-time
hierarchy does not collapse. In light of this result, it is quite possible that the
assumption of all tally NP sets being in P does not force all tally sets from higher
levels of the polynomial hierarchy into P.

We also show that the assumption *P1 �FP implies both P=BPP and PH�
MODkP for each k�2 (Theorem 3.6). We also relate a set's property of having an
easy census function to other well-studied properties of sets, such as rankability
[GS91] and scalability [GH96]. In particular, though every rankable set has an
easy census function, we show in Theorem 3.2 that (even when restricted to the sets
in P) the converse is not true unless P=PP. Thus, Theorem 3.2 expands the result
of Hemaspaandra and Rudich that every P set is rankable if and only if P=PP
[HR90] by showing that P=PP is already implied by the apparently weaker
hypothesis that every P set with an easy census function is rankable.

Cai and Hemaspaandra [CH89] introduced the notion of enumerative counting
as a way of approximating the value of a *P function deterministically in poly-
nomial time. Hemaspaandra and Rudich [HR90] show that every P set is
k-enumeratively rankable for some fixed k in polynomial time if and only if
*P=FP. They conclude that it is no more likely that one can enumeratively rank
all sets in P than that one can exactly compute their ranking functions in polyno-
mial time. In Section 4, we similarly characterize the question of whether every P
set has a census function that is n:-enumerable in time n ; for fixed constants : and
; (equivalently, whether every *P1 function is n:-enumerable in time n;). We show
that this hypothesis implies *P1 �FP, and we conclude that it is no more likely
that one can n:-enumerate the census function of every P set in time n; than that
one can precisely compute its census function in polynomial time.

Finally, Section 5 provides a number of relativization results.

2. NOTATION AND DEFINITIONS

Fix the alphabet 7=[0, 1]. 7* denotes the set of all strings over 7, and 7+=
7*"[=], where = denotes the empty string. For any string x # 7*, we denote the
length of x by |x|. For any set L�7*, the number of strings in L is denoted |L| ,
and the complement of L in 7* is denoted L� . Let L=n (resp. L�n) denote the set
of strings in L of length n (resp. of length at most n). As a shorthand, we use 7n

to denote (7*)=n. For any set L, the census function of L, censusL : 7* � N, is

31TALLY NP SETS AND EASY CENSUS FUNCTIONS

defined by censusL(1n) =
df

|L=n|,4 and /L denotes the characteristic function of L;
i.e., /L(x)=1 if x # L and /L(x)=0 if x � L. A set S is said to be sparse if there is
a polynomial p such that for each length n, censusS(1n)�p(n). A set T is said to
be tally if T�[1]*. To encode pairs of strings, we use a one-to-one, onto pairing
function (} , }): 7*_7* � 7* that is computable and invertible in polynomial
time; this pairing function is extended to encode m-tuples of strings as is standard.
For convenience, we will sometimes write m-tuples of strings x1 , x2 , ..., xm # 7*
explicitly as x1*x2 * } } } *xm , using a special separating symbol * not in 7. We
let � denote the standard lexicographic order on 7*.

The definition of Turing machines and their languages, Turing transducers and
the functions they compute, relativized (i.e., oracle) computations, (relativized)
complexity classes, etc. is standard in the literature (see, e.g., the textbooks [HU79,
BC93, Pap94]). We briefly recall the complexity classes most important in this
paper. FP denotes the class of polynomial-time computable functions. FP1 is
the class of functions computable in polynomial time by deterministic transducers
with a unary input alphabet. FE is the class of functions that can be computed by
deterministic transducers running in time 2cn for some constant c.

Let E =
df

�c>0 DTIME[2cn] and NE =
df

=�c>0 NTIME[2cn]. An unambiguous
Turing machine is a nondeterministic Turing machine that on each input has at
most one accepting path. UP [Val76] (respectively, UE) is the class of all
languages accepted by some unambiguous Turing machine running in polynomial
time (respectively, in time 2cn for some constant c).

For any nondeterministic Turing machine M and any input x # 7*, let accM(x)
denote the number of accepting computation paths of M(x). A spanP machine
[KST89] is an NP machine that has a special output device on which some output
is printed for each accepting path. For any spanP machine M and any input x # 7*,
spanM(x) is defined to be the number of distinct outputs of M(x) if M(x) has at least one
accepting path, and 0 otherwise. A tally NP machine (respectively, a tally spanP
machine) is an NP (respectively, a spanP) machine with a unary input alphabet.

Definition 2.1. 1. [Val79a, Val79b]. *P =
df [accM | M is an NP machine].

2. [Val79b]. *P1 =
df [accM | M is a tally NP machine].

3. [KST89]. spanP =
df [spanM | M is a spanP machine].

4. spanP1 =
df [spanM | M is a tally spanP machine].

5. *E =
df [accM | M is an NE machine].

6. [MS72, Sto77]. The polynomial hierarchy is inductively defined by
7 p

0 =
df

P, 7 p
k =

df
NP7

p
k&1 for k�1, and PH =

df
�i�0 7 p

i .

7. [Gil77]. PP is the class of languages L for which there exist a set A in P
and a polynomial p such that for all strings x # 7*,

x # L � |[y | | y|= p(|x|) and (x, y) # A] |�2 p(|x|)&1.

32 GOLDSMITH, OGIHARA, AND ROTHE

4 The census function of L at n is often defined as the number of elements in L of length up to n in
the literature. This definition and our definition are compatible, as long as our computability admits sub-
traction. We also note that we let censusL map strings 1n (as opposed to numbers n in binary notation)
to |L=n| to emphasize that the input to the transducer computing censusL is given in unary.

8. [Gil77]. BPP is the class of languages L for which there exist a set A in
P and a polynomial p such that for all strings x # 7*,

x # L O |[y | | y|= p(|x|) and (x, y) � A]|�2 p(|x|)&2;

x � L O |[y | | y|= p(|x|) and (x, y) # A]|�2 p(|x|)&2.

9. [CH90, Her90, BG92]. For any fixed k�2, MODkP is the class of
languages L for which there exist a set A in P and a polynomial p such that for all
strings x # 7*,

x # L � |[y | | y|= p(|x|) and (x, y) # A] |�0 mod k.

If k=2, we write �P (introduced in [PZ83, GP86]), instead of MOD2 P.

10. [OH93, FFK94]. SPP is the class of languages L for which there exist a
set A in P and a polynomial p such that for all strings x # 7*,

x # L O |[y | | y|= p(|x|) and (x, y) # A]|=2 p(|x|)&1+1;

x � L O |[y | | y|= p(|x|) and (x, y) # A]|=2 p(|x|)&1.

11. [KL80]. For any language class C, let C�poly be the class of all
languages L for which there exist a set A # C, a polynomial p, and an advice func-
tion h: 7* � 7* such that for each length n, |h(1n)|= p(n), and for every x # 7*,
x # L if and only if (x, h(1 |x|)) # A. For any function class F, let F�poly be the
class of all functions g for which there exist a function f # F, a polynomial p, and
an advice function h: 7* � 7* such that for each length n, |h(1n)|= p(n), and for
every x # 7*, g(x)= f ((x, h(1 |x|))).

We will use the common operator notation at times in order to generalize
function classes such as *P and *P1 .

Definition 2.2. For any language class C, define the function classes * } C and
*1 } C as follows:

1. * } C is the class of functions f : 7* � N for which there exist a set A # C

and a polynomial p such that for each x # 7*,

f (x)=|[y | | y|= p(|x|) and (x, y) # A]|.

2. *1 } C is the class of functions f : 7* � N for which there exist a set A # C

and a polynomial p such that for each n # N,

f (1n)=|[y | | y|= p(n) and (1n, y # A)]|.

As stated below, both operators, * and *1 , are monotonic. Since this property
follows immediately from the definitions, we omit the proof of the following
proposition.

33TALLY NP SETS AND EASY CENSUS FUNCTIONS

Proposition 2.3. Let C and D be any classes of sets.

1. If C�D, then * } C�* } D.

2. If C�D, then *1 } C�*1 } D.

Next, we gather some easy observations regarding equivalent formulations of the
classes *PPH and *P1

PH to be used in Section 3. Analogs of Proposition 2.4 for
classes other than PH as the oracle class could be stated as well; we focus here on
the class of interest to us.

For any language class C, we write PC[1] to indicate that on every input in the
PC computation at most one call to the C oracle is allowed. Similarly, for any func-
tion class F, we write PF[1] to indicate that on every input in the PF computation
at most one call to the function oracle from F is allowed.

Proposition 2.4. Three statements are true:

1. PPH=PPH[1].

2. *1 } PPH=*1 } PPH[1]=*1 } PH=*P1
PH[1]=*P1

PH.

3. * } PPH=* } PPH[1]=* } PH=*PPH[1]=*PPH.

Proof. Part 1 follows immediately from the fact that PH is closed under polyno-
mial-time Turing reductions. That is,

PPH�PH�PPH[1]�PPH;

so, the above inclusions are equalities.

Part 2. From the proof of part 1 and the monotonicity of the *1 operator
(see Proposition 2.3), we have the first two equalities: *1 } PPH=*1 } PPH[1]=
*1 } PH.

To see that *1 } PH�*P1
PH[1], let f # *1 } PH be witnessed by a set A # PH

and a polynomial p; i.e., for each n # N,

f (1n)=|[y | | y|= p(n) and (1n, y # A)]|.

Consider the following tally NP oracle machine M. On input 1n, M with oracle A
guesses a string y of length p(n), and for each y guessed, M accepts if and only if
(1n, y) # A. Hence, f # *P1

PH[1].
Since *P1

PH[1]�*P1
PH, it remains to show that *P1

PH�*1 } PH. Let
f # *P1

PH be witnessed by a tally NP oracle machine M with oracle A # PH; i.e.,
f =accMA . We assume that all computation paths of M on input 1n are encoded as
strings in [0, 1] p(n) for some polynomial p, where the oracle queries that are asked
on such a path and the corresponding answers are part of the encoding string.
Define B to be the set of all strings (1n, y) such that

v n # N,

v y # [0, 1] p(n) encodes an accepting computation path of M A(1n) with oracle
queries q1 , q2 , ..., qk , and

34 GOLDSMITH, OGIHARA, AND ROTHE

v for each i with 1�i�k, MA(1n) on path y proceeds in the ``yes'' state if and
only if qi # A.

It follows that B # PH and that for each n # N,

f (1n)=|[y | | y|= p(n) and (1n, y # A)]|.

Hence, f # *1 } PH, completing the proof of part 2.
The proof of part 3 is analogous to the proof of part 2. K

Definition 2.5. 1. A bijection ,: 7* � 7* is a P-isomorphism if , is com-
putable and invertible in polynomial time.

2. A P-isomorphism , is length-preserving if for all x # 7*, |,(x)|=|x|.

3. A P-isomorphism , mapping set A�7* to set B�7* is order-preserving
if for any two strings x and y satisfying either x, y # A or x, y � A, if x� y then
,(x)�,(y).

Definition 2.6 [GS91]. The ranking function of a language A�7* is the func-
tion r: 7* � N that maps each x # 7* to |[y�x | y # A]|. A language A is rankable
if its ranking function is computable in polynomial time.

Goldsmith and Homer [GH96] introduced the property of scalability, a more
flexible notion than rankability in which the rank of some given element within the
set is not necessarily determined with respect to the lexicographic order of 7*, but
rather with respect to any well-ordering of 7* that can be ``scaled'' by a polyno-
mial-time computable and polynomial-time invertible bijection between N and 7*.
Equivalently, the scalable sets are precisely those that are P-isomorphic to some
rankable set [GH96]. The definition below is based on this characterization.

Definition 2.7 [GH96]. A language A is scalable if it is P-isomorphic to a
rankable set. For any oracle X, the X-scalable sets are those that are PX-isomorphic
to some set rankable in FPX.

3. DOES P HAVE EASY CENSUS FUNCTIONS?

We start by exploring the relationships between the properties of a set being
rankable, being scalable, and having an easy census function. Let A be any set (not
necessarily in P). Consider the following five conditions:

(i) A is rankable.

(ii) A has an easy census function.

(iii) A is P-isomorphic to some rankable set (i.e., A is scalable).

(iv) A is P-isomorphic to some rankable set via some length-preserving
isomorphism.

(v) A is P-isomorphic to some rankable set via some order-preserving
isomorphism.

35TALLY NP SETS AND EASY CENSUS FUNCTIONS

It is immediately clear that for any set A, (i) implies each of (ii), (iv), and (v),
and each of (iv) and (v) implies (iii). The next proposition shows that the rankable
sets are closed under order-preserving P-isomorphisms (thus, conditions (i) and (v),
in fact, are equivalent) and that the class of sets having an easy census function is
closed under length-preserving P-isomorphisms. The latter fact immediately gives
that (iv) implies (ii), since every rankable set has an easy census function. The
inclusion structure of the sets in P satisfying properties (i) through (iv) is given in
Fig. 1.

Proposition 3.1. Two statements are true:

1. The class of all rankable sets is closed under order-preserving P-isomorphisms.

2. The class of sets having an FP-computable census function is closed under
length-preserving P-isomorphisms.

Proof. (1) Let A be P-isomorphic to a rankable set, B, via some order-
preserving isomorphism, ,. Since B is rankable, B� is rankable. Let respectively r
and r� be the ranking functions for B and B� . For any string x # 7*, let lex(x) denote
the lexicographic order of x, i.e., the number of strings w # 7* with w�x. Define
the function

r$(x) =
df {r(,(x))

lex(x)&r� (,(x))
if x # A,
if x � A.

Clearly, r$ is computable in polynomial time and r$ is the ranking function for A.

FIG. 1. Inclusion structure of the sets in P satisfying properties (i) through (iv).

36 GOLDSMITH, OGIHARA, AND ROTHE

(2) Let A be P-isomorphic to a set B via some length-preserving isomorphim
,, let censusB # FP. Then, for each n, ,(A=n)=B=n. Thus, censusA=censusB , which
implies censusA # FP. K

So we are left with only the four conditions (i) to (iv). Since there are nonrecur-
sive sets with an FP-computable census function, but any set satisfying one of (i),
(iii), or (iv) is in P, condition (ii) in general cannot imply any of the other three
conditions. On the other hand, when we restrict our attention to the sets in P
having easy census functions, we can show that (ii) implies (i) if and only if P=PP.
Thus, even when restricted to P sets, it is unlikely that (ii) is equivalent to (i).

Theorem 3.2. All P sets with an easy census function are rankable if and only if
P=PP.

Proof. Hemaspaandra and Rudich [HR90] show that P*P=P if and only if
every P set is rankable. Noticing that P=PP is equivalent to P*P=P, this result
in particular implies that every P set with an easy census function is rankable if
P=PP.

Conversely, assume that every P set with an easy census function is rankable. We
show that this assumption implies P=PP. Let L be any set in PP, and let A be a
set in P and let p be a polynomial such that for all x # 7*:

x # L � |[y | | y|= p(|x|) and x*y # A]|�2 p(|x|)&1.

Define

T =
df [b*x*y | x, y # 7*, | y|=p(|x|), b # [0, 1], and /A(x*y)=b].

Clearly, T # P. Also, the census function of T is easy to compute: Given n in unary,
compute the largest integer i such that i+ p(i)+3�n. Then,

censusT (1n)={2i+ p(i)

0
if i+p(i)+3=n
if i+p(i)+3<n.

Since T # P and censusT # FP, our hypothesis implies that T is rankable. Let r be
the ranking function for T. For each x # 7+, let x̂ denote the lexicographic prede-
cessor of x. Note that, for each x # 7+, r(0*x*1 p(|x|))&r(1*x̂*1 p(|x̂|)) gives the
number of strings y of length p(|x|) such that x*y � A. Hence, for each x # 7+,

x # L � r(0*x*1 p(|x|))&r(1*x̂*1 p(|x̂|))�2 p(|x|)&1.

Since the predicate on the right-hand side of the above equivalence can be decided
in polynomial time, it follows that L # P. K

Corollary 3.3. All P sets are rankable if and only if all sets in P with an easy
census function are rankable.

One might ask whether or not all P sets outright have an easy census function
(which, if true, would make Corollary 3.3 trivial). The following characterization of
this question in terms of unlikely collapses of certain function and language classes

37TALLY NP SETS AND EASY CENSUS FUNCTIONS

suggests that this probably is not true. Thus, Corollary 3.3 is nontrivial with the
same certainty with which we believe that for instance not all *P1 functions are in
FP.5

Theorem 3.4. Five statements are equivalent:

1. Every P set has an FP-computable census function.

2. *P1 �FP.

3. *E=FE.

4. P*P1=P.

5. For every language L accepted by a logspace-uniform depth 2 AND-OR
circuit family of bottom fan-in 2, censusL is in FP.

Proof. To show that (1) implies (2), let f be any function in *P1 . Let M be
some tally NP machine with accM= f. Assume that M runs in time nk, for some
constant k. Define

A =
df [x | |x|=nk for some n and x encodes an accepting path of M(1n)].

Clearly, A is in P (note that n can be found in polynomial time, since computing
the k th root of some integer can be done in polynomial time). Now, from our
hypothesis it follows that censusA is in FP, and since censusA=accM , we have
f # FP.

Conversely, let A be an arbitrary set in P. Define M to be the tally NP machine
that, on input 1n, guesses an x # [0, 1]n, and for each x guessed, accepts along the
path for x if and only if x # A. Then, accM=censusA . Since by hypothesis
accM # FP, it follows that censusA # FP.

The equivalence of (2) and (3) can be proven by means of standard translation��
this is essentially the function analog of Book's result that every tally NP set is in
P if and only if NE=E [Boo74]; see [Har83, HIS85] for the extension of this
result to sparse sets.

The equivalence of (2) and (4) is straightforward.
It is easy to see that (2) implies (5). In order to prove that (5) implies (2), note

that computing the number of satisfying assignments for monotone 2CNF formulas
is complete for *P [Val79b] under logspace reductions. Now, given a function f
in *P1 , there exist logspace computable functions R, S, \ such that for all n, R(1n)
is a monotone 2CNF formula with \(1n) variables, and f (1n) equals the number of
satisfying assignments for R(1n) divided by S(1n). The reduction R can be modified
so that for every n, \(1n+1)>\(1n). Now let Cm be the circuit defined as follows:
(a) if m=\(1n) for some n, then Cm is a depth 2 AND-OR circuit that tests whether
an assignment, given as the input, satisfies R(1n); (b) if not, Cm is a depth 1 AND
circuit that rejects all inputs. This circuit family F=[Cm]m�1 is logspace-uniform. Now

38 GOLDSMITH, OGIHARA, AND ROTHE

5 It is not difficult to construct��by standard techniques��an oracle relative to which *P1 �3 FP. On
the other hand, we will show in Section 5 that, relative to some oracle, *P1 �FP, yet *P{FP (and
thus, PP{P).

let A be the language accepted by F. Then, for every n, f (1n)=censusA(1 \(1n))�S(1n).
Thus, (5) implies that f # FP. K

Theorem 3.4 can as well be stated for more general classes than *P1=*1 } P. In
particular, this comment applies to *1 } C, where for instance C=NP or C=PH.
Noticing that spanP1=*1 } NP and focusing on the first two conditions of
Theorem 3.4, this observation is exemplified as follows.

Theorem 3.5. Two statements are true:

1. Every NP set has an FP-computable census function if and only if
spanP1 �FP.

2. Every set in PH has an FP-computable census function if and only if
*1 } PH�FP.

We will show later that the conditions of Theorem 3.4 in fact are equivalent to
the two conditions stated in either part of Theorem 3.5.

We now give two more consequences of the assumption *P1 �FP.

Theorem 3.6. If *P1 �FP, then two statements are true:

1. For any fixed k�2, PH�MODkP.

2. P=BPP.

Proof. Suppose *P1 �FP. In order to prove the first part, note that if a
natural number k�2 has prime factorization of the form pe1

1 } } } pet
t , then MODk P=

[L1 & } } } & Lt | L1 # MODp1
P, ..., Lt # MODpt

P] [Her90, BG92]. Thus it suffices
to show that for every prime k�2, PH�MODkP.

We claim that for every prime k�2, each language in PH belongs to
MODkP�poly with an advice function in FP*P[1]. To prove the claim, let L be any
language in PH and k�2 be any prime number. Toda and Ogihara [TO92] prove
that some A # MODkP witnesses that L # MODk P�poly, together with some poly-
nomially length-bounded advice function. Fix such an A and define

B =
df [(1n, w) | n�1 and for every x, |x|=n, x # L if and only if (x, w) # A].

Define f to be the function that for each n, maps 1n to the lexicographically smallest
string w such that (1n, w) # B. Since L # PH and A # MODkP, B belongs to
coNPPH _ MODk P, which is included in PHMODk P. Then f is total and f # FPNPB

�
FPPHMODk P

. Toda and Ogihara show that PHMODkP�BPPMODk P. A part of the
proof of Toda's theorem [Tod91] shows BPP�P�P*P[1]. By following the same
argument one can show that for every prime k�2, BPPMODk P�P*P[1], complet-
ing the proof of the claim.

Since f can be computed in FP*P[1], the set

[(1n, i, b) | n�1, b # [0, 1], and the i th bit of f (1n) is b]

39TALLY NP SETS AND EASY CENSUS FUNCTIONS

can be decided in polynomial time with one query to a suitable function h in *P.
Let qn, i be the string that is queried on input (1n, i, b). Define a *P1 function g
by

g(1n) =
df (h(qn, 1), h(qn, 2), ..., h(qn, p(n))) ,

where p is a polynomial bounding the length of the advice and the value of g(1n)
is viewed as a number written in binary. One query to g will allow us to compute
f ; i.e., f # FP1

*P1[1].
Applying our supposition *P1 �FP, we conclude that f can be computed in

polynomial time. Since L is in MODkP�poly with polynomial-time computable
advice, it follows that L # MODk P. Hence, PH�MODkP.

In order to prove the second part, note that BPP�P�poly [Adl78] and
BPP�PH [Sip83, Lau83]. By following the proof of the first part with P in place
of Modk P we obtain that BPP�P. K

Now we show that the conditions of Theorem 3.4 in fact are equivalent to the
two conditions stated in either part of Theorem 3.5. To this end, we establish the
following theorem, which is interesting in its own right. Theorem 3.7 is the main
technical contribution in this section.

Theorem 3.7. *P1
PH�FP*P1

*P1.

Before we turn to the proof of Theorem 3.7, we discuss some issues related to this
result.

First, we stress that Theorem 3.7 is a novel insight and does not trivially follow
from known results. In particular, Toda's result that PH�P*P[1] does not imply
Theorem 3.7 in any obvious way. Note that Toda's theorem does imply the follow-
ing two inclusions6:

*P1
PH�*P1

*P[1]; (1)

*PPH�*P*P[1]. (2)

Observe, however, that the oracles on the right-hand sides of the inclusions (1) and
(2) are *P functions. In contrast, Theorem 3.7 establishes containment of *P1

PH

in a class in which only *P1 oracles occur. Although our proof also applies the
techniques of Toda [Tod91] and Toda and Ogihara [TO92], our result seems to
be incomparable with the above consequence (1) of Toda's theorem.

Second, can Theorem 3.7 be strengthened to FPPH or even *PPH being con-
tained in FP*P1

*P1? We note that the containment FPPH�FP*P1
*P1 appears to be

unlikely, since it would imply that FPPH�FP�poly. In turn, the assumption
FPPH�FP�poly implies that the polynomial hierarchy has polynomial-size circuits

40 GOLDSMITH, OGIHARA, AND ROTHE

6 From part 1 of Proposition 2.4 and from Toda's Theorem, we have PPH=PPH[1]�PP*P[1][1]=
P*P[1]. The inclusions (1) and (2) now follow from Proposition 2.3, the equalities *1 } PPH=*P1

PH

and * } PPH=*PPH from parts 2 and 3 of Proposition 2.4, and the similar observations that
*1 } P*P[1]=*P1

*P[1] and * } P*P[1]=*P*P[1].

and, thus, collapses by the result of Karp and Lipton [KL80]. In contrast, the
inclusion FP1

PH�FP1 �poly, which indeed does follow from Theorem 3.7, merely
implies that all tally sets in PH have polynomial-size circuits, a true statement that
has no unlikely consequences. Indeed, P�poly is known to contain all tally sets and
even the Turing closure of the sparse sets.

Third, we mention that Theorem 3.7, nonetheless, can be strengthened. Note that
our proof below will make use of Toda and Ogihara's [TO92] result that PH�
�P�poly. Since Toda and Ogihara [TO92] also showed that �PPH�poly=
�P�poly, and so �PPH��P�poly, Theorem 3.7 and its corollaries could be
stated even with PH replaced by �PPH. However, we focus on the PH case, as this
is a more natural and more central class.

Now, we turn to the proof of Theorem 3.7.

Proof of Theorem 3.7. Let f be any function in *P1
PH. By part 2 of Proposi-

tion 2.4, *P1
PH=*1 } PH. Thus, there exist a set L� # PH and a polynomial p̂ such

that for each length n, f (1n)=|[y # [0, 1] p̂(n) | 1n*y # L�]|.
Before we proceed with the proof, a technical point needs to be discussed. For

the calculations in the final paragraph of this proof, it would be useful to have a
polynomial p̂ satisfying that for each n, log p̂(n) is an integer; i.e., p̂(n) is a power of
two. Since that cannot be assumed in general, we define a function p: N � N as
follows. For each n, p(n) is the smallest power of 2 such that p̂(n)�p(n). Since for
every integer there is a power of 2 that is at most double that integer, we have p(n)�
2p̂(n); so, p still is polynomially bounded in n. Define a padded version L of L� by

L =
df [1n*yw | n # N7 | y|= p̂(n) 7 1n*y # L� 7w=0 p(n)& p̂(n)].

It follows that L # PH and for each length n, f (1n)=|[y # [0, 1] p(n) | 1n*y # L]|.
By Toda and Ogihara's result that PH��P�poly [TO92], there exist a set

A # �P, an advice function h: 7* � 7*, and a polynomial q such that for each
length m and each x of length m, it holds that |h(1m)|=q(m), and x # L if and only
if (x, h(1m)) # A. By the argument given in the proof of Theorem 3.6, h is com-
putable in FP1

*P1[1]. Let M be a machine witnessing that A # �P, i.e., for every
string z, z # A if and only if accM(z) is odd.

Toda [Tod91] defined inductively the sequence of polynomials: For each j # N,
define s0(j) =

df j, and for each j # N and i>0, define

si (j) =
df

3(si&1(j))4+4(si&1(j))3.

One very useful property of this sequence of polynomials is that for all i, j # N, it
holds that si (j)=cj } 22i

for some cj # N if j is even, and si (j)=d j } 22i
&1 for some

dj # N if j is odd; see Toda [Tod91] for the induction proof.
We describe a polynomial-time oracle transducer T that, on input 1n, invokes its

*P1
*P1 function oracle g on 1n, receives the number g(1n) written in binary, and

then prints in binary the number f (1n). Formally, function g is defined by

g(1n) =
df

:
y # [0, 1] p(n)

(sln
(accM((1n*y, h(1n+1+ p(n))))))2,

where ln =
df

log p(n).

41TALLY NP SETS AND EASY CENSUS FUNCTIONS

Intuitively, the fact that g is in *P1
*P1 follows from the properties of the Toda

polynomials, from the closure of *P under strong sum and product,7 and from the
fact that advice function h is computable in FP1

*P1[1].
More formally, to show that g # *P1

*P1, we describe a tally NP oracle machine
G and a *P1 oracle ĝ for G such that, for every n, the number of accepting paths
of G on input 1n with oracle ĝ equals g(1n). On input 1n, G first gets the advice
string an=h(1n+1+ p(n)) of length q(n+1+ p(n)) via one call to some appropriate
*P1 oracle, call it ĝ. This is possible by the argument given in the proof of
Theorem 3.6, which shows how to construct ĝ. Then, G guesses a string y of length
p(n), and for each y guessed it proceeds as follows. For fixed n and y of length p(n),
let jn, y be a shorthand for accM((1n*y, an)). Note that, for given n and y of length
p(n), (sln

(jn, y))2 is a polynomial in jn, y of degree 22ln+1, which is polynomial in n.
Also, the coefficients of the polynomial (sln

(jn, y))2 are deterministically computable
in time polynomial in n; see Toda [Tod91]. Since accM # *P and *P is closed
under strong sum and product (see Footnote 7), the function mapping (1n*y, an)
to (sln

(jn, y))2 is in *P. Let G� be an NP machine witnessing that this function is
in *P. Then, G on input 1n can for each guessed y produce exactly (sln

(jn, y))2

accepting paths by simulating G� on input (1n*y, an) . Again using the closure of
*P under strong sum, it follows that g # *P1

*P1, as claimed.
By the above properties of the Toda polynomials, it follows that for each n and

for each y of length p(n), if jn, y is even then sln
(jn, y)=cjn, y

} 22ln for some cjn, y
N,

and if jn, y is odd then sln
(jn, y)=djn, y

} 22ln&1 for some d jn, y
N.

Thus, recalling that 2ln= p(n), we have

jn, y is even O (sln
(jn, y))2=(cjn, y

2 } 2 p(n)&1) 2 p(n)+1,

jn, y is odd O (sln
(jn, y))2=(djn, y

2 } 2 p(n)&1&djn, y
) 2 p(n)+1+1.

Defining the integer-valued functions

ĉ(n, y) =
df c jn, y

2 } 2 p(n)&1 and

d� (n, y) =
df d jn, y

2 } 2 p(n)&1&d jn, y
,

we obtain

(sln
(jn, y))2={ ĉ(n, y) } 2 p(n)+1

d� (n, y) } 2 p(n)+1+1
if jn, y is even
if jn, y is odd;

that is, the value of (sln
(jn, y))2 is a multiple of either 2 p(n)+1 or 2 p(n)+1+1, depend-

ing on the parity of jn, y . Since f (1n)�2 p(n) and since jn, y is odd if and only if
1n*y # L, the rightmost p(n)+1 bits of the binary representation of g(1n) represent
the value of f (1n). Hence, after the value g(1n) has been returned by the oracle, T

42 GOLDSMITH, OGIHARA, AND ROTHE

7 That *P is closed under strong sum and product means the following: If f # *P and q is a polyno-
mial, then the functions sum(x) =

df
� | y|�q(|x|) f ((x, y)) and prod(x) =

df
>0� y�q(|x|) f ((x, y)) both are

in *P. We refer to the work of Fenner et al. [FFK94] for a proof of this claim.

can output f (1n) by printing the p(n)+1 rightmost bits of g(1n). This completes the
proof. K

Since *P1 �FP implies FP*P1
*P1�FP, we have from Theorem 3.7 the following

corollary.

Corollary 3.8. *P1 �FP if and only if *P1
PH�FP, and in particular,

*P1 �FP if and only if spanP1 �FP.

Corollary 3.8, together with the equivalences of Theorems 3.4 and 3.5, gives the
following corollary.

Corollary 3.9. Every P set has an easy census function if and only if every set
in PH has an easy census function.

Ko� bler et al. [KST89] proved that spanP=*P if and only if NP=UP. Their
proof also establishes the analogous result for tally sets:

Lemma 3.10 (Implicit in [KST89]). Every tally NP set is in UP if and only if
spanP1=*P1 .

Using Lemma 3.10, we now show that spanP1 and *P1 are different classes
unless NE=UE, or unless every sparse set in NP is low for SPP. A set S is said
to be C-low for some class C if C S=C; see, e.g., [Sch83, KS85, Sch87, KSTT92]
for a number of important lowness results. In particular, it is known that every
sparse NP set is low for PNP [KS85] and for PP [KSTT92], but it is not known
whether all sparse NP sets are low for SPP. Tora� n's result that in some relativized
world there exists some sparse NP set that is not contained in �P [Tor88], and
thus not in SPP, may be taken as evidence that not all sparse NP sets are SPP-low.
Since Corollary 3.11 relativizes, spanP1 {*P1 holds relative to the same oracle.

Corollary 3.11. If spanP1=*P1 , then two statements are true:

1. NE=UE.

2. Every sparse NP set is low for SPP.

Proof. The first part follows from a standard upward translation argument (as
mentioned in the proof of Theorem 3.4).

For the second part, assume spanP1=*P1 , and let S be any sparse set in NP.
By the result of Hartmanis, Immerman, and Sewelson [Har83, HIS85], S polynomial-
time truth-table reduces to some tally NP set T. By Lemma 3.10, our assumption
implies that T # UP, and, thus, T # SPP. Since PSPP=SPP, we have S # SPP. The
result now follows from the self-lowness of SPP [FFK94], i.e., from the equality
SPPSPP=SPP. K

4. ENUMERATIVE APPROXIMATION OF CENSUS FUNCTIONS

Cai and Hemaspaandra [CH89] introduced the notion of enumerative counting as
a way of approximating the value of a *P function deterministically in polynomial time.

43TALLY NP SETS AND EASY CENSUS FUNCTIONS

Definition 4.1 [CH89]. Let f : 7* � 7* and g : N � N be two functions.
A Turing transducer E is a g(n)-enumerator of f if for all n # N and x # 7n,

1. E on input x prints a list Lx with at most g(n) elements, and

2. f (x) is a member of list Lx .

A function f is g(n)-enumerable in time t(n) if there exists a g(n)-enumerator
of f that runs in time t(n). A set is g(n)-enumeratively rankable in time t(n) if its
ranking function is g(n)-enumerable in time t(n).

Recall from the introduction Hemaspaandra and Rudich's [HR90] result that
every P set is k-enumeratively rankable for some fixed k (and indeed, even
O(n1�2&=)-enumeratively rankable for some =>0) in polynomial time if and only if
*P=FP. They conclude that it is no more likely that one can enumeratively rank
all sets in P than that one can exactly compute their ranking functions in polyno-
mial time. We similarly characterize the question of whether every P set has a
census function that is n:-enumerable in time n; for fixed constants : and ;. By the
argument given in the proof of Theorem 3.4, this question is equivalent to asking
whether every *P1 function is n:-enumerable in time n;. We show that this
assumption implies *P1 �FP, and we conclude that it is no more likely that one
can n:-enumerate the census function of every P set in time n ; than that one can
precisely compute its census function in polynomial time. It would be interesting to
know if this result can be improved to hold for polynomial time instead of time t
for some fixed polynomial t(n)=n;.

Theorem 4.2. Let :, ;>0 be constants. If every *P1 function is n:-enumerable
in time n;, then *P1 �FP.

Proof. Cai and Hemaspaandra [CH91] show that for any fixed k, if *SAT
(the function mapping any boolean formula f to the number of satisfying
assignments of f) is nk-enumerable, then *P�FP. In order to prove this, they
develop the following protocol for computing the permanent of an m_m matrix A,8

given as parameters (the encoding of) a polynomial-time transducer E (the
enumerator for *SAT), and a prime number p: Set A0=A to the input matrix and
repeat the following steps for i=1, ..., m&1:

1. Construct from Ai&1 an (m&i)_(m&i) matrix Bi (X) over an indeter-
minate X, defined by

Bi (X) =
df

:
m&i

k=1

ek(X) a1k A (1, k)
i&1 ,

where ek(X) is a degree (m&i) polynomial in X such that ek(X)#1 if X=k and
0 otherwise, a1k is the (1, k) entry of Ai&1 , and A (1, k)

i&1 is the (1, k)-minor of A i&1 .
Each matrix is viewed as a matrix over Z�pZ[X]; that is, the matrix entries

44 GOLDSMITH, OGIHARA, AND ROTHE

8 Denoting the (i, j) entry of an m_m integer matrix A by aij , the permanent of A is defined by
perm(A) =

df
�_ >m

i=1 ai_(i) , where the sum is over all permutations _ on [1, 2, ..., m].

are polynomials in X whose integer coefficients are reduced modulo p. Then the
following conditions hold.

v Each entry of Bi (X) is a degree (m&i) polynomial in X with coefficients
in [0, ..., p&1], so perm(Bi (X)) is a degree (m&i)2 polynomial in X.

v �m&i
k=1 perm(B i (k))=perm(Ai&1).

2. Encode Bi (X) into a binary string specifying in binary p, m, and the coef-
ficients of Bi (X). There is some fixed constant c>0 such that the encoding length
is at most c(m&i)3 log p. Define Qi (X) =

df
perm(B i (X)). Then, Qi is a polynomial

of degree at most (m&i)2, whose coefficients are each length-bounded by a fixed
polynomial in p and m. Thus, there is a *P function G that maps Bi (X) to a
number from which the coefficients of Qi can be decoded in polynomial time.

3. Use E as an enumerator for G to obtain candidates g1 , ..., gt . These are all
degree (m&i)2 polynomials that are pairwise distinct. Since two distinct degree
(m&i)2 polynomials can agree at no more than (m&i)2&1 points, there are fewer
than t2(m&i)2�t2m2&1 points X at which any two candidate polynomials agree.
Thus, if p�t2m2, then there is an r # [0, ..., p&1] such that gj (r){ gk(r) for all
j{k. Take the smallest such r and set Ai to Bi (r) with the entries reduced modulo p.
Now, perm(Ai) modulo p specifies which gj is correct, so we can recover
perm(Ai&1) modulo p in polynomial time.

At the end of this loop, Am is a 1_1 matrix, so its permanent is easy to compute.
Now working backwards again, we can recover perm(A) modulo p. If we do this
for polynomially (in the encoding length of A) many distinct primes, then by the
Chinese Remainder Theorem, we can recover the exact value of perm(A).

Valiant [Val79a] showed that the permanent of matrices whose entries are from
the set [&1, 0, 1, 2] is complete for *P.9 Analogously, we can show that there
exists an infinite sequence of matrices [M1 , M2 , ...] such that (i) the mapping 1n �
perm(Mn) is complete for *P1 , (ii) the mapping 1n � Mn is polynomial-time com-
putable, and (iii) for every n, Mn is an n_n matrix whose entries are from
[&1, 0, 1, 2]. Because of (iii), perm(Mn)�22n for all n. So, by the Chinese Remainder
Theorem, for every n, the exact value of perm(Mn) can be computed from
perm(Mn) modulo p for 2n arbitrary distinct primes p. Define polynomials q and
s by q(n)=(n, n, n, 2n) and s(n)=q(n)2: n2. Define the function f from the tally
strings to the set of natural numbers as follows:

v If m=(H, n, i, j) for some H, i�n, and j�2n, then f (1m) is G(Bi (X)),
where the function G and the matrix Bi (X) are defined as in the above protocol,
except that now we simulate the protocol subject to the constraints:

�� The j th smallest prime >s(n) is used in place of p.

�� Mn is used in place of the input matrix A0 .

�� H is viewed as (the encoding of) a Turing transducer and is used in place
of the enumerator E. Here, for each k with 1�k�i&1, the input given to H in the

45TALLY NP SETS AND EASY CENSUS FUNCTIONS

9 That is, Valiant [Val79a] showed that perm # *P and *P�FPperm, where perm is used as a
function oracle.

kth round of the protocol is (H, n, k, j) , not the matrix Ak . Also, H is
supposed to run in q(n) ; steps and to generate at most q(n): candidates in each
round. If H does not halt in q(n) ; steps or generates more than q(n): candidates
at any point of the simulation, then the simulation is immediately aborted and the
value f (1m) is set to 0.

v If m is not of the above form, f (1m) is 0.

This function f is in *P1 . First, there are only i�m rounds to be simulated and
each round requires m: steps for candidate generation and some polynomial (in n)
number of steps for other computations. Second, by the Prime Number Theorem,
the first 2n smallest primes >n are in O(n). (Remember that m is the length of the
input and m is bounded by some polynomial in n; so, in time polynomial in n one
can find these primes using simple methods such as the Sieve of Erastosthenes.)
Since j and s(n) are polynomially bounded, finding the j th smallest prime >s(n)
requires only a polynomial number of steps.

Now, by our assumption, there is an m:-enumerator E� for f that runs in time m;.
Since the number of candidates that E� generates is at most m: and the dimension
of the matrix Mn is n, we have a prime >m2:n2. This implies that with E� as the
enumerator, for every n�E� , every j, 1� j�2n, and every i, 1�i�n, we success-
fully find an r for distinguishing the candidates. So, with E� as the enumerator, for
all n�E� , perm(Mn) is polynomial-time computable. Hence *P1 �FP. K

5. ORACLE RESULTS

In this section, we provide a number of relativized results on the existence or
nonexistence of P sets simultaneously satisfying pairs of conditions chosen among
the properties (i), (ii), and (iii) from Section 3. For instance, Theorem 5.1 and its
Corollary 5.2 below exhibit a relativized world in which every P set has an easy
census function (Property (ii)), yet there exists some set in P that is not rankable
(Property (i)).

Theorem 5.1. There exists an oracle D such that *P1
D�FPD{*PD.

From the relativized versions of Theorem 3.4 and of Hemaspaandra and Rudich's
result in [HR90] that every P set is rankable if and only if P*P=P (which is
equivalent to FP=*P, and this equivalence itself also relativizes), we immediately
obtain the following corollary.

Corollary 5.2. There exists an oracle D such that all sets in PD have a census
function computable in FPD, yet there exists some set in PD that is not rankable by
any function in FPD.

Proof of Theorem 5.1. Balca� zar et al. [BBS86] and Long and Selman [LS86]
proved that the polynomial hierarchy does not collapse if and only if it does not
collapse relative to every sparse oracle. Since their proof relativizes (i.e., it applies
to the relativized polynomial hierarchy as well), we have the following claim.

46 GOLDSMITH, OGIHARA, AND ROTHE

Claim 5.3 [BBS86, LS86]. For every set B, PHB does not collapse if and only
if for every sparse oracle S, (PHB)S does not collapse.

Note that (PHB)S=PHB�S, where X�Y =
df [0x | x # X] _ [1y | y # Y] denotes

the join of any two sets X and Y. Fix an oracle A such that PHA does not collapse
(such oracles were constructed by Yao [Yao85], Ha# stad [Ha# s89], and Ko
[Ko89] who built on the work of Furst et al. [FSS84]). Then, by Claim 5.3 above,
for every sparse set S, PHA�S does not collapse. So, in particular, PA�S{NPA�S

for every sparse set S. Since for every oracle B, *PB=FPB implies NPB=PB, we
have that *PA�S{FPA�S for every sparse set S.

So it remains to prove that there exists a sparse set T such that *P1
A�T�

FPA�T. Then, setting D=A�T completes the proof.
Assume that our pairing function (} , } , }) is nondecreasing in each argument

(when the other arguments are fixed), polynomial-time computable and invertible,
and is one-to-one and onto. Let N (})

1 , N (})
2 , ... be a standard enumeration of all tally

NP oracle machines. For each i�1, let pi be the polynomial time bound of N (})
i .

Then, the function f (}) defined by

f (})(1(i, n, j)) =
df {accNi

(}) (1n)
0

if pi (n)<j
otherwise

is a canonical function complete for the class *P1
(}).10 In particular, for every fixed

set S, f (A�S) is complete for *P1
A�S.

The oracle set T is defined in such a way that, for any given m=(i, n, j) in
unary, some polynomial-time oracle transducer can retrieve the value of f (A�T)(1m)
from its oracle A�T by asking at most m queries. More formally, we construct T
in stages such that for each m=(i, n, j):

1k0m&k*b # T � 1�k�| f (A�T)(1m)| and the k th bit of f (A�T)(1m) is b.

By the above definition, | f (A�T)(1m)|<m and coding information into the oracle
is unnecessary when N A�T

i (1n) queries strings of length �m. So there is no inter-
ference between the stages of the construction of T. It is easy to see that T is a
sparse set satisfying *P1

A�T�FPA�T. K

Now we construct an oracle relative to which there exists some scalable set in P
whose census function is not easy to compute.

Theorem 5.4. There exists an oracle A such that there exists an A-scalable set B
whose census function is not in FPA.

Proof. We will construct A and B in such a way that B is PA-isomorphic to the
set R =

df [0x | x # 7*], which is rankable in FP (and thus in FPA). For each n�1,
we have censusR(1n)=2n&1. So censusR is easy to compute, but we want B to have a
hard census function. In light of Proposition 3.1.2, we thus need the isomorphism, f,
between B and R to be non-length-preserving. In particular, we will define f so as
to satisfy | f (x)|�|x|+1 and | f &1(y)|�| y| for all x, y # 7*. When f is defined, we

47TALLY NP SETS AND EASY CENSUS FUNCTIONS

10 See [Val79b] for natural *P1 -complete functions.

let B be the set f &1(R). To have f and its inverse computable in FPA, we encode f and
f &1 into A =

df Af �Af&1 as follows. For all x # 7*, i�1, and b # [0, 1], we ensure that

(x, i, b) # Af * � the i th bit of f *(x) is b, (3)

where f * stands for either f or f &1. At the same time we diagonalize against FPA

so as to ensure censusB � FPA.
Let T (})

1 , T (})
2 , ... be a standard enumeration of all deterministic polynomial-time

oracle transducers, and let p1 , p2 , ... be a sequence of strictly increasing polynomials
such that pi bounds the running time of Ti (independent of the oracle used). By (3)
above, implicit in the definition of f and f &1 is the definition of A, so it suffices to
construct the isomorphism. The construction of f and f &1 is in stages. By the end
of stage i, f will have been defined for all strings of length up to r(i), where r will
be determined below. Initially, we start with r(0)=0, and we define f (=)==. Stage
i>0 of the construction is as follows.

Stage i. Choose ni to be the smallest integer such that ni>r(i&1) and pi (ni)<
2ni&2. Let A$ be the subset of A that has been decided by now. We want to define
f so that, eventually, T A

i (1ni){censusB(1ni). Simulate T A$
i on input 1ni. Whenever in

this simulation a string of the form 0(x, i, b) whose membership in A has not yet
been decided is queried, we add this string to A$ and set the i th bit of f (x) to b
unless we have already put 0(x, i, 1&b) into A (and thus, have set this bit to
1&b), or unless i>|x|+1. The same comment applies to query strings 1(y, j, b)
whose membership in A has not been decided yet and which may fix the j th bit of
f &1(y). If we added the queried string to A$, we continue the simulation in the
``yes'' state; otherwise, in the ``no'' state. In this way, the simulation of T A$

i (1ni) may
determine f (and f &1) on at most p i (ni)<2ni&2 bits of the strings of length ni .
Thus, for no m�ni is f &1 determined on all strings of length m in R or R� . Once
the value T A$

i (1ni) is computed, there is room to decide f (x) and f &1(y) for all
strings x and y of lengths between r(i&1) and pi (ni) so that f is an isomorphism
mapping to � pi (ni)

l=r(i&1) R=l and such that censusB(1ni){T A$
i (1ni), without changing

the output value of T A$
i (1ni). Finally, define r(i)= pi (n i). K

Next, we provide an oracle relative to which there exists some set in P that is
neither scalable nor has an easy census function.

Theorem 5.5. There exists an oracle D such that D # PD is not D-scalable and its
census function is not in FPD.

Proof. It is known from the work of Goldsmith and Homer [GH96] that any
sparse set is scalable if and only if it is rankable, and this holds if and only if it is
P-printable.11 D will be sparse, with at most two strings at each length. We assume
that (T (})

i) i�1 enumerates FP(}), and that T (})
i runs in time n i. A simple diagonaliza-

tion guarantees that no PD function computes the census of D. Note that this
guarantees that no PD function computes the rank of 1n in D for all n, since
censusD(1n)=rankD(1n)&rankD(1n&1) would then be in PD.

48 GOLDSMITH, OGIHARA, AND ROTHE

11 A set is P-printable [HY84] if there exists a polynomial-time transducer T such that for each length
n, T on input 1n prints a list of all elements of the set up to length n.

At stage i we guarantee that T D
i (1n) does not compute the census function of D,

where n is chosen large enough that ni<2n. Compute T D
i (1n), restraining any

oracle strings of length �n that it queries. By our choice of n, this does not decide
D=m for any m�n, so we can then put in the appropriate number of strings of
length n for the diagonalization. K

Finally, we show that relative to an oracle, there exists some non-scalable set in
P having an easy census function.

Theorem 5.6. There exists an oracle A such that A # PA is not A-scalable and its
census function is in FPA.

Proof. We construct the oracle A so that A has one string of each length. For those
lengths for which nothing else is decided, we put in 1n. Otherwise, we do the following.

To make the oracle A non-A-scalable, we actually make it non-PA-printable. At
stage i, choose an appropriate length n and, then, compute T A

i (1n). Whenever it
queries a string of length �n, restrain the string from the oracle. If it does anything
except print out A�n, then put in the first unrestrained string of each length. If it
correctly prints A up to length n, then choose an x of each relevant length to
include that neither is restrained nor printed. K

We conclude this section with an open question: Can one construct an oracle E
such that all sets in PE have a census function computable in FPE, but E # PE is
not E-scalable? Note that scalability, rankability, and P-printability are equivalent
properties on the sparse sets [GH96]; so, one way of solving the above question
would be to prove the following stronger version of Theorem 5.1: There exists a
sparse set E such that *P1

E�FPE{*PE. We note that a solution to this issue
seems to require new techniqes, since the oracle D=A�T constructed in the proof
of Theorem 5.1 inherently is a nonsparse set due to its A part, and it cannot be
made sparse unless one could separate the unrelativized polynomial hierarchy
[LS86, BBS86].

ACKNOWLEDGMENTS

We are deeply indebted to Lance Fortnow, Lane Hemaspaandra, and Gabriel Istrate for interesting dis-
cussions and for helpful comments and suggestions, and we thank Eric Allender and Lane Hemaspaandra
for pointers to the literature. We also thank Eric Allender and an anonymous referee for discovering an
error in an earlier draft of this paper and for pointing out that the second part of Theorem 3.6 should
not be interpreted as evidence against P having easy census functions, in light of the results of
Impagliazzo and Wigderson [IW97], showing that very reasonable hypotheses imply P=BPP.

Received March 30, 1998; final manuscript received June 14, 1999

REFERENCES

[Adl78] Adleman, L. (1978), Two theorems on random polynomial time, in ``Proceedings of the
19th IEEE Symposium on Foundations of Computer Science,'' pp. 75�83.

[All91] Allender, E. (1991), Limitations of the upward separation technique, Math. Systems Theory
24(1), 53�67.

49TALLY NP SETS AND EASY CENSUS FUNCTIONS

[AR88] Allender, E., and Rubinstein, R. (1988), P-printable sets, SIAM J. Comput. 17(6),
1193�1202.

[BBS86] Balca� zar, J., Book, R., and Scho� ning, U. (1986), The polynomial-time hierarchy and sparse
oracles, J. Assoc. Comput. Mach. 33(3), 603�617.

[BC93] Bovet, D., and Crescenzi, P. (1993), ``Introduction to the Theory of Complexity,''
Prentice�Hall, Englewood Cliffs, NJ.

[BG92] Beigel, R., and Gill, J. (1992), Counting classes: Thresholds, parity, mods, and fewness,
Theoret. Comput. Sci. 103(1), 3�23.

[BH77] Berman, L., and Hartmanis, J. (1977), On isomorphisms and density of NP and other
complete sets, SIAM J. Comput. 6(2), 305�322.

[Boo74] Book, R. (1974), Tally languages and complexity classes, Inform. and Control 26(2),
186�193.

[CH89] Cai, J., and Hemachandra, L. (1989), Enumerative counting is hard, Inform. and Comput.
82(1), 34�44.

[CH90] Cai, J., and Hemachandra, L. (1990), On the power of parity polynomial time, Math.
Systems Theory 23(2), 95�106.

[CH91] Cai, J., and Hemachandra, L. (1991), A note on enumerative counting, Inform. Process.
Lett. 38(4), 215�219.

[FFK94] Fenner, S., Fortnow, L., and Kurtz, S. (1994), Gap-definable counting classes, J. Comput.
System Sci. 48(1), 116�148.

[FSS84] Furst, M., Saxe, J., and Sipser, M. (1984), Parity, circuits, and the polynomial-time
hierarchy, Math. Systems Theory 17(1), 13�27.

[GH96] Goldsmith, J., and Homer, S. (1996), Scalability and the isomorphism problem, Inform.
Process. Lett. 57(3), 137�143.

[Gil77] Gill, J. (1977), Computational complexity of probabilistic Turing machines, SIAM J.
Comput. 6(4), 675�695.

[GP86] Goldschlager, L., and Parberry, I. (1986), On the construction of parallel computers from
various bases of boolean functions, Theoret. Comput. Sci. 43(1), 43�58.

[GS91] Goldberg, A., and Sipser, M. (1991), Compression and ranking, SIAM J. Comput. 20(3),
524�536.

[Har83] Hartmanis, J. (1983), On sparse sets in NP&P, Inform. Process. Lett. 16(2), 55�60.

[Ha# s89] Ha# stad, J. (1989), Almost optimal lower bounds for small depth circuits, in ``Randomness
and Computation'' (S. Micali, Ed.), Advances in Computing Research, Vol. 5, pp. 143�170,
JAI Press, Greenwich, CT.

[Hem89] Hemachandra, L. (1989), The strong exponential hierarchy collapses, J. Comput. System
Sci. 39(3), 299�322.

[Her90] Hertrampf, U. (1990), Relations among MOD-classes, Theoret. Comput. Sci. 74(3),
325�328.

[HHH99] Hemaspaandra, E., Hemaspaandra, L., and Hempel, H. (1999), A downward collapse
within the polynomial hierarchy, SIAM J. Comput. 28(2), 383�393.

[HIS85] Hartmanis, J., Immerman, N., and Sewelson, V. (1985), Sparse sets in NP&P: EXPTIME
versus NEXPTIME, Inform. and Control 65(2�3), 159�181.

[HJ95] Hemaspaandra, L., and Jha, S. (1995), Defying upward and downward separation, Inform.
and Comput. 121, 1�13.

[HJRW98] Hemaspaandra, L., Jiang, Z., Rothe, J., and Watanabe, O. (1998), Boolean operations,
joins, and the extended low hierarchy, Theoret. Comput. Sci. 205(1�2), 317�327.

[HR90] Hemachandra, L., and Rudich, S. (1990), On the complexity of ranking, J. Comput. System
Sci. 41(2), 251�271.

[HR97] Hemaspaandra, L., and Rothe, J. (1997), Unambiguous computation: Boolean hierarchies
and sparse Turing-complete sets, SIAM J. Comput. 26(3), 634�653.

50 GOLDSMITH, OGIHARA, AND ROTHE

[HRW97a] Hemaspaandra, L., Rothe, J., and Wechsung, G. (1997), Easy sets and hard certificate
schemes, Acta Inform. 34(11), 859�879.

[HRW97b] Hemaspaandra, L., Rothe, J., and Wechsung, G. (1997), On sets with easy certificates and
the existence of one-way permutations, in ``Proceedings of the Third Italian Conference on
Algorithms and Complexity,'' pp. 264�275, Lecture Notes in Computer Science, Vol. 1203,
Springer-Verlag, New York�Berlin.

[HU79] Hopcroft, J., and Ullman, J. (1979), ``Introduction to Automata Theory, Languages, and
Computation,'' Addison�Wesley, Reading, MA.

[HY84] Hartmanis, J., and Yesha, Y. (1984), Computation times of NP sets of different densities,
Theoret. Comput. Sci. 34(1�2), 17�32.

[IW97] Impagliazzo, R., and Wigderson, A. (1997), P=BPP unless E has sub-exponential circuits:
Derandomizing the XOR lemma, in ``Proceedings of the 29th ACM Symposium on Theory
of Computing,'' pp. 220�229, ACM Press, New York.

[KL80] Karp, R., and Lipton, R. (1980), Some connections between nonuniform and uniform com-
plexity classes, in ``Proceedings of the 12th ACM Symposium on Theory of Computing,''
pp. 302�309. [An extended version is: Turing machines that take advice, Enseign. Math.
Series 2 28, 1982, 191�209]

[Ko89] Ko, K. (1989), Relativized polynomial time hierarchies having exactly k levels, SIAM J.
Comput. 18(2), 392�408.

[KS85] Ko, K., and Scho� ning, U. (1985), On circuit-size complexity and the low hierarchy in NP,
SIAM J. Comput. 14(1), 41�51.

[KST89] Ko� bler, J., Scho� ning, U., and Tora� n, J. (1989), On counting and approximation, Acta
Inform. 26(4), 363�379.

[KSTT92] Ko� bler, J., Scho� ning, U., Toda, S., and Tora� n, J. (1992), Turing machines with few accepting
computations and low sets for PP, J. Comput. System Sci. 44(2), 272�286.

[Lau83] Lautemann, C. (1983), BPP and the polynomial hierarchy, Inform. Process. Lett. 17(4),
215�217.

[Lon85] Long, T. (1985), On restricting the size of oracles compared with restricting access to
oracles, SIAM J. Comput. 14(3), 585�597. [Erratum, SIAM J. Comput. 17(3), 628]

[LS86] Long, T., and Selman, A. (1986), Relativizing complexity classes with sparse oracles,
J. Assoc. Comput. Mach. 33(3), 618�627.

[Mah82] Mahaney, S. (1982), Sparse complete sets for NP: Solution of a conjecture of Berman and
Hartmanis, J. Comput. System Sci. 25(2), 130�143.

[MS72] Meyer, A., and Stockmeyer, L. (1972), The equivalence problem for regular expressions
with squaring requires exponential space, in ``Proceedings of the 13th IEEE Symposium on
Switching and Automata Theory, pp. 125�129.

[OH93] Ogiwara, M., and Hemachandra, L. (1993), A complexity theory for feasible closure
properties, J. Comput. System Sci. 46(3), 295�325.

[Pap94] Papadimitriou, C. (1994), ``Computational Complexity,'' Addison�Wesley, Reading, MA.

[PZ83] Papadimitriou, C., and Zachos, S. (1983), Two remarks on the power of counting, in
``Proceedings of the 6th GI Conference on Theoretical Computer Science,'' pp. 269�276,
Lecture Notes in Computer Science, Vol. 145, Springer-Verlag, New York�Berlin.

[RRW94] Rao, R., Rothe, J., and Watanabe, O. (1994), Upward separation for FewP and related
classes, Inform. Process. Lett. 52, 175�180.

[Sch83] Scho� ning, U. (1983), A low and a high hierarchy within NP, J. Comput. System Sci. 27,
14�28.

[Sch87] Scho� ning, U. (1987), Graph isomorphism is in the low hierarchy, J. Comput. System Sci.
37, 312�323.

[Sip83] Sipser, M. (1983), A complexity theoretic approach to randomness, in ``Proceedings of the
15th ACM Symposium on Theory of Computing,'' pp. 330�335.

51TALLY NP SETS AND EASY CENSUS FUNCTIONS

[Sto77] Stockmeyer, L. (1977), The polynomial-time hierarchy, Theoret. Comput. Sci. 3(1), 1�22.

[TO92] Toda, S., and Ogiwara, M. (1992), Counting classes are at least as hard as the polynomial-
time hierarchy, SIAM J. Comput. 21(2), 316�328.

[Tod91] Toda, S. (1991), PP is as hard as the polynomial-time hierarchy, SIAM J. Comput. 20(5),
865�877.

[Tor88] Tora� n, J. (1988), ``Structural Properties of the Counting Hierarchies,'' Ph.D. thesis, Univer-
sitat Polite� cnica de Catalunya, Barcelona, Spain.

[Val76] Valiant, L. (1976), The relative complexity of checking and evaluating, Inform. Process.
Lett. 5(1), 20�23.

[Val79a] Valiant, L. (1979), The complexity of computing the permanent, Theoret. Comput. Sci. 8(2),
189�201.

[Val79b] Valiant, L. (1979), The complexity of enumeration and reliability problems, SIAM J.
Comput. 8(3), 410�421.

[Wel93] Welsh, D. (1993), ``Complexity: Knots, Colourings and Counting,'' Cambridge Univ. Press,
Cambridge.

[Yao85] Yao, A. (1985), Separating the polynomial-time hierarchy by oracles, in ``Proceedings of the
26th IEEE Symposium on Foundations of Computer Science,'' pp. 1�10, IEEE Comput.
Soc., Los Alamitos, CA.

52 GOLDSMITH, OGIHARA, AND ROTHE

	1. INTRODUCTION
	2. NOTATION AND DEFINITIONS
	3. DOES P HAVE EASY CENSUS FUNCTIONS?
	FIG. 1

	4. ENUMERATIVE APPROXIMATION OF CENSUS FUNCTIONS
	5. ORACLE RESULTS
	ACKNOWLEDGMENTS
	REFERENCES

