More Theory Revision with Queries

[Extended Abstract]

%
Judy Goldsmith
Dept. of Computer Science
University of Kentucky
763 Anderson Hall
Lexington, KY 40506-0046

goldsmit@cs.uky.edu

ABSTRACT

Given a Boolean formula that is not quite right, how does
one fix it? That is, if a given formula differs from an un-
known target formula, what is the complexity of revising the
given formula? The tools available for determining the re-
visions are queries to membership and equivalence oracles,
namely, questions of the form: “Is this an instance of the
target formula,” and “Is this hypothesis equivalent to the
target formula?” In the latter case, if the answer is “No,”
the oracle returns an instance that is true for exactly one
of the hypothesis and the target. For Horn sentences that
require only deletion revisions, a revision algorithm is given
that is polynomial in the number of clauses of the formula
and the minimum number of deletions needed. For 2-term
monotone DNF formulas, a revision algorithm is given that
is polynomial in the minimum number of necessary deletions
and additions and the logarithm of the number of variables.
Previous work addressed deletion-only revisions to 2-term
unate DNF formulas.

1. INTRODUCTION

Consider the following situation. You hire a domain expert
(whom we shall call “Mommy”) and a knowledge engineer
to develop an expert system for predicting what your picky
preschooler will eat. The following “pretty close” initial the-
ory is developed:

WillEat := VeryBland OR ((NOT wvegetables)
AND bland AND Meat).

Then, though you use the initial theory as a general guide,
you happen to observe the preschooler consume a full pound

*Partially supported by NSF grant CCR-9610348; work
done while visiting the Dept. of EECS at the University
of Illinois at Chicago.

tPartially supported by NSF grant CCR-9800070.

Robert H. SIoanT

Dept. of EE & Computer Science
University of Illinois at Chicago
851 S. Morgan St. Rm 1120
Chicago, IL 60607-7053

sloan@eecs.uic.edu

of grilled lamb ribs in spicy black pepper-teriyaki marinade.
You must revise or edit your initial theory, perhaps to either

WillEat := VeryBland OR ((NOT wvegetables)
AND Meat),

or

WillEat := VeryBland OR ((NOT Vegeta-
bles) AND bland AND Meat) OR, Lamb.!

This is the problem known in machine learning as theory
revision (or knowledge-base revision) (e.g., [10,15,16,19]).
There is a very large body of work on learning from exam-
ples, that is, revising the empty theory to the correct the-
ory; theory revision is of independent interest to the greater
Computer Science community because it arises whenever
databases (and particularly, large databases) must be re-
vised. Unfortunately, most very large theories based on
real-world examples are not exactly correct. Our work shows
that, at least for certain forms of theories, a few corrections
to the theory can be made at a much lower cost in terms of
examples (i.e., training data, or queries in formal models)
than (re-)learning the whole theory from scratch.

Sloan and Turan [18] provided a formal model for theory
revision in the computational learning theory framework,
and some initial results. Algorithms are permitted resources
polynomial in the number of required revisions, but only
polylogarithmic in the total number of variables and the size
of the initial theory. That paper gave two models for per-
mitted revisions, both based on models used earlier in the
machine learning and other related literature. The more
limited model, which we will call the deletions-only model,
permits revisions of a propositional Boolean formula by fix-
ing any occurrence of any variable to either 1 or 0. The
broader model, which we will call the general model, per-
mits the addition of new variables to clauses or terms of
the formula, as well as permitting variables to be fixed to
constants.

Sloan and Turan provided an algorithm in the deletions-only
model for both 2-term unate DNF and read-once formulas.
In the general model, a revision algorithm is given for thresh-
old functions and the parity function.

1 This theory seems to work well for the second author’s five-
year old.

In this paper we extend the positive result for unate 2-term
DNF in two significant directions. First, in the deletions-
only model, we present an algorithm for revising O(log n)-
clause Horn sentences (i.e., conjunctions of Horn clauses).
Second, we present an algorithm for revising monotone 2-
term DNF in the general model. The first result is impor-
tant because, while monotone DNF is a somewhat limited
syntactic form, Horn sentences are rich enough that they
are a common choice for practical machine learning systems
(e.g., Koppel’s system [10], and almost all systems that learn
logic programs).

1.1 Moredetailsaboutthe model

A common assumption in the AI theory revision literature
(e.g., [10]) is that one is given a theory together with a set
of labeled examples, and the set always includes some that
disagree with the classification provided by the theory. Typi-
cally one is supposed to make “small” revisions to the theory
so that it classifies all the given examples correctly, though
small is often left undefined (and finding the “smallest” re-
vision is usually NP-complete).

Sloan and Turdn [18] formulated the theory revision prob-
lem in the standard model of membership and equivalence
queries [1], and we will use their model here as well. That
is, there is one oracle MQ(+) that tells whether any given in-
stance is positive or negative according to the correct theory,
and a second oracle EQ(:) that responds to a false conjec-
ture about the correct theory with a counterexample. In
an expert system setting, the expert would function as the
membership oracle. The problem of revising Horn sentences
in the general model (which we do not solve here) without us-
ing membership queries is at least as hard as the well-known
open problem of PAC learning DNF formulas. An algorithm
for revising Horn sentences in a query model could be used
to learn Horn sentences in that model by revising the empty
initial theory. One can easily convert an algorithm for learn-
ing from equivalence queries to one for PAC learning; reduc-
tions in Kearns et al. [8] show that PAC-learnability of Horn
sentences would imply PAC-learnability of general DNF or
CNF formulas.

The formal concept class for revisions of a Horn sentence in
the deletions-only model consists only of formulas obtained
from the o, the initial formula to be revised, by fixing one
or more of its variables to 0 or 1. The equivalence queries
used in our learning algorithm for Horn sentences are not
necessarily in the formal concept class to be learned. They
are always Horn sentences, but the correspondence between
initial clauses and query clauses is not always one to one.
However, the final output of our algorithm is a formula that
can be obtained by fixing variables of ¢q.

1.2 Relatedwork

In machine learning, there is a large body of work some-
times called theory refinement (see, e.g., Wrobel [22, 23]).
Theory refinement includes theory restructuring, which is
aimed at making a theory more efficient or transparent, as
well as theory revision. “Theories” are also referred to as
knowledge-bases, or in computational learning theory as con-
cepts. There are numerous systems for theory revision in
propositional and predicate logic (e.g., [10,15,16,19]). Such
systems usually have not come with any formal guarantees
of performance; rather they are evaluated empirically. Some
formal results were obtained by Koppel et al. [3,10].

Probably the three previous papers that are closest to
this one are by Mooney [14], Greiner [7], and Sloan and
Turdn [18]. We discuss each one in turn.

Mooney [14] formulated an approach to the study of theory
revision in computational learning theory based on syntactic
distances. The syntactic distance between a given concept
representation and another concept is the minimal number
of elementary operations (such as the addition or the dele-
tion of a literal or a clause) needed to transform the given
concept representation to a representation of the other con-
cept. Mooney proposed considering the PAC-learnability of
the class of concepts having a bounded syntactic distance
from a given concept representation, and gave a positive re-
sult for sample (or query) complexzity, but did not consider
computational complexity.

Greiner’s work [7] is in the same spirit as Mooney’s, and
gives mostly positive results for sample complexity, and
mostly negative (i.e., hardness) results for polynomial time
PAC learnability. Greiner has results concerning both pred-
icate and propositional logic, but since our results in this
paper concern only propositional logic, we will discuss only
Greiner’s results on propositional logic. Greiner’s results
give further evidence that membership queries may be nec-
essary for revising Horn sentences. He shows that a decision
problem involving revising Horn sentences to be consistent
with a sample is NP-hard. Since learnability from equiva-
lence queries alone implies that one can solve such consis-
tency problems, Greiner’s results imply a hardness result
for the query learning model as well. However, Greiner’s
model differs from what we consider in this paper, in that
his instances are Horn clauses (which either are or are not
entailed by a Horn sentence theory), whereas our instances
are assignments to all propositional variables (which, for our
results on Horn sentence theories, either do or do not con-
tradict the Horn sentence).

Sloan and Turan [18] formulated the theory revision prob-
lem in a manner similar to Mooney, using syntactic dis-
tances in a query model instead of the PAC model. They
required query complexity and computational complexity
polynomial in the number of revisions and polylogarith-
mic in the total number of variables. (This is similar to
the notion of efficiency for atiribute efficient learning algo-
rithms [4,5].) Two different measures of syntactic distance
were considered, the deletions-only and general models men-
tioned previously. They gave positive results for 2-term
unate DNF, unate k-DNF, and read-once formulas in the
deletions model. Also, a hardness result was given, showing
that it is impossible to revise a monotone DNF formula on
n variables with O(n) terms needing a single revision with-
out using Q(n) queries. Positive results were given in the
general model for threshold and parity functions.

The problem of correcting errors is pervasive, and prob-
lems somewhat related to theory revision show up in sev-
eral places. Among them are fault analysis of circuits in
switching theory (see, e.g., Kohavi [9]), program debugging
(e.g., [17]), and model-based diagnosis (see, e.g., [6,11,13]).
See Sloan and Turén [18] for a somewhat longer discussion
of these connections.

1.3 Unrelatedwork

One can consider revising a database, rather than a knowl-
edge base. In logic programming, this can be modeled as a
revision logic program, which specifies necessary changes to

a database using atoms IN(A) and OuT(A). The underlying
computational question is, given one database and a revision
logic program, to revise the database so that all revisions are
justified based on the program [12].

Another problem with a similar name is the minimum edit
or revision distance problem. That problem is one of calcu-
lating the minimum number of operations needed to trans-
form one given, fixed string, into another, and it has long
had a well known dynamic programming algorithm, usually
attributed to Wagner and Fischer [21].

2. DEFINITIONS AND NOTATION

We use standard notions from propositional logic such as
variable, term, disjunctive normal form (DNF), monotone,
clause, cover, etc. We assume throughout that the concepts
TRUE and FALSE are allowed as equivalence queries.

A Horn clause has at most one unnegated variable; we will
usually think of it as an implication and call the clause’s
unnegated variable its head, and its negated variables its
body. We write body(C) and head(C) for the body and head
of C, respectively. A clause with no unnegated variables
will be considered to have head F; a clause with no negated
variables (a fact) to have body T.

When convenient, we treat both Horn clause bodies and
monotone DNF terms as vectors in {0,1}", and vectors
sometimes as subsets of [n]. If for z € {0,1}" and clause
C we have body(C) C z, we say = covers C. Notice that z
falsifies C iff z covers C and head(C) ¢ z. (By definition,
Our Horn sentence revision algorithm makes frequent use of
the fact that if x and y both cover clause C, and at least
one of z and y falsifies C, then z Ny falsifies C.

Let ¢ be a Boolean formula using the variables z1,... ,2p.
Then C, C {0,1}" is the concept represented by ¢, that is,
C, is the set of satisfying truth assignments for ¢. For in-
stance if ¢ = (z1Az2)V (z1Az3), then C,, is {110,101,111}.
We denote by R, the set of formulas obtained from ¢ by
fixing some occurrences of some variables to constants. The
corresponding concept class is denoted by C,. For instance,
if we fix 2 in ¢ to 1, we obtain the revised formula (z1 A
1) V (z1 A z3), which can be simplified to z1 V (z1 A z3), and
is equivalent to z;. If instead we fix the second occurrence
of z1 to 0, we obtain the revised formula (z1 Az2)V (0Az3),
which can be simplified to z; A z2. Notice that for Horn
sentences this revision operator could alternately be viewed
as three operators: deleting one variable from a body (by
fixing the occurrence of this variable to true), deleting a
clause (by fixing its head to true or one of its body variables
to false), and changing the head of a clause to F.

The revision distance between a formula ¢ and some other
concept C is defined to be the minimum number of appli-
cations of a specified set of revision operators to ¢ needed
to obtain a formula for C. In the deletions-only model, our
revision operator is fizing an occurrence of a variable in a
formula to a constant. In the general model, adding a new
variable to ¢ is also a revision operator. Thus, for example,
the revision distance between ¢ = (z1 A z2) V (21 A z3) and
the concept represented by x1 is 1 in either model.

A revision algorithm for a formula ¢ has access to member-
ship and equivalence oracles for an unknown target concept
C € C, and must return some representation in R, of the
target concept. Our goal is to find revision algorithms whose

query complexity is polynomial in the revision distance be-
tween ¢ and the target, but at most polylogarithmic in the
size of ¢ and the number of variables.

Let h be a collection of Horn clauses. Define the N operation
with respect to A (which will, in Section 3, be understood
to be the current constructed hypothesis) as follows: The

result of z M y is the same as the result of z Ny except when
there is a hypothesis clause C such that zNy covers body(C)
and z has a 1 in the position head(C), in which case that 1
stays on regardless of y.

We always use C to denote strict subset.

3. REVISING PROPOSITIONAL HORN
SENTENCES

We present Algorithm REVISEHORN for revising Horn sen-
tences in the deletions-only model. It uses some general
ideas from the algorithm of Angluin et al. [2] for learning
Horn sentences from membership and equivalence queries.
Indeed, the top-level REVISEHORN is essentially identical to
Angluin et al.’s algorithm. However, the details of the sub-
routines, especially NEWMETACLAUSE, are different—this
is where we use the the initial theory ¢o to make the query
complexity independent of the number of Boolean variables,
and dependent on only the revision distance between ¢o and
the target.

Following Angluin et al., we find it convenient to organize
our hypothesis by distinct clause bodies. We call the collec-
tion of all clauses that have the same body a meta-clause.

Algorithm 1 REVISEHORN. Revises Horn sentence ¢o.

1: h = empty hypothesis (everywhere true)
2: while (z = EQ(h)) # “Correct” do

3: if h(z) == 1 then {z is a negative counterexample}
4: for each meta-clause C' € h in order do
5: if body(C) N ¢ <C body(C) and then
MQ(body(C) Nz) == 0 then
6: Replace C with SHRINKBoDY(C,body(C) N
Z, o0, h) and break the for loop
7: h = hA NEWMETACLAUSE(z, o, h)
8: else {z is a positive counterexample}
9: for each meta-clause C' such that C(z) = 0 for at
least one head of C' do
10: FixHEADs(z,C, h)

The basic idea of REVISEHORN is as follows. We start with
the empty conjunction (i.e., everything is classified as true)
and repeatedly make equivalence queries until we are done.
If possible, negative counterexamples are used to edit the
body of a meta-clause in the current hypothesis. If this is
not possible for a particular negative counterexample, then
it is used to add a new meta-clause to the hypothesis. (That
case will always occur with the first counter example.) Pos-
itive counterexamples are always used to edit the heads of
existing meta-clauses.

We can use certain negative counterexamples to create a
new meta-clause, because every negative instance falsifies
some target clause. Notice that if negative counter example
x falsifies target clause C that is a revision of some initial
theory clause Co, then z Nbody(Co) also falsifies C«. Thus,
for each clause Cy of the initial theory, we would like to say
that if MQ(z Nbody(Co)) = 0, then set z to £ N body(Ch).

However, there are two issues to which we must pay careful
attention.

First, we do not want to rediscover any meta-clauses already
in our hypothesis. Perhaps z falsified only target clauses
not falsified by any meta-clause body in our hypothesis, but
z Nbody(Co) falsifies some target clause that is falsified by
a meta-clause body already in the current hypothesis. This
is checked by NEWMETACLAUSE in Line 5.

Second, we need to make sure that we do not, in the process
of intersecting x with initial theory clause bodies, change
z from an example that the current hypothesis classifies as
positive to one the current hypothesis classifies as negative.

This is why we use z A Cy instead of z N Cp.

Algorithm 2 NEWMETACLAUSE(z, @o, h). Intersects nega-
tive example z that generates a new hypothesis meta-clause
with all initial theory clauses.

1: for each clause C of the initial theory ¢o do
2 b=zNC .
3: if MQ(b) == 0 then {z N C is “new” negative coun-

terexample}
4: for each meta-clause M of the hypothesis A do
5: if 6N body(M) C body(M) and then MQ(b N
body(M)) == 0 then
6: exit and SHRINKBODY(M,b, @o, h)

7: return new meta-clause with body « and head F

Next we describe how to handle positive counterexamples to
our hypothesis. There are two cases: The counterexample
z falsifies a hypothesis clause of the form (foo — F) and z
falsifies a hypothesis clause with a head. In the first case,
we add all possible heads. In the second case, we delete the
extra head.

Specifically, FIXHEADS(z, (foo — F), o) adds as heads of
the meta-clause body foo all heads that occur in clauses of
o and do not occur in foo.

Algorithm 3 SHRINKBODY(C, z, o, h)

Require: z such that zNbody(C) C body(C) and h(z) =1
for Each clause Cy € o do
b=z N body(Co)
if MQ(b) =0 then
z=0b
body(C) = z Nbody(C)
if head(C) # F then
Add to head(C) any variable just deleted from body(C)
that is the head of some clause of ¢g

Once we have established that Algorithm REVISEHORN
halts, its correctness follows from its form. We prove a
bound on its query complexity using a series of lemmas.
Several of these lemmas involve proving that some prop-
erty of the hypothesis is invariant. We point out here
that hypothesis meta-clauses are created only by calls to
NEwWMETACLAUSE and meta-clause bodies are altered only
by calls to SHRINKBODY. The set of heads of a meta-clause
can be altered only by calls to FIXHEADS and to SHRINK-
Bopy.

PROPOSITION 1. If the current hypothesis h of Algo-
rithm REVISEHORN classifies z as positive, that is, h(z) =1,

then for any y, we have h(z A y)=1.

Proposition 1 is straightforward, and we implicitly use it in
several of our later proofs.

LEMMA 2. Fach meta-clause body in the hypothesis al-
ways falsifies some clause of the target concept.

ProOOF. The body of the meta-clause is always a negative
instance of the target. This is true when the meta-clause is
first added by NEWMETACLAUSE, and this is maintained
as an invariant because it is guaranteed by a membership
query immediately before changing a meta-clause body in
SHRINKBoDY. [

LEMMA 3. For every hypothesis meta-clause C with head
other than F, for every target clause Cx that body(C) falsi-
fies, head(C.) is always one of the heads of C.

PrOOF. We put in all possible heads when we first change
the meta-clause head from F. When we delete a variable
from a meta-clause body, if it is a possible head, we add
it. We remove a head only when a positive counterexample
guarantees that it must be removed. [

LEMMA 4. No two hypothesis meta-clauses ever falsify the
same target clause.

Proof sketch. We follow the proof in Angluin et al. [2] of
an analogous statement about their algorithm for learning
Horn sentences from scratch.

We first show that the following claim implies the lemma,
and then prove the claim.

Claim: Consider the hypothesis meta-clause bodies
b1,b2,...,bn in the order added. For any j, if b; falsifies
target clause C., then no b; with ¢ < j covers C..

Assume that the claim is true, but nevertheless both Cy and
C, falsify the Cs, and WLOG, k < £. This contradicts the
claim, since C} falsifies C\.

Now we prove that the claim is true by induction on the
number of changes made to the hypothesis. This is cer-
tainly vacuously true of the initial empty hypothesis. We
must show that this property remains invariant whenever
we alter the hypothesis. Positive counterexamples do not
change the set of bodies, so we need consider only negative
counterexamples.

Consider first the case of shrinking a meta-clause body b; in
a call to SHRINKBODY(C}, z, o, h), where b; = body(C}),
Cj € h, and z is a negative counterexample for hypothesis .
After this change b; can cover only fewer clauses of the target
formula than before, so we need worry only about meta-
clauses b; with ¢ < j. Suppose for contradiction that b; now
falsifies some new target clause Cs, and b; covers C,, with
i < j. It must be that before this change that b; covered C\.
and so z falsified C.. Since b; covers C., then b; Nz falsifies
C4, and = would have been used to refine b;, as long as z N
b; C b;. What happens if b; = xNb;? Since zNb; falsifies C.,
we have that b; falsifies C«. By Lemma 3, b;’s meta-clause
has either head(C.) or F as its head. Therefore = does not
satisfy b;’s meta-clause, contradicting the assumption that
z is a negative counterezample (i.e., z satisfies all hypothesis
clauses)?.

2Note that it is crucial here that we include the heads of
other clauses as they appear in z, in order to not introduce
a spurious negative membership query. This is precisely why

we introduced r°1

Next, consider adding a new meta-clause using negative
counterexample z to get new meta-clause body b from
NEwWMETACLAUSE(z, h, o). Suppose b falsifies C., and
b; € h covers C«. Then in Line 7 of NEWMETACLAUSE we
would exit and use b to edit b; as long as bNb; C b;. Other-
wise, bNb; = bi, so b; falsifies C, and again by Lemma 3, it
must be that b does not satisfy b’s meta-clause, contradicting
the assumption that h(b) = 1. [

THEOREM b. Algorithm REVISEHORN will revise a Horn
sentence containing m clauses and needing e revisions using
at most O (m?’e) queries.

Proof sketch. First, observe that once a particular meta-
clause is added, it is never deleted. This follows from Lem-
mas 2 and 3: Lemma 2 says that the meta-clause body
always falsifies some target clause, and Lemma 3 says that
therefore it will always have some head.

In the worst case, one meta-clause C is introduced into the
hypothesis for each target clause Cx. Let us consider how
many queries that one meta-clause C' can generate over the
lifetime of the algorithm. In its creation by NEWMETA-
CLAUSE, C can generate O (m?) queries.

Next, consider the manipulation of heads in the meta-clause.
There can be at most m heads introduced to a clause (plus
F). Each of them can be removed or moved exactly once.
Each such edit uses O(1) queries.

The meta-clause may have superfluous variables which must
be edited out at the cost of O(m) queries per edit, using
SHRINKBODY. If the meta-clause is associated with a target
clause C. then it requires at most e such deletions. However,
in the course of the algorithm these associations may shift
as many as m times. Thus, there may be as many as em?
queries associated with deletions from a given meta-clause.
This is the dominant factor in the analysis.

Since there are up to m clauses, the total algorithm requires
O(em?®) queries. [

4. REVISING 2-TERM MONOTONE DNF
FORMULAS

In this section we present an algorithm for revising mono-
tone 2-term DNF in the general model of theory revision.
This algorithm proceeds in stages. During Stage e, we run
an O(elogn) time algorithm that revises the given hypothe-
sis and finds the target formula if that is possible in e edits.
The main work is done by Algorithm REVISEUPTOE, which
is given an a priori bound e on the revision distance be-
tween the initial formula and the target. Before presenting
that algorithm, we begin by describing some technical de-
tails needed in it.

Binary search

IfY C Z and MQ(Y) = 0 and MQ(Z) = 1, we can cover a
term in the target using Y and one or more variables from
Z —Y . This situation might arise, for instance, if Y is one of
the original terms of the target, and Z is the term containing
all variables.

The basic idea is to repeatedly use binary search to find
individual variables that must be added to cover a term in
the target.

We present Algorithm BINARYSEARCH as Algorithm 4. It is
given as input the maximum number of edits e that it may

Algorithm 4 BINARYSEARCH(Y, Z, e). Finds necessary ad-
ditions to Y from Z to cover a target term, if this can be
done with < e additions and if Z covers a unique extension
of Y that covers a target term. If there are two such exten-
sions, it sets a flag, PivotFlag, and returns a nonambiguous
Z. Initially, Y C Z, and MQ(Y) =0 and MQ(Z) = 1.

1: if e < 0 then {All edits already used}

2 return “Failure”

3 85=Y,T=72.

4: while |T' — S| > 1 do {binary search for 1 var.}
5: Divide T — S into equal-size sets d1 and da.
6: if MQ(SUdi) =0 then
7.
8
9
0
1

S=SUd:
else
T=SUdy
: Let v be the unique variable in T'— S.
¢ if MQ(Z — v) =1 then {Z covered 2 target terms; v
is in only one}
12: if Caller already had a one term hypothesis then
13: return “Failure”
14: else {Occurs only with call from Line 27 of REVISE-

UpToOE}
15: return PivotFlag and Z — v
16: Y=Y Uvw

17: if MQ(Y) =1 then

18: returnY ande—1

19: else

20: return BINARYSEARCH(Y,Z,e — 1)

make, and returns the edited term and the number of edits
remaining.

The while loop in lines 4-9 does the actual binary search
for one variable from Z — Y that must be added to the
term Y. (A similar idea was used by Uehara, Tsuchida,
and Wegener [20].) Eventually, we find a single variable v
that makes the difference between a positive and negative
membership query.

If MQ(Y Uwv) = 1, then we are done. Otherwise, we must
iterate and look for another variable to add. We wrote this
as a recursive call; it is in lines 16-20 of the pseudocode.
One special case arises: this search might add variables from
both target terms. In particular, imagine that in the course
of a binary search from Y to Z we found that the variable v
needs to be added; that is, there is some set A of variables
such that MQ(Y UA) =0 and MQ(YUAU {v}) =1. In
addition, suppose that MQ(Z — {v}) = 1. Then it must be
that Z — {v} contains one term, and Y U A U {v} contains
the other. We call such a v a pivot, and we check for a pivot
in lines 11-15 of the pseudocode.

If a pivot is found and the caller already has a one term hy-
pothesis, then the caller cannot use two more terms. There-
fore, in such a case, Binary Search must return “failure.”
This is tested for at line 12.

If the caller does not yet have a term in its hypothesis, we
return a flag we call PivotFlag and a modified positive ex-
ample that must satisfy only one term: the original positive
instance with the pivot variable changed to be 0, namely,
Z — {v}. The caller can use this to back up and start over
without the ambiguity caused by having a pivot.

Except in the pivot case, the algorithm BINARY-
SEARCH(Y, Z, e) either fails, or returns e’ and a set S such

that Y C SC Z and |S—Y| =e— €' and MQ(S) =
such that for the unique target term G C S, S—Y C G.

Ambiguity

The algorithm constructs a hypothesis; at each stage of the
construction, there are 0,1, or 2 terms in the hypothesis.
The initial formula’s terms are T1 and T>. Let x be a pos-
itive counterexample to our current hypothesis. For some
target term G, G C z. G can be obtained by editing T
or T5, but it is not obvious which one to edit in order to
achieve the minimum total number of edits. Thus, at cer-
tain points in the pseudocode for Algorithm REVISEUPTOE,
the words “Try both:” appear. In this case, we first try to
finish learning based on our current hypothesis and the as-
sumption that target term G should be obtained by editing
Ty. If this succeeds, we are done. If this fails, or starts
to use more than e total revisions, then we instead try the
assumption that G should be obtained by editing 7. This
situation arises only when there is ambiguity about which
target terms are associated with which initial terms. The al-
gorithm constructs a hypothesis so that, if there are two hy-
pothesis terms, each covers a distinct target term. Thus, the
ambiguity will not arise with respect to the constructed hy-
pothesis, and at most once with respect to the initial terms.
Therefore, the branching implicit in “Try both:” affects our
query complexity by only a multiplicative factor of 2.

RefineDavn

If we have a hypothesis whose term(s) cover terms of the tar-
get, we are in the situation of revising monotone DNF in the
deletions-only model. We use a subroutine Algorithm RE-
FINEDOWN, similar to the main subroutine used by Sloan
and Turan for 2-term monotone DNF in the deletions-only
model [18]. It updates the number of edits remaining, and,
in the case of a one-term hypothesis, returns (success or fail-
ure or) an edit of that term and a positive counterexample.

Algorithm 5 Algorithm REFINEDOWN(h,e). Input h is
the current hypothesis, all of whose term(s) must cover a
distinct term of the target hypothesis. Input e is the number
of remaining edits allowed, and is updated as we go. If either
the correct hypothesis is found or the error limit exceeded,
the procedure halts immediately.
while (z = EQ(h)) # “Correct” do
for Each term ¢t € h do
if MQ(z Nt) ==1 then
e=e—|t\tNz
if e < 0 then
return “Failure”
t=tNez
if no term of h was revised by counterexample = then
if h has two terms then
return “Failure”
else
return h,z,e

We next make a few remarks about Algorithm REVISEUP-
ToE, explaining the various cases that it has.

The Algorithm

There are two main cases, depending on whether there is
any target term contained in 77 N T, where the initial for-

Algorithm 6 REVISEUPTOE(Ty V Ts,¢). Revises T1 V T3 if
possible using at most e revisions; otherwise returns “Fail-
ure.” Note that if any subroutine either finds the correct
hypothesis or returns “Failure,” then this algorithm also
terminates. Also, if the error limit e is ever exceeded, this
algorithm terminates immediately and returns “Failure”.

1: if MQ(T1 n Tz) == 1 then

2: e=e

3: (h,z,e) = REFINEDOWN(T1 N T2,e)

4: if MQ(zNTiNT>) ==1 then

5: REFINEDOWN(A V (z N1y N T2),e)

6: else if MQ(z NT;) == 1 for exactly one ¢ € {1,2}
then

7: Try both:

8: A. REFINEDOWN(hVT;Nz, eo—|T:\ h|—|T:\ (TiNz)|)

9: B. (S,e) = BINARYSEARCH(z N T, z,e0 — |15 \ h|)

10: REFINEDOWN(R V S, €)

11: else {Both MQ(z N T;) are 0.}

12: Try both with ¢ =1, 2:

13: (S,e) = BINARYSEARCH(z N T, z,e0 — |T5 \ hl)

14: REFINEDOWN(h V S, €)

15: else {No target term wholly inside intersection 73 NT>}
16: if MQ(T1) == MQ(T2) ==1 then

17: REFINEDOWN(T: V T3, €)

18: elseif MQ(T; == 1) for exactly one z € {1,2} then
19: Try both:

20: A. (h,z,e') = REFINEDOWN(T;,)

21: (S,e) = BINARYSEARCH(z N T}, z, €')

22: REFINEDOWN(R V S, €)

23: B. (h,e) = BINARYSEARCH(T; N T3, T3, e)

24: (h,z,e) = REFINEDOWN(h, €)

25: (S,e) = BINARYSEARCH(z N T, z, €)

26: REFINEDOWN(A V S, €)

27: else {Both MQ(T;) are 0}

28: 1= EQ(FALSE)

29: Try both with ¢ =1,2:

30: if BINARYSEARCH(z N T;,z,e) returns PivotFlag
and z then

31: Reset z to be z and go back to line 29

32: else

33: Let (S, e) be what BINARYSEARCH returned

34: (h,y,e) = REFINEDOWN(S, e)

35: (9, e) = BINARYSEARCH(y N Tf, y, €)

36: RErFINEDOWN (R V S’ €)

mula is Ty V T2. There is a target term in T3 N T if and
only if MQ(Th NT:2) = 1. If there is, then our initial hy-
pothesis will be the single term T3 N T3 and we may even-
tually delete variables from that term, add and edit a sec-
ond term, or both (“Case 1”7). If not (“Case 2”), then if
MQ(T1) = MQ(T2) = 1, then our initial hypothesis is the
two-term DNF Ty V Ts. If at most one of the MQ(T}) and
MQ(T?) is 1, then the situation is somewhat more compli-
cated. We now describe each case in more detail.

Case 1.

MQ(T1 NT2) = 1. Our initial hypothesis is the term Th N T3,
and REFINEDOWN may delete variables from it, but if the
target has two terms REFINEDOWN will eventually return
a positive counterexample z to a perhaps revised one-term
hypothesis T', and MQ(T'Nz) = 0. In this case, £ must cover
a target term distinct from the target term covered by T'.

i: Suppose MQ(z NT1) = 1 and MQ(z N T2) = 0. Then
T1 Nz covers a different target term than that covered by T'.
We try revising T1 to something in 7" and 7> to something
in z, and if that fails, vice versa.

ii: Suppose MQ(z N T1) = MQ(z N T2) = 0. Same two
options considered as in 1.i, though the details of the code
are different.

iii: Suppose MQ(z NT1) = MQ(z NT>2) = 1. We now show
that this case cannot arise. Recall that MQ(T'Nz) = 0. Thus
x covers two distinct terms which are also distinct from the
term covered by 71 N T>. Contradiction.

Case 2
MQ(T1 n T2) = 0.

i: Consider the case where MQ(T1) = 1 = MQ(T2). We
call REFINEDOWN (T VT3); straightforward arguments show
that editing each T; to the target term contained in T; must
use fewer queries than editing T; to the target term con-
tained in T3. (Here, and in the code, T5 refers to T2 if i = 1,
and to Ty if ¢ = 2.)

ii: Next, consider the case where MQ(T:y) = 1 and
MQ(T2) = 0. (The case where MQ(T1) = 0 and MQ(T:) =
1 is symmetric.)

We first try refining the term contained in Tj, assuming
that that target term should be derived from Ti. If we get
a positive counterexample, z, to this one-term hypothesis,
we binary search to revise T to a term contained in z.

If all of this fails, then we try instead editing 7% to the target
term contained in 7;. We then refine that term until we
reach the target or get a positive counterexample, z, to this
one-term hypothesis. In that case, we binary search from T}
to the positive counterexample to get a second hypothesis
term, and finally refine down the two hypothesis terms.

iii: Finally, consider the case where MQ(71) = MQ(T2) =
0. We begin by getting a positive counterexample z to
EQ(FALSE). In this case, z must contain at least one term
of the target DNF, and may contain both terms of the target
DNF.

In lines 29-36, we use the “try both ¢” construct to try
revising each T; to z.

iii.a: If z contains only one target term, and the target
DNF has two terms, this means that we try revising both
T; to that one term in z (and revising 75 to a second term,

assuming the target has two terms). At least one of the T;
will lead to a successful revision.

iii.b: If z contains both target terms, then in one or both of
the two branches of the “try both 7,” BINARYSEARCH may
find a pivot variable (one unique to one of the target terms).
If so, then on that branch, BINARYSEARCH will then return
PivotFlag and an alternative z that contains only one term,
and we back up to the “try both ¢ at line 29 and try both ¢
again using this z.

Notice that the call to BINARYSEARCH to find the pivot uses
at most O(elogn) queries, and happens only once, so the
asymptotic query complexity is not increased by finding the
pivot.

iii.c: The last possibility is that z contains both target
terms, but that on both branches of “try both 4,” the bi-
nary search from z N T; to z finds some revised term with-
out ever adding a pivot variable. If both branches find the
same term, then at least one of the branches has edited the
syntactically closer T; to this term, and this branch of the
computation will succeed.

Suppose instead that each branch found a different term;
say T1 Nz was edited to find hypothesis term S; and T> Nz
was edited to find hypothesis term S2, and S; # S2. Each
Si must contain a different target term, which we will refer
to as Gi;.

Is it possible that the most efficient revision of Ty V T re-
quires that T; is revised to G2 and vice-versa, given this
situation? In order to show that this does not happen, we
describe the edits needed for each revision.

Note that any variable in S; \ T; is not a pivot, but does
appear in some goal term. In other words, for each i, S; \ T;
is contained in G1 N G2. In either revision (the current one
or the perverse one), those variables would have had to be
added to T;. Let us consider, for each revision what other
edits would be needed.

We will ignore the variables in T; \ (G1 U G2), since those
need to be deleted in either case. Let G; = G; \ Gs.

The current revision requires that, for each i, we

e add G; \ T; to T;
o delete G5 N T; from T;.
The perverse revision requires that, for each 7, we
e add G; \ T to T}
e delete G N T; from T;.

Notice that G; N T; = G}, since the only variables added
to T; to form S; were from Gi1 N Ga2. Thus there are at
least as many deletions in the perverse revision as there are
additions in the current revision.

Next observe that G; \ T; is contained in (G; N Gi) \ T; by
the argument about pivots, and this is contained in Gz \ T;.
Thus, the number of perverse additions is at least as great
as the number of additions in the current case.

Thus, the perverse revision is perhaps worse and certainly
no better than deleting from S1 and S2. This shows that
the length of the sequence of revisions that our algorithm
is making is less than or equal to the minimum revision
distance from the initial theory to the target theory (i.e.,
from ¢1 V t2 to G1 V Ga).

Based on the proceeding discussion of REVISEUPTOE we
have the following theorem.

THEOREM 6. Algorithm REVISEUPTOE will revise a 2-
term monotone DNF' formula needing e revisions using at
most O(e*logn) queries, where n is the number of variables
in the given universe.

COROLLARY 7. Every monotone 2-term DNF ¢ has a re-
viston algorithm that uses O (63 log n) queries, where e is
the revision distance between ¢ and the target concept in the
general model of revisions.

Proor. The algorithm proceeds in stages. During stage
s, we run REVISEUPTOE(p,). This must succeed in finding
the target by the time s =e. [

5. CONCLUSIONS, FUTURE WORK
Angluin et al. [2] give a query complexity O(m?n) algorithm
for learning Horn sentences with m clauses on n variables.
This work shows that, when the number of clauses/terms in
a formula is sufficiently small, it is much easier to revise than
to learn from scratch. It is possible that our Horn clause
revision algorithm can be fine-tuned to shave the exponent
on m, the number of clauses. However, the lower bound of
Sloan and Turédn discussed in Section 1.2 shows that even
for a single revision, we will always need Q(m) queries, so
this result cannot be extended from polylog clauses to O(n)
clauses.

The next obvious piece of work is to extend the DNF algo-
rithm from 2-term to log n-term DNF formulas, and to Horn
formula revisions that allow additions. In addition, revision
algorithms for DFAs would be of great use to all of us who
teach and grade automata theory.

6. REFERENCES

[1] D. Angluin. Learning regular sets from queries and
counterexamples. Inform. Comput., 75(2):87-106, Nov.
1987.

[2] D. Angluin, M. Frazier, and L. Pitt. Learning conjunc-
tions of Horn clauses. Machine Learning, 9:147-164,
1992.

[3] S. Argamon-Engelson and M. Koppel. Tractability of
theory patching. Journal of Artificial Intelligence Re-
search, 8:39-65, 1998.

[4] A. Blum, L. Hellerstein, and N. Littlestone. Learning
in the presence of finitely or infinitely many irrelevant
attributes. J. of Comput. Syst. Seci., 50(1):32-40, 1995.
Earlier version in 4th COLT, 1991.

[5] N. Bshouty and L. Hellerstein. Attribute-efficient learn-
ing in query and mistake-bound models. J. Comput.
Syst. Seci., 56:310-319, 1998.

[6] R. Davis and W. Hamscher. Model-based reasoning:
Troubleshooting. In H. E. Shrobe and the American
Association for Artificial Intelligence, editors, Ezploring
Artificial Intelligence: Survey Talks from the National
Conferences on Artificial Intelligence, chapter 8, pages
297-346. Morgan Kaufmann, San Mateo, CA, 1988.

[7] R. Greiner. The complexity of theory revision. Artificial
Intelligence, 107:175-217, 1999.

[8] M. Kearns, M. Li, L. Pitt, and L. Valiant. On the learn-
ability of Boolean formulae. In Proc. 19th Annu. ACM
Sympos. Theory Comput., pages 285-294. ACM Press,
New York, NY, 1987.

[9] Z. Kohavi. Switching and Finite Automata Theory.
McGraw-Hill, New York, NY, second edition, 1978.

[10] M. Koppel, R. Feldman, and A. M. Segre. Bias-driven
revision of logical domain theories. Journal of Artificial
Intelligence Research, 1:159-208, 1994.

[11] R. A. Marcotte, M. J. Neiberg, R. L. Piazza, and
L. J. Holtzblatt. Model-based diagnostic reasoning us-
ing VHDL. In J. M. Schoen, editor, Performance and
Fault Modeling with VHDL, chapter 6, pages 304-399.
Prentice Hall, Englewood Cliffs, NJ, 1992.

[12] W. Marek and M. Truszczyndski. Revision program-
ming. Theoretical Computer Science, 190(2):241-277,
1998.

[13] J. de Kleer, A. K. Mackworth, and R. Reiter. Charac-
terizing diagnoses and systems. Artificial Intelligence,
56:197-222, 1992.

[14] R.J. Mooney. A preliminary PAC analysis of theory re-
vision. In Computational Learning Theory and Natural
Learning Systems, Volume III: Selecting Good Models,
chapter 3, pages 43-53. MIT Press, 1995.

[15] D. Ourston and R. J. Mooney. Theory refinement com-
bining analytical and empirical methods. Artificial In-
telligence, 66:273-309, 1994.

[16] B. L. Richards and R. J. Mooney. Automated refine-
ment of first-order Horn-clause domain theories. Ma-
chine Learning, 19:95-131, 1995.

[17] E. Y. Shapiro. Algorithmic Program Debugging. MIT
Press, Cambridge, MA, 1983.

[18] R. H. Sloan and G. Turdn. On theory revision with
queries. In Proc. 12th Annu. Conf. on Comput. Learn-
ing Theory, pages 41-52, 1999.

[19] G. G. Towell and J. W. Shavlik. Extracting refined rules
from knowledge-based neural networks. Machine Learn-
ing, 13:71-101, 1993.

[20] R. Uehara, K. Tsuchida, and I. Wegener. Optimal
attribute-efficient learning of disjunction, parity, and
threshold functions. In Computational Learning The-
ory: Eurocolt ’97, pages 171-184. Springer-Verlag,
1997.

[21] R. A. Wagner and M. J. Fischer. The string-to-string
correction problem. J. ACM, 21:168-173, 1974.

[22] S. Wrobel. Concept formation during interactive theory
revision. Machine Learning, 14(2):169-191, 1994.

[23] S. Wrobel. First order theory refinement. In
L. De Raedt, editor, Advances in ILP, pages 14-
33. I0S Press, Amsterdam, 1995.

