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a b s t r a c t

We propose models for lobbying in a probabilistic environment, in which an actor (called
‘‘The Lobby’’) seeks to influence voters’ preferences of voting for or against multiple issues
when the voters’ preferences are represented in terms of probabilities. In particular, we
provide twoevaluation criteria and twobriberymethods to formally describe thesemodels,
and we consider the resulting forms of lobbying with and without issue weighting. We
provide a formal analysis for these problems of lobbying, and determine their classical
and parameterized complexity depending on the given bribery/evaluation criteria and
on various natural parameterizations. Specifically, we show that some of these problems
can be solved in polynomial time, some are NP-complete but fixed-parameter tractable,
and some are W [2]-complete. Finally, we provide approximability and inapproximability
results for these problems and several variants.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Motivation and informal description of probabilistic lobbying models

In most democratic political systems, laws are passed by elected officials who are supposed to represent their con-
stituency. Individual entities such as citizens or corporations are not supposed to have undue influence in the wording
or passage of a law. However, they are allowed to make contributions to representatives, and it is common to include an
indication that the contribution carries an expectation that the representative will vote a certain way on a particular issue.
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Many factors can affect a representative’s vote on a particular issue. There are the representative’s personal beliefs about
the issue, which presumably were part of the reason that the constituency elected them. There are also the campaign
contributions, communications from constituents, communications from potential donors, and the representative’s own
expectations of further contributions and political support.

It is a complicated process to reason about. Earlier work (see the references given in Section 1.2) considered the problem
of meting out contributions to representatives in order to pass a set of laws or influence a set of votes. However, the earlier
computational complexity work by Christian et al. [2] on this problemmade the assumption that a politician who accepts a
contribution will in fact – if the contribution meets a given threshold – vote according to the wishes of the donor.

It is said that ‘‘An honest politician is one who stays bought’’, but that does not take into account the ongoing pressures
from personal convictions and opposing lobbyists and donors. We consider the problem of influencing a set of votes under
the assumption that we can influence only the probability that the politician votes as we desire.

There are several axes along which the picture is being complicated in realistic scenarios. To describe these formally, we
introduce various evaluation criteria and bribery methods. The first one is the notion of sufficiency: What does it mean to
say we have donated enough to influence the vote? Does it mean that the probability that a single vote will go our way is
greater than some threshold? That the probability that all the votes go our way is greater than that threshold? We formally
define and discuss these and other criteria in the section on evaluation criteria (Section 2.3).

The evaluation criteria we discuss are a proxy for what could be considered the most natural evaluation criteria:
probabilistic majority. Ideally, a probabilistic win for an issue would be exactly when the sum of the probabilities of possible
futures that include that win exceeds a given threshold. This would mean counting all possible future scenarios where a
win was achieved. While we do not tackle this question directly in the current work, we study two useful relaxations of this
winning criteria, which may be easier to express and to analyze algorithmically. In particular, we consider two methods for
evaluating the outcome of a vote:

1. strict majority, where a vote on an issue is won by a strict majority of voters having a probability of accepting this issue
that exceeds a given threshold, and

2. average majority, where a vote on an issue is won exactly when the voters’ average probability of accepting this issue
exceeds a given threshold.

How does one donate money to a campaign? In the United States there are several laws that influence how, when, and
howmuch a particular person or organization can donate to a particular candidate.We examineways inwhichmoney can be
channeled into the political process in the section on bribery methods (Section 2.2). In particular, we consider twomethods
that an actor (called ‘‘The Lobby’’) can use to influence the voters’ preferences of voting for or against multiple issues:

1. microbribery, where The Lobby may choose which voter to bribe on which issue in order to influence the outcome of the
vote according to the evaluation criterion used and

2. voter bribery, where The Lobby may choose which voters to bribe and for each voter bribed the funds are equally
distributed over all the issues, again aiming at changing the outcome of the vote according to the evaluation criterion
used.

The voter bribery method is due to Christian et al. [2], who were the first to study lobbying in the context of direct
democracy where voters vote onmultiple referenda. Their ‘‘Optimal Lobbying’’ problem (denoted OL) is a deterministic and
unweighted variant of the lobbying problems that we present in this paper. We state this problem in the standard format
for parameterized complexity:

Optimal Lobbying

Given: Anm × n 0/1 matrix E and a 0/1 vector Z⃗ of length n. Each row of
E represents a voter and each column represents an issue. An
entry of E is 1 if this voter votes ‘‘yes’’ for this issue, and is 0
otherwise. Z⃗ represents The Lobby’s target outcome.

Parameter: A positive integer b (representing the number of voters to be
influenced).

Question: Is there a choice of b rows of the matrix (i.e., of b voters) that can
be changed such that in each column of the resulting matrix (i.e.,
for each issue) a strict majority vote yields the outcome targeted
by The Lobby?

Christian et al. [2] proved that OL is W [2]-complete. Sandholm noted that the ‘‘Optimal Weighted Lobbying’’ (OWL)
problem, which allows different voters to have different prices and so generalizesOL, can be expressed as and solved via the
‘‘binary multi-unit combinatorial reverse auction winner-determination problem’’ (see [3] for its definition).

The microbribery method in the context of lobbying – though inspired by the different notion of microbribery that
Faliszewski et al. [4,5] introduced in the context of bribery in voting – is new to this paper.
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Table 1
Complexity results for X-Y-PLP, where X ∈ {MB,VB} and Y ∈ {SM,AM}.

Problem Classical complexity Parameterized complexity, parameterized by Stated in or implied by Thm./Cor.
Total budget Budget per issue Total budget & discretiz. level

MB-SM-PLP P (FPT) (FPT) (FPT) 4.1
MB-AM-PLP P (FPT) (FPT) (FPT) 4.2
VB-SM-PLP NP-complete FPT W [2]-complete FPT 4.3 and 5.1–5.3
VB-AM-PLP NP-complete ? W [2]-hard FPT 4.3, 5.4, 5.1

1.2. Related work

Lobbying has been studied formally by economists, computer scientists, and special interest groups since at least 1983 [6]
and as an extension to formal game theory since 1944 [7]. The different disciplines have considered mostly disjoint aspects
of the process while seeking to accomplish distinct goals with their respective formal models. Economists study lobbying
as ‘‘economic games’’, as defined by von Neumann and Morgenstern [7]. This analysis is focused on learning how these
complex systems work and deducing optimal strategies for winning the competitions [6,8,9]. This work has also focused on
how to ‘‘rig’’ a vote and how to optimally dispense the funds among the various individuals [8]. Economists are interested
in finding effective and efficient bribery schemes [8] as well as determining strategies for instances of two or more players
[6,8,9]. Generally, they reduce the problem of finding an effective lobbying strategy to one of finding a winning strategy for
the specific type of game. Economists have also formalized this problem for bribery systems in both the United States [6]
and the European Union [10].

The study of lobbying from a computational perspective that was initiated by Christian et al. [2] falls into the field of
computational social choice, which stimulates a bidirectional transfer between social choice theory (in particular, voting and
preference aggregation) and computer science. For example, voting systems have been applied in various areas of artificial
intelligence, most notably in the design of multiagent systems (see, e.g., [11]), for developing recommender systems [12],
for designing a meta-search engine that aggregates the website rankings generated by several search engines [13], etc.
Applications of voting systems in such automated settings (not restricted only to political elections in human societies)
requires a better understanding of the computational properties of the problems related to voting. In particular,many papers
have focused on the complexity of

• winner determination (see, e.g., [14–18]),
• manipulation (see, e.g., [5,19–32]),
• procedural control (see, e.g., [4,29,33–38]), and
• bribery in elections (see, e.g., [4,5]).

Formore details, the reader is referred to the surveys by Faliszewski et al. [39–41], Conitzer [42], and Baumeister et al. [43]
and the references cited therein. In comparison, much less work has been done on lobbying in voting on multiple referenda
that we are concerned with here ([2], see also [3]).

1.3. Organization of this paper and a brief overview of results

Christian et al. [2] show that OL is complete for the (parameterized) complexity class W [2]. We extend their model of
lobbying asmentioned above (see Section 2 for a formal description), and provide algorithms and analysis for these extended
models in terms of classical and parameterized complexity. All complexity-theoretic notions needed will be presented in
Section 3.

Our classical complexity results (presented in Section 4) are shown via either polynomial-time algorithms for or reduc-
tions showing NP-completeness of the problems studied. For the parameterized complexity results (presented in Section 5),
we choose natural parameters such as The Lobby’s budget, the budget per referendum, and the ‘‘discretization level’’ used
in formalizing our probabilistic lobbying problems (see Section 2.1). We also consider the concept of issue weighting, mod-
eling that certain issues will be of more importance to The Lobby than others. Our classical and parameterized complexity
results are summarized in Table 1 (see Section 4) for problems without and in Table 2 (see Section 4.3) for problems with
issue weighting.

In Section 6, we provide approximability and inapproximability results for probabilistic lobbying problems. In this way
we add breadth and depth to not only the models but also the understanding of lobbying behavior. We conclude by
summarizing our main results and stating some open problems in Section 7.

2. Models for probabilistic lobbying

2.1. Initial model

We begin with a version of the Probabilistic Lobbying Problem (PLP, for short) in which voters start with initial
probabilities of voting for an issue and are assigned known costs for increasing their probabilities of voting according to
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Table 2
Complexity results for X-Y-PLP-WIW, where X ∈ {MB,VB} and Y ∈ {SM,AM}.

Problem Classical complexity Parameterized complexity Stated in or implied by Thm./Cor.
Total budget Budget per issue Total budget & discr. level

MB-SM-PLP-WIW NP-complete FPT ? (FPT) 4.4 and 5.6
MB-AM-PLP-WIW NP-complete FPT ? (FPT) 4.4 and 5.6
VB-SM-PLP-WIW NP-complete FPT W [2]-complete∗ FPT 4.5, 5.7 and 5.8, 5.9
VB-AM-PLP-WIW NP-complete ? W [2]-hard FPT 4.5, 5.7 and 5.8

‘‘The Lobby’s’’ agenda by each of a finite set of increments. The question, for this class of problems, is: Given the above
information, along with an agenda and a fixed budget B, can The Lobby target its bribes in order to achieve its agenda?

The complexity of the problem seems to hinge on the evaluation criterion for what it means to ‘‘win a vote’’ or ‘‘achieve
an agenda’’. We discuss the possible interpretations of evaluation and bribery later in this section.2 First, however, we
will formalize the problem by defining data objects needed to represent the problem instances. (A similar model was first
discussed by Reinganum [6] in the continuous case andwe translate it here to the discrete case. This will allow us to present
algorithms for, and a complexity analysis of, the problem.)

Let Qm×n
[0,1] denote the set of m × n matrices over Q[0,1] (the rational numbers in the interval [0, 1]). By slight abuse of

notation,3 we say P ∈ Qm×n
[0,1] is a probability matrix (of size m × n), where each entry pi,j of P gives the probability that voter

vi will vote ‘‘yes’’ for referendum (synonymously, for issue) rj. The result of a vote is either a ‘‘yes’’ (represented by 1) or a
‘‘no’’ (represented by 0). Thus, we represent the result of any vote on all issues as a 0/1 vector X⃗ = (x1, x2, . . . , xn), which
is sometimes also denoted as a string in {0, 1}n.

We now associate with each voter/issue pair (vi, rj) a discrete price function ci,j for changing vi’s probability of voting
‘‘yes’’ for issue rj. Intuitively, ci,j is a monotonic staircase function that gives the cost for The Lobby of raising or lowering (in
discrete steps) the ith voter’s probability of voting ‘‘yes’’ on the jth issue. A formal description is as follows.

Given the entries pi,j = ai,j/bi,j of a probabilitymatrix P ∈ Qm×n
[0,1] , where ai,j ∈ N = {0, 1, . . .} and bi,j ∈ N>0 = {1, 2, . . .},

choose some k ∈ N such that k + 1 is a common multiple of all bi,j, where 1 ≤ i ≤ m and 1 ≤ j ≤ n, and partition the
probability interval [0, 1] into k + 1 steps of size 1/(k + 1) each.4 The integer k will be called the discretization level of the
problem instance, and each integer κ , 0 ≤ κ ≤ k + 1 might be called a (confidence) step. For each i ∈ {1, 2, . . . ,m} and
j ∈ {1, 2, . . . , n}, ci,j : {0, 1/(k+1), 2/(k+1), . . . , k/(k+1), 1} → N is the (discrete) price function for pi,j, i.e., ci,j(ℓ/(k+1))
is the price for changing the probability of the ith voter voting ‘‘yes’’ on the jth issue from pi,j to ℓ/(k+1), where 0 ≤ ℓ ≤ k+1.
Note that the domain of ci,j consists of k + 2 elements of Q[0,1] including 0, pi,j, and 1. In particular, we require ci,j(pi,j) = 0,
i.e., a cost of zero is associated with leaving the initial probability of voter vi voting on issue rj unchanged. Note that k = 0
means pi,j ∈ {0, 1}, i.e., in this case each voter either accepts or rejects each issue with certainty and The Lobby can only flip
these results.5 The image of ci,j consists of k + 2 nonnegative integers including 0 (the confidence steps), and we require
that, for any two elements a, b in the domain of ci,j, if pi,j ≤ a ≤ b or pi,j ≥ a ≥ b, then ci,j(a) ≤ ci,j(b). This guarantees
monotonicity on the prices in both directions.

We represent the list of price functions associated with a probability matrix P as a table CP , called cost matrix in the
following, whose m · n rows give the price functions ci,j and whose k + 2 columns give the costs ci,j(ℓ/(k + 1)), where
0 ≤ ℓ ≤ k+ 1. Occasionally, we use ci,j[ℓ] to denote ci,j(ℓ/(k+ 1)), for ℓ ∈ {0, 1, . . . , k+ 1}. Note that we choose the same
k for each ci,j, so we have the same number of columns in each row of CP . The entries of CP can be thought of as ‘‘price tags’’
indicating what The Lobby must pay in order to change the probabilities of voting.

The Lobby also has an integer-valued budget B and an ‘‘agenda’’, which wewill denote as a vector Z⃗ ∈ {0, 1}n for n issues,
containing the outcomes The Lobby would like to see on these issues. For The Lobby, the prices for a bribe that moves the
outcomes of a referendum into the wrong direction do not matter. Hence, if Z⃗ is zero at position j, then we set ci,j(a) = ––
(indicating an unimportant entry) for a > pi,j, and if Z⃗ is one at position j, thenwe set ci,j(a) = –– (indicating an unimportant
entry) for a < pi,j. Note that ci,j(a) = 0 if and only if a = pi,j.

For simplicity, we may assume that The Lobby’s agenda is all ‘‘yes’’ votes, so the target vector is Z⃗ = 1n. This assumption
can be made without loss of generality, since if there is a zero in Z⃗ at position j, we can flip this zero to one and also change
the corresponding probabilities p1,j, p2,j, . . . , pm,j in the jth column of P to 1− p1,j, 1− p2,j, . . . , 1− pm,j (see the evaluation

2 We stress that when we use the term ‘‘bribery’’ in this paper, it is meant in the sense of lobbying [2], not in the sense Faliszewski et al. [5] have in mind
when defining bribery in elections (see also, e.g., [4,44,45]). In bribery in the context of lobbying one considers modifications to multiple independent
issues, while in bribery in the context of elections one generally considers modifying rank orderings of interdependent candidates.
3 The term ‘‘probability matrix’’ might be perceived as misleading, since neither the row entries nor the column entries of this matrix must add up to

one. However, we nonetheless use this term to indicate that each matrix entry represents the acceptance probability of a voter for an issue.
4 There is some arbitrariness in this choice of k. One might think of more flexible ways of partitioning [0, 1]. We have chosen this way for the sake of

simplifying the representation, but we mention that all that matters is that for each i and j, the discrete price function ci,j is defined on the value pi,j , and
is set to zero for this value.
5 This is the special case of OL [2].
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criteria in Section 2.3 for how to determine the result of voting on a referendum). Moreover, the rows of the cost matrix CP
that correspond to issue j have to be mirrored.

Example 2.1. Consider the following problem instance with k = 9 (so there are k+ 1 = 10 steps),m = 2 voters, and n = 3
issues. We will use this as a running example for the rest of this paper. In addition to the above definitions for k, m, and n,
we also give the following probability matrix P and cost matrix CP for P . (Note that this example is normalized for an agenda
of Z⃗ = 13, which is why The Lobby has no incentive for lowering the acceptance probabilities, so those costs are omitted
below.)

Our example consists of a probability matrix P:

r1 r2 r3
v1 0.8 0.3 0.5
v2 0.4 0.7 0.4

and the corresponding cost matrix CP :

ci,j 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

c1,1 -- -- -- -- -- -- -- -- 0 100 140
c1,2 -- -- -- 0 10 70 100 140 310 520 600
c1,3 -- -- -- -- -- 0 15 25 70 90 150
c2,1 -- -- -- -- 0 30 40 70 120 200 270
c2,2 -- -- -- -- -- -- -- 0 10 40 90
c2,3 -- -- -- -- 0 70 90 100 180 300 450

In Section 2.2, we describe two briberymethods, i.e., two specificways inwhich The Lobby can influence the voters. These
will be referred to asmicrobribery (MB) and voter bribery (VB). In Section 2.3, we define twoways inwhich The Lobby canwin
a set of votes. These evaluation criteria will be referred to as strict majority (SM) and average majority (AM). The four basic
probabilistic lobbying problems we will study (each a combination of MB/VB bribery under SM/AM evaluation) are defined
in Section 2.4, and a modification of these basic problems with additional issue weighting is introduced in Section 2.5.

2.2. Bribery methods

We begin by first formalizing the bribery methods by which The Lobby can influence votes on issues. We will define two
methods for donating this money.

2.2.1. Microbribery (MB)
The first method at the disposal of The Lobby is what we will callmicrobribery.6 We define microbribery to be the editing

of individual elements of the P matrix according to the costs in the CP matrix. Thus The Lobby picks not only which voter to
influence but also which issue to influence for that voter. This bribery method allows a very flexible version of bribery, and
models private donations made to politicians or voters in support of specific issues.

More formally, if voter i is bribed with d dollars on issue j, then all entries ci,j[ℓ], 0 ≤ ℓ ≤ k + 1, of CP are updated as
follows:

ci,j[ℓ] :=


–– if (ci,j[ℓ] = ––) ∨ ((ci,j[ℓ] − d) ≤ 0)
ci,j[ℓ] − d if (ci,j[ℓ] − d) > 0.

Moreover, assuming The Lobby’s target vector is 1n, let T = argmax{ℓ | ci,j[ℓ] = ––}. Replace ci,j[T ] := 0 and update
pi,j := T/(k + 1).

Example 2.2 (Continuing Example 2.1). To make this concrete, reconsidering our Example 2.1: Suppose we give $100 to the
second voter and ask her to change her opinion on the third issue. This would lead to the following update of CP :

ci,j 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

c1,1 -- -- -- -- -- -- -- -- 0 100 140
c1,2 -- -- -- 0 10 70 100 140 310 520 600
c1,3 -- -- -- -- -- 0 15 25 70 90 150
c2,1 -- -- -- -- 0 30 40 70 120 200 270
c2,2 -- -- -- -- -- -- -- 0 10 40 90
c2,3 -- -- -- -- -- -- -- 0 80 200 350

6 Although our notion was inspired by theirs, we stress that it should not be confused with the term ‘‘microbribery’’ used by Faliszewski et al. [4,44,45]
in the different context of bribing ‘‘irrational’’ voters in Llull/Copeland elections via flipping single entries in their preference tables.
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Accordingly, the matrix P is updated as follows:

r1 r2 r3
v1 0.8 0.3 0.5
v2 0.4 0.7 0.7

2.2.2. Voter bribery (VB)
The second method at the disposal of The Lobby is voter bribery. We can see from the P matrix that each row represents

what an individual voter thinks about all the issues on the docket. In thismethod of bribery, The Lobby picks a voter and then
pays to edit the entire row at once with the funds being equally distributed over all the issues.7 So, for d dollars a fraction
of d/n is spent on each issue, and the probabilities change accordingly. The cost of moving the voter is given by the CP
matrix as before. This method of bribery is analogous to ‘‘buying’’ or pushing a single politician or voter. The Lobby seeks to
donate so muchmoney to some individual voters that they have no choice but to move all of their votes toward The Lobby’s
agenda.

Let us be more precise. To avoid problems with fractions of dollars, we will assume that the bribery money is donated in
multiples of n, the number of issues. Hence, whole dollars will be donated per referendum. So, if we bribe voter i by giving
her x · n dollars, this results in microbribing every issue by giving x dollars to voter i to raise her confidence on issue j; in
other words, all the entries of ci,j (in CP ), 1 ≤ j ≤ n, will be edited (and accordingly P).

Example 2.3 (Continuing Example 2.1). Let us reconsider our running example:What happens if we give $300 to the second
voter? The update of CP would be as follows:

ci,j 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

c1,1 -- -- -- -- -- -- -- -- 0 100 140
c1,2 -- -- -- 0 10 70 100 140 310 520 600
c1,3 -- -- -- -- -- 0 15 25 70 90 150
c2,1 -- -- -- -- -- -- -- 0 20 100 170
c2,2 -- -- -- -- -- -- -- -- -- -- 0
c2,3 -- -- -- -- -- -- -- 0 80 200 350

Accordingly, the matrix P is updated as follows:

r1 r2 r3
v1 0.8 0.3 0.5
v2 0.7 1.0 0.7

Note that microbribery is equivalent to voter bribery if there is only one referendum.

2.3. Evaluation criteria

Defining criteria for how an issue is won is the next important step in formalizing our models. Here we define twometh-
ods that one could use to evaluate the eventual outcome of a vote. Sincewe are focusing on problems that are probabilistic in
nature, it is important to note that no evaluation criterion will guarantee a win. The criteria below yield different outcomes
depending on the model and problem instance.

2.3.1. Strict majority (SM)
For each issue, a strict majority of the individual voters have probability greater than some threshold, t , of voting accord-

ing to the agenda. In our running example (see Example 2.1), with t = 50%, the result of the votes would be X⃗ = (0, 0, 0),
because none of the issues has a strict majority of voters with above 50% likelihood of voting ‘‘yes’’. The bribery action de-
scribed in Example 2.2 results in the same vector, (0, 0, 0). However, the bribery action described in Example 2.3 results in
the vector (1, 0, 0).

2.3.2. Average majority (AM)
For each issue rj of a given probability matrix P , we define the average probability pj =

m
i=1 pi,j


/m of voting ‘‘yes’’ for

rj. We now evaluate the vote to say that rj is accepted if and only if pj > t where t is some threshold. In our running example

7 Note that at first glance itmight seemmore appealing to allow the voters to specifywhat percentage of each payment is spent onwhich issue. However,
this is in fact not needed: The same effect can be achieved by scaling the prices in the cost matrix appropriately.
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with t = 50%, this would give us a result vector of X⃗ = (1, 0, 0). However, the bribery action described in Example 2.2
results in the vector (1, 0, 1), while the bribery action described in Example 2.3 results in the vector (1, 1, 1).

Note that the first two criteria coincide if there is only one voter or if the discretization level equals zero.
A natural evaluation criteria would be to take into account the probabilities of possible scenarios or futures. Each possible

future, where voters commit to ‘‘yes’’ or ‘‘no’’ votes, has a probability of occurring. If we sum the probabilities of the positive
future scenarios, we would know the exact probability of a successful outcome. This model has been studied in another
paper [46] and led to very complex models. In this paper we have chosen to analyze two proxy models instead, to see if
relaxing the evaluation criteria leads to easy computational problems.

2.4. Basic probabilistic lobbying problems

We now introduce the four basic problems that we will study. Recalling that, without loss of generality, The Lobby’s
target vector may be assumed to be all ones, we define the following problem for X ∈ {MB,VB} and Y ∈ {SM,AM}.

X-Y Probabilistic Lobbying Problem

Given: A probability matrix P ∈ Qm×n
[0,1] with a cost matrix CP (with

integer entries), a budget B, and some threshold t ∈ Q[0,1].
Question: Is there a way for The Lobby to influence CP and hence P (using

bribery method X and evaluation criterion Y , without exceeding
budget B) such that the result of the votes on all issues equals 1n?

We abbreviate this problem name as X-Y-PLP. Recall that CP has (k + 2)mn many entries.

Example 2.4 (Continuing Example 2.1). Consider voter bribery and the averagemajority criterionwith our running example
and suppose The Lobby has a budget of $75, i.e., our instance of VB-AM-PLP is (P, CP , 75) with P and CP as given in
Example 2.1. Giving $75 to the first voter would suffice to lift all issues above the threshold of 50% on average according
to the wishes of The Lobby. The updated cost matrix C ′

P would be:

ci,j 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

c1,1 -- -- -- -- -- -- -- -- 0 75 115
c1,2 -- -- -- -- 0 45 75 115 285 495 575
c1,3 -- -- -- -- -- -- -- 0 45 65 125
c2,1 -- -- -- -- 0 30 40 70 120 200 270
c2,2 -- -- -- -- -- -- -- 0 10 40 90
c2,3 -- -- -- -- 0 70 90 100 180 300 450

This leads to the following updated probability matrix P ′, enriched with the average probabilities:

r1 r2 r3
v1 0.8 0.4 0.7
v2 0.4 0.7 0.4
pj 0.6 0.55 0.55

Since each referendum passes the evaluation test, as desired by The Lobby, (P, CP , 75) is in VB-AM-PLP.

Notice that the discretization level is an implicit (unary) parameter of the problem that is indirectly specified through
the cost matrix CP .

2.5. Probabilistic lobbying with issue weighting

We now augment the model to include the concept of issue weighting. It is reasonable to surmise that certain issues will
be of more importance to The Lobby than others. For this reason we will allow The Lobby to specify higher weights to the
issues that they deem more important. These positive integer weights will be defined for each issue.

Wewill specify theseweights as a vector W⃗ ∈ Nn
>0 with size n equal to the total number of issues in our problem instance.

The higher the weight, the more important that particular issue is to The Lobby. Along with the weights for each issue we
are also given an objective value O ∈ N>0, which is the minimum weight The Lobby wants to see passed. Since this is a
partial ordering, it is possible for The Lobby to have an ordering such as w1 = w2 = · · · = wn. If this is the case, we see that
we are left with an instance of X-Y-PLP, where X ∈ {MB,VB} and Y ∈ {SM,AM}.

We now introduce the four probabilistic lobbying problems with issue weighting. For X ∈ {MB,VB} and Y ∈ {SM,AM},
we define the following problem.
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X-YProbabilistic Lobbying Problem with Issue Weighting

Given: A probability matrix P ∈ Qm×n
[0,1] with cost matrix CP , an issue

weight vector W⃗ ∈ Nn
>0, an objective value O ∈ N>0, a budget B,

and some threshold t ∈ Q[0,1[.
Question: Is there a way for The Lobby to influence CP and hence P (using

bribery method X and evaluation criterion Y , without exceeding
budget B) such that the total weight of all issues for which the
result coincides with The Lobby’s target vector 1n is at least O?

We abbreviate this problem name as X-Y-PLP-WIW.

3. Complexity-theoretic notions

We assume the reader is familiar with standard notions of (classical) complexity theory, such as P , NP, and NP-
completeness. Since we analyze the problems stated in Section 2 not only in terms of their classical complexity, but also
with regard to their parameterized complexity, we provide some basic notions here (see, e.g., the text books by Downey and
Fellows [47], Flum and Grohe [48], and Niedermeier [49] for more background). As we derive our results in a rather specific
fashion, wewill employ the ‘‘Turingway’’ as proposed by Cesati [50]. The reader familiarwith these notions can immediately
proceed to the next section.

A parameterized problem P is a subset of Σ∗
× N, where Σ is a fixed alphabet and Σ∗ is the set of strings over Σ .

Each instance of the parameterized problem P is a pair (I, p), where the second component p is called the parameter. The
language L(P) is the set of all YES instances of P . The parameterized problem P is fixed-parameter tractable if there is an
algorithm (realizable by a deterministic Turing machine) that decides whether an input (I, p) is a member of L(P) in time
f (p)|I|c , where c is a fixed constant and f is a function of the parameter p, but is independent of the overall input length, |I|.
The class of all fixed-parameter tractable problems is denoted by FPT.

Sometimes, more than one parameter (e.g., two parameters (p1, p2)) are associated with a (classical) problem. This is
formally captured in the definition above by coding those parameters into one number p via a so-called pairing function
through diagonalization. As is standard, we assume our pairing function to be a polynomial-time computable bijection from
N × N onto N that has polynomial-time computable inverses.

For a given classical decision or optimization problem, there are various ways to define parameters. With minimization
problems, the standard parameterization is a bound on the entity to be minimized. For instance, the problems studied in
this paper have, as a natural minimization objective, the goal to minimize costs (i.e., to use a budget B as small as possible).
If one can assume that the parameter p is small in practice, or in practical situations involving humans, we can argue that
an algorithm offering a running time of O(2p

|x|) for an instance x with parameter p behaves reasonably well in practice.
Admittedly, this might not be the case with B itself, in particular in view of the fact that only log(B) bits affect the overall
size of the instance. However, this is still the parameter one should start from when considering minimization problems in
order to classify them from the perspective of parameterized complexity.

Are there (more) reasonable, i.e., smaller parameters worth investigating? A related natural parameter choice would be
the budget that can be spent per issue, i.e., the entity B/n. If the voters are actual human beings, one can also argue that the
discretization level k would not be too large.

One of the current trends in parameterized complexity analysis is to studymultiple parameterizations for each problem,
including combining multiple parameters for a problem instance. This trend is highlighted by two recent invited talks given
by Fellows [51] and Niedermeier [52]. Notice that the study of different and multiple parameterizations can also be seen
from another angle: Apart from identifying the hard parts of the problem instance, such research represents a natural
mathematical counterpart of themore practically oriented quest for good parameters thatmay lead to themost competitive
algorithm frameworks for hard problems, as exemplified most notably by SATzilla and ParamILS in the areas of algorithms
for Satisfiability and Integer Linear Programming, respectively, see [53,54].

There is also a theory of parameterized complexity, as exhibited in [47–49],where parameterized complexity is expressed
via hardness for or completeness in the levelsW [t], t ≥ 1, of theW -hierarchy, which includes fixed-parameter tractability
at its lower end and is built on top of it to characterize, level by level, higher degrees of parameterized intractability:

FPT = W [0] ⊆ W [1] ⊆ W [2] ⊆ · · · .

It is commonly believed that this hierarchy is strict. Since only the second level,W [2], will be of interest to us in this paper,
we will define only this class below.

Definition 3.1. Let P and P ′ be two parameterized problems. A parameterized reduction from P to P ′ is a function r that,
for some polynomial q and some function g , is computable in time O(g(p)q(|I|)) and maps an instance (I, p) of P to an
instance r(I, p) = (I ′, p′) of P ′ such that

1. (I, p) is a YES instance of P if and only if (I ′, p′) is a YES instance of P ′, and
2. p′

≤ g(p).
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We then say that P parameterized reduces to P ′ (via r). Parameterized hardness for and completeness in a parameterized
complexity class is defined via parameterized reductions. We will show only W [2]-completeness results. A parameterized
problem P ′ is said to be W [2]-hard if every parameterized problem P in W [2] parameterized reduces to P ′. P ′ is said to
beW [2]-complete if P ′ is inW [2] and isW [2]-hard.

Notice that one can find at least two other competing definitions of parameterized reduction in the literature: the second
condition, p′

≤ g(p), is sometimes restricted to p′
≤ p and sometimes only requires p′

≤ f (p) for some function f that need
not coincide with the function g occurring in the running time bound. In particular, the second variant is easily seen to be
equivalent to our formulation, as g ′(x) = max{g(x), f (x)} shows that a reduction being computable in time O(g(p)q(|I|))
and also satisfying p′

≤ f (p) is clearly computable in time O(g ′(p)q(|I|)) and verifies p′
≤ g ′(p).

W [2] can be characterized by the following problem on Turing machines:

Short Multi-tape Nondeterministic Turing Machine Computation

Given: A multi-tape nondeterministic Turing machineM (with two-way infinite tapes) and
an input string x (bothM and x are given in some standard encoding).

Parameter: A positive integer k.
Question: Is there an accepting computation of M on input x that reaches a final accepting

state in at most k steps?

Note that the complexity of Short Multi-tape Nondeterministic Turing Machine Computation crucially depends on
the choice of parameters [47]. It is also important that the machine accesses its tapes in parallel.

More specifically, a parameterized problem P is inW [2] if and only if it can be reduced to Short Multi-tape Nondeter-
ministic TuringMachine Computation via a parameterized reduction [50]. This can be accomplished by giving an appropri-
ate multi-tape nondeterministic Turing machine for solving P . Hardness forW [2] can be shown by giving a parameterized
reduction in the opposite direction, from Short Multi-tape Nondeterministic Turing Machine Computation to P .

For other applications of fixed-parameter tractability and parameterized complexity to problems from computational
social choice, see, e.g., [55].

4. Classical complexity results

We now provide a formal complexity analysis of the probabilistic lobbying problems for all combinations of bribery
methods X ∈ {MB,VB} and evaluation criteria Y ∈ {SM,AM}. Table 1 summarizes some of our (classical and parameterized)
complexity results for the problems X-Y-PLP; note that Table 1 does not cover Theorem 5.5 (which considers a combination
of two parameters, namely of budget per issue and discretization level).

Some of these results are known from previous work by Christian et al. [2], as will be mentioned below. Our results
generalize theirs by extending the model to probabilistic settings. The listed FPT results might look peculiar at first glance,
since Christian et al. [2] derivedW [2]-hardness results, but this is due to the chosen parameterization, as will be discussed
later in more detail. We put parentheses around some classes in Table 1 to indicate that these results are trivially inherited
from others. For example, if some problem is solvable in polynomial time, then it is in FPT for any parameterization. The
table mainly provides results on the containment of problems in certain complexity classes; if known, additional hardness
results are also listed.

In Section 4.1 we present our results on microbribery (i.e., we study the problems MB-Y-PLP for Y ∈ {SM,AM}), and in
Section 4.2 we are concerned with voter bribery (i.e., we study the problems VB-Y-PLP for Y ∈ {SM,AM}). In addition, in
Section 4.3 we study probabilistic lobbying with issue weighting.

4.1. Microbribery

Theorem 4.1. MB-SM-PLP is in P.

Proof. The aim is to win all referenda. For each voter vi and referendum rj, 1 ≤ i ≤ m and 1 ≤ j ≤ n, we compute in
polynomial time the amount b(vi, rj) The Lobby has to spend to turn the favor of vi in the direction of The Lobby (beyond
the given threshold t). In particular, set b(vi, rj) = 0 if voter vi would already vote according to the agenda of The Lobby. For
each issue rj, sort {b(vi, rj) | 1 ≤ i ≤ m} nondecreasingly, yielding a sequence b1(rj), . . . , bm(rj) such that bk(rj) ≤ bℓ(rj) for
k < ℓ. To win referendum rj, The Lobby must spend at least B(rj) =

⌈(m+1)/2⌉
i=1 bi(rj) dollars. Hence, all referenda are won if

and only if
n

j=1 B(rj) is at most the given bribery budget B. �

Note that the time needed to implement the algorithm given in the previous proof can be bounded by a polynomial of
low order. More precisely, if the input consists of m voters, n referenda, and discretization level k, then O(n · m · k) time is
needed to compute the b(vi, rj). Having these values, O(n · m · logm) time is needed for the sorting phase. The sums can be
computed in timeO(n ·m). (Note that the time analysis can still be improved; however, a rough estimate of the computation
time needed is enough to establish Theorem 4.1.)
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Similarly, the other problems that we show to belong to P admit solution algorithms bounded by polynomials of low
order.

Theorem 4.2. MB-AM-PLP is in P.

Proof. Let (P, CP , B, t) be a given MB-AM-PLP instance, where P ∈ Qm×n
[0,1] , CP is a cost matrix, B is The Lobby’s budget, and t

is a given threshold. Let k be the discretization level of P , i.e., the interval is divided into k + 1 steps of size 1/(k + 1) each.
For j ∈ {1, 2, . . . , n}, let dj be theminimum cost for The Lobby to bring referendum rj into line with the jth entry of its target
vector 1n. If

n
j=1 dj ≤ B, then The Lobby can achieve its goal that the votes on all issues pass.

We show that for a fixed j we can compute dj in polynomial time. Therefore, the decision problem of whether The
Lobby can afford to bring all referenda into line with its target vector is also in P . We compute dj by dynamic program-
ming. The aim is to have

m
i=1 pi,j/m > t , i.e.,

m
i=1 pi,j > mt . Recall that pi,j · (k + 1) always gives an integer. Define

cj = (k+1)(mt−
m

i=1 pi,j)+1. This is the overall number of confidence steps The Lobbyhas to buy towin referendum rj. Note
that cj is polynomial in the size of the input, as ismtk. We define T [l, s] to be the minimum cost of raising (k+ 1)(

m
i=1 pi,j)

by value s ≤ cj using only microbribes to the first l voters. Notice that T [l, 0] = 0. Let qi,j be the integer with ci,j[qi,j] = 0.
Hence, for κ with 0 ≤ κ < qi,j, we find ci,j[κ] = ––, and for κ with qi,j < κ ≤ k + 1, we have ci,j[κ] > 0. This means that
qi,j/(k + 1) = pi,j. As the maximum number of confidence steps we can gain by bribing voter i is k + 1 − qi,j, we obtain

T [1, s] =


∞ if s > k + 1 − q1,j,
c1,j[q1,j + s] otherwise.

Based on this initialization, we can compute:

T [l, s] = min

T [l − 1, s − q] + cl,j[ql,j + q] | 0 ≤ q ≤ min{s, k + 1 − ql,j}


.

In particular, q = 0 covers the case when no money is spent on voter l, as cl,j[ql,j] = 0. Thus, each of the polynomially many
entries, T [l, s], can be computed in polynomial time. In particular, T [m, cj] = dj can be computed in polynomial time. �

4.2. Voter bribery

Recall the Optimal Lobbying problem (OL) defined in Section 1.1. Again, The Lobby’s target vector Z⃗ may be assumed to
be all ones, without loss of generality, so Z⃗ may be dropped from the input.

Christian et al. [2] proved that this problem is W [2]-complete by reducing from the W [2]-complete problem k-
Dominating Set to OL (showing the lower bound) and from OL to theW [2]-complete problem Independent-k-Dominating
Set (showing the upper bound). In particular, this implies NP-hardness of OL.

The following result focuses on the classical complexity of VB-SM-PLP and VB-AM-PLP; the parameterized complexity of
these problems will be studied in Section 5 and will make use of the proof of Theorem 4.3 below.

To employ the W [2]-hardness result of Christian et al. [2], we show that OL is a special case of VB-SM-PLP and thus
(parameterized) polynomial-time reduces to VB-SM-PLP. Analogous arguments apply to VB-AM-PLP.

Theorem 4.3. VB-SM-PLP and VB-AM-PLP are NP-complete.

Proof. Membership in NP is obtained through a ‘‘guess-and-check’’ algorithm for VB-SM-PLP and VB-AM-PLP.
We now prove that VB-SM-PLP is NP-hard by reducing OL to VB-SM-PLP. We are given an instance (E, b) of OL, where E

is am × n 0/1 matrix and b is the number of votes to be edited. Recall that The Lobby’s target vector is 1n. We construct an
instance of VB-SM-PLP consisting of the given matrix P = E (a ‘‘degenerate’’ probability matrix with only the probabilities
0 and 1), a corresponding cost matrix CP , and a budget B. CP has two columns (we have k = 0, since the problem instance
is deterministic, see Section 2.1), one column for probability 0 and one for probability 1. All entries of CP corresponding to
pi,j ≠ 1 are set to unit cost: ci,j[1] = 1 if pi,j ≠ 1. The threshold t is set to 1/2.

The cost of increasing any value in P is n, since donations are distributed evenly across issues for a given voter. We want
to knowwhether there is a set of bribes of cost at most b · n = B such that The Lobby’s agenda passes. This holds if and only
if there are b voters that can be bribed so that they vote uniformly according to The Lobby’s agenda and that is sufficient to
pass all the issues. Thus, the given instance (E, b) is inOL if and only if the constructed instance (P, CP , B, t) is in VB-SM-PLP,
which shows that OL is a polynomial-time recognizable special case of VB-SM-PLP, and thus VB-SM-PLP is NP-hard.

Note that for the construction above it does not matter whether we use the strict-majority criterion (SM) or the average-
majority criterion (AM). Since the entries of P are 0 or 1, we have pj > 0.5 if and only if we have a strict majority of ones in
the jth column. Thus, VB-AM-PLP is NP-hard, too. �

4.3. Probabilistic lobbying with issue weighting

Table 2 summarizes some of our results for X-Y-PLP-WIW, where X ∈ {MB,VB} and Y ∈ {SM,AM}; again, note that
Table 2 does not cover all our results. The most interesting observation from the table is that introducing issue weights
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raises the complexity from P to NP-completeness for all cases ofmicrobribery (though it remains the same for voter bribery).
Nonetheless, we show (Theorem 5.6) that these NP-complete problems are fixed-parameter tractable. Another interesting
observation concerns the question of membership in W [2]. In the case indicated by the ∗ annotation, we can show this
membership only when we take the lower bound O quantifying the objective of the bribery (in terms of issue weights) as a
further parameter. Question marks indicate open problems.

Theorem 4.4. MB-SM-PLP-WIW and MB-AM-PLP-WIW are each NP-complete.

Proof. Membership in NP can be shown with a ‘‘guess-and-check’’ algorithm for both problems. To prove that
MB-SM-PLP-WIW is NP-hard, we give a reduction from the well-known NP-complete problem Knapsack (see, e.g., [56])
to the problem MB-SM-PLP-WIW. In Knapsack, we are given a set of objects U = {o1, . . . , on} with weights w : U → N
and profits p : U → N, and W , P ∈ N. The question is whether there is a subset J ⊆ {1, . . . , n} such that


i∈J w(oi) ≤ W

and


i∈J p(oi) ≥ P . Given a Knapsack instance (U, w, p,W , P), create an MB-SM-PLP-WIW instance with k = 0 and only
one voter, v1, where for each issue, v1’s acceptance probability is either zero or one. For each object oj ∈ U , create an issue
rj such that the acceptance probability of v1 is zero. Let the cost of raising this probability on rj be c1,j(1) = w(oj) and let the
weight of issue rj be wj = p(oj). Let The Lobby’s budget be W and its objective value be O = P . Set the threshold t to 1/2.
By construction, there is a subset J ⊆ {1, . . . , n} with


i∈J w(oi) ≤ W and


i∈J p(oi) ≥ P if and only if there is a subset

J ⊆ {1, . . . , n} with


i∈J c1,i(1) ≤ W and


i∈J wi ≥ O.
As the reduction introduces only one voter, there is no difference between the evaluation criteria SM and AM. Hence, the

above reduction works for both problems. �

Turning now to voter bribery with issue weighting, note that an immediate consequence of Theorem 4.3 is that
VB-SM-PLP-WIW and VB-AM-PLP-WIW are NP-hard, since they are generalizations of VB-SM-PLP and VB-AM-PLP, respec-
tively. Again,membership inNP can be seen using appropriate ‘‘guess-and-check’’ algorithms for themore general problems.

Corollary 4.5. VB-SM-PLP-WIW and VB-AM-PLP-WIW each are NP-complete.

NP-completeness of our problems with issue weighting implies that bribery/lobbying is hard in these settings, at least
in the classical sense of worst-case complexity. However, in Section 5 we will provide some positive worst-case results for
these problems in terms of their fixed-parameter tractability, and in Section 6 we will show that many of these problems
admit good approximation schemes and may therefore be easy to solve in practice.

5. Parameterized complexity results

In this section, we study the parameterized complexity of our probabilistic lobbying problems. Parameterized hardness
is usually shown by proving hardness for the levels of theW -hierarchy (with respect to parameterized reductions). Indeed,
this hierarchy may be viewed as a ‘‘barometer of parametric intractability’’ [47, p. 14]. The lowest two levels of the
W -hierarchy, W [0] = FPT and W [1], are the parameterized analogs of the classical complexity classes P and NP. We will
show completeness results for theW [2] level of this hierarchy.

In parameterized complexity, the standard parameterization for minimization problems is an upper bound on the entity
to be minimized. In our case, this is the budget B. Since in the voter bribery model, the money is equally distributed over
all referenda, it also makes sense to consider the upper bound B/n, i.e., the budget per referendum, as a natural, derived
parameter for that scenario. A different, moremathematical reason for considering this parameter is the fact that, first of all,
with the parameter B alone, most problems will find their home in the lowest complexity class, FPT, so it is reasonable to
consider parameters that are distinctively smaller than B, which clearly applies to B/n. In particular, while Bmight be quite a
big number, B/n can be assumed to be small in practical circumstances. Another natural way of parameterization is derived
from certain properties of the input, be they implicit or explicit. In our case, the discretization level can be considered as
such a parameter, in particular, since the smallest discretization level has been already considered beforewithin the optimal
lobbyingproblem [2]. Therefore,we examine all three of these parameterizations in order to understand the effect the choice
of parameterizations has on the complexity of the problems.

5.1. Voter bribery

Theorem 5.1. VB-SM-PLP and VB-AM-PLP parameterized by the budget and by the discretization level are in FPT.

Proof. Consider an instance of VB-Y-PLP, Y ∈ {SM,AM}, i.e., we are given n referenda andm voters, as well as a cost matrix
CP (with either –– or integer entries), a discretization level k, a budget B, and a threshold t . Recall that the target vector
Z⃗ of The Lobby is assumed to be 1n. By the definition of our staircase price functions, the rows of CP are monotonically
nondecreasing (after possibly some –– entries). Observe that any successful bribe of any voter needs at least n dollars, since
the money is evenly distributed among all referenda, and at least one dollar is needed to influence the chosen voter’s votes
for all referenda. Hence, B ≥ n. We can assume that any entry in CP is limited by B + 1, after replacing every entry bigger
than B by B + 1. Notice that the entry B + 1 reflects that the intended bribery cannot be afforded.
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Although k could be bigger than B, the interesting area of each row in CP (containing integer entries) cannot have more
than B strict increases in the sequence. We therefore encode each row in CP by a sequence (k1, b1, k2, b2, . . . , kℓ, bℓ), ℓ ≤ B,
which reads as follows: By investing bj dollars, we proceed to column number


i≤j ki. Note that k is given in unary in the

original instance (implicitly by giving the cost matrix CP ), and that each kj can be encoded with log k bits. Hence, we extract
fromCP for each voter v a submatrix SP(v)withn ≤ B rows (for the referenda) and atmost 2B columns (encoding the ‘‘jumps’’
in the integer sequence as described above). This matrix with at most B rows and at most 2B columns can be alternatively
viewed as a matrix with at most B rows and at most B columns, where each matrix entry consists of a pair of numbers, one
between 1 and B + 1 and one being at most k. Therefore, we can associate with each voter at most ((B + 1) · k)B

2
distinct

submatrices SP(v) of this kind, called voter profiles. It makes no sense to store more than B voters with the same profile.
Hence, we can assume that m ≤ B · ((B + 1) · k)B

2
. Therefore, all relevant parts of the input are bounded by a function in

the parameters B and k,8 so that a brute-force algorithm can be used to solve the instance. This shows that the problem is
in FPT. �

If we assume that the discretization level is a rather small number, the preceding theorem says that the problems
VB-SM-PLP and VB-AM-PLP can be solved efficiently in practice. Although we were not able to establish an FPT result for
VB-AM-PLPwhen the discretization level is not part of the parameter (but only the budget is), we can overcome this formal
obstacle for VB-SM-PLP, as the following result shows.

Theorem 5.2. VB-SM-PLP parameterized by the budget is in FPT.

Proof. Let an instance of VB-SM-PLP be given. From the given cost matrix CP , we extract the information W (i, j) that gives
the minimum amount of money The Lobby must spend on voter vi to turn his or her voting behavior on issue rj in favor
of The Lobby’s agenda, eventually raising the corresponding voting probability beyond the given threshold t . Each entry in
W (i, j) is between 0 and B. Moreover, as argued in the previous proof, there are no more than B issues and we again define
a voter profile (this time the ith row of the table W (i, j) gives such a profile) for each voter, and we need to keep at most B
voters with the same profile. Hence, no more than B(B+ 1)B voters are present in the instance. Therefore, some brute-force
approach can be used to show membership in FPT. �

The area of parameterized complexity leaves some freedom regarding the choice of parameterization. The main reason
that the standard parameterization (referring to the entity to be minimized, in this case the budget) yields an FPT result
is the fact that the parameter is already very big compared to the overall input (e.g., the number of issues n) by the very
definition of the problem: Since the money given to one voter will be evenly distributed among the issues and since the
cost matrix contains only integer entries, it makes no sense at all to spend less than n dollars on a voter. Hence, the budget
should be at least n dollars (assuming that some of the votersmust be influenced by The Lobby to achieve their agenda). This
obstacle can be sidestepped by changing the parameterization to B/n, i.e., to the ‘‘budget per issue’’ (see, e.g., Theorem 5.3).
Note that another way would be allowing rational numbers as entries in the cost matrix but we will not consider this in this
paper but rather focus on the ‘‘budget per issue’’.

Theorem 5.3. VB-SM-PLP parameterized by the budget per issue is W [2]-complete.

Proof. W [2]-hardness can be derived from the proof of Theorem 4.3. Recall that in the proof of this theorem an instance
(E, b) of OL was reduced to an instance of VB-SM-PLP, with budget B = n · b. Hence, the parameter ‘‘budget per issue’’ of
that VB-SM-PLP instance equals b. Therefore, the reduction in the proof of Theorem 4.3 preserves the parameter and hence
W [2]-hardness follows from the W [2]-hardness of OL, see [2]. Moreover, the instance of VB-SM-PLP produced by the
reduction has discretization level zero.

To show membership in W [2], we reduce VB-SM-PLP to Short Multi-tape Nondeterministic Turing Machine
Computation, which was defined in Section 3. To this end, it suffices to describe how a nondeterministic multi-tape Turing
machine can solve such a lobbying problem.

Consider an instance ofVB-SM-PLP: a probabilitymatrix P ∈ Qm×n
[0,1] with a costmatrix CP , a budget B, and a fixed threshold

t . We may identify t with a certain step level for the price functions.
The reducing machine works as follows. From P , CP , and t , the machine extracts the information Hi,j(d), 1 ≤ d ≤ B,

where Hi,j(d) is true if pi,j ≥ t or if ci,j(t) ≤ d/n. Note that the bribery money is evenly distributed across all issues, also
note that Hi,j(d) captures whether paying d dollars to voter vi helps to raise the acceptance probability of vi on referendum
rj above the threshold t . Moreover, for each referendum rj, the reducing machine computes the minimum number of voters
that need to switch their opinion so that majority is reached for that specific referendum; let s(j) denote this threshold for
rj. Since the cost matrix contains integer entries, meaningfully bribing s voters costs at least s · n dollars; only then each
referendum will receive at least one dollar per voter. Hence, a referendum with s(j) > B/n yields a NO instance. We can
therefore replace any value s(j) > B/n by the value ⌊B/n⌋ + 1.

FromHi,j(d), the reducingmachine produces (basically by sorting) anotherwinning tableWi(ℓ) that lists for voter vi those
referenda where the acceptance probability of vi on referendum rj is raised above the threshold t by paying to vi the amount

8 In technical terms, this means that we have derived a so-called problem kernel for this problem.
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of ℓ · n dollars but not by paying (ℓ − 1) · n dollars. Note that we can assume that the bribery money is spent in multiples
of n, the number of referenda, since spending n dollars on some voter means spending one dollar per issue for that voter.
This table is initialized byWi(0) listing those referenda already won at the very beginning, although this is not an important
issue due to the information contained in s(j).

The nondeterministic multi-tape TuringmachineM we describe next has, in particular, access toWi(ℓ) and to s(j).M has
n + 1 working tapes Tj, 0 ≤ j ≤ n, all except one of which correspond to issues rj, 1 ≤ j ≤ n. We will use the set of voters,
V = {v1, . . . , vm}, as part of the work alphabet. The (formal) input tape ofM is ignored.

M starts by writing s(j) symbols # onto tape j for each j, 1 ≤ j ≤ n. By using simultaneous writing steps, this needs at
most ⌊B/n⌋ + 1 steps, since s(j) ≤ ⌊B/n⌋ + 1 as argued above. We also need an ‘‘information hiding’’ trick here: Every time
the machine writes a # symbol, it simultaneously moves the writing head one field to the right, so that in the next step the
head will read a blank symbol. The trick is required in order to keep the transition table small: basically, we cannot insert in
the transition table 2n different instructions to take into account all different configurations of blank and # symbols on the
n tapes.

Second, for each i ∈ {1, . . . ,m}, M writes ki symbols vi from the alphabet V on the zeroth tape, T0, such that
m

i=1 ki ≤

B/n. This is the nondeterministic guessing phase where the amount of bribery money spent on each voter, namely ki · n for
voter vi, is determined. The finite control is used to ensure that a word from the language {v1}

∗
· {v2}

∗
· · · {vm}

∗ is written
on tape T0.

In the third phase, M reads tape T0. In its finite control, M stores the ‘‘current voter’’ whose bribery money is read. For
each voter vi, a counter ci is provided (within the finite memory of M). If a symbol vi is read, ci is incremented, and then M
simultaneouslymoves all heads on the tapes Tj, where j is contained inWi(ci). Hence, the string on tape T0 is being processed
in at most B/n (simultaneous) steps.

Finally, it is checked if the left border is reached (again) for all tapes Tj, j > 0. This is the case if and only if the guessed
bribery was successful. �

TheW [2]-hardness proof for VB-AM-PLP is analogous.
Recall that VB-SM-PLP is the same as VB-AM-PLP if the discretization level is zero. So, we conclude:

Corollary 5.4. VB-AM-PLP parameterized by the budget per issue is W [2]-hard.

Membership in W [2] is an open problem for VB-AM-PLP when parameterized by the budget per issue. In contrast, we
show definitive parameterized complexity results for different parameterizations. Refining and re-analyzing the proof of
Theorem 5.3, we can prove:

Theorem 5.5. VB-SM-PLP and VB-AM-PLP parameterized by the budget per issue and by the discretization level are
W [2]-complete.

5.2. Probabilistic lobbying with issue weighting

Recall fromTheorem4.4 thatMB-SM-PLP-WIW andMB-AM-PLP-WIW areNP-complete.We now show that each of these
problems is fixed-parameter tractablewhen parameterized by the budget. To this end, recall theKnapsack problem thatwas
defined in the proof of Theorem 4.4: Given two finite lists of binary encoded integers, (ci)ni=1 (a list of costs) and (pi)ni=1 (a list
of profits) associated to a list (oi)ni=1 of objects, as well as two further integers, C and P (both encoded in binary), the question
is whether there is a subset J of {1, . . . , n} such that


i∈J ci ≤ C and


i∈J pi ≥ P . Thus, putting all objects from {oj | j ∈ J}

into your knapsack does not violate your cost constraint C but does satisfy your profit demand P . Knapsack is an NP-hard
problem that allows a pseudo-polynomial time algorithm. More precisely, this means that if all cost or all profit values are
given in unary, a polynomial-time algorithm can be provided by using dynamic programming (see [57] for details). This
yields FPTAS results both for the minimization version Min-Knapsack (where the goal is to minimize the costs, subject to
the profit lower bound) and for themaximization versionMax-Knapsack (where the goal is to maximize the profits, subject
to the cost upper bound).

Theorem 5.6. MB-SM-PLP-WIW and MB-AM-PLP-WIW parameterized by the budget or by the objective are in FPT.

Proof. Since the unweighted variants of both problems are in P , we can compute the amount dj of dollars to be spent to win
referendum rj in polynomial time in both cases. Namely, dj is the smallest budget that is necessary to win in the instance
that is derived from the given one by deleting everything that is independent of referendum rj. Hence, the interesting cases
are the weighted ones. We re-interpret the givenMB-Y-PLP-WIW instance, where Y ∈ {SM,AM}, as a Knapsack instance.

In the MB-Y-PLP-WIW instance, every issue rj has an associated cost dj and weight wj. The aim is to find a set of issues,
i.e., a set J ⊆ {1, . . . , n}, such that


j∈J dj ≤ B and


j∈J wj ≥ O. Consider rj as an object oj in a Knapsack instance

with cost cj = dj and profit pj = wj, with the bounds C = B and P = O. Then the J ⊆ {1, . . . , n} that is a solution
to the MB-Y-PLP-WIW instance is also a solution to the Knapsack instance, and vice-versa. Furthermore, the pseudo-
polynomial algorithm that solves Knapsack in time O(n2|B|), where |B| denotes the length of the encoding of B, also solves
MB-Y-PLP-WIW. Alternatively,we canuse thewell-knownpseudo-polynomial algorithm to solveKnapsack in timeO(n2|O|),
where |O| denotes the length of the encoding of O. �
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Voter bribery with issue weighting keeps its complexity status for both evaluation criteria.
Since we can incorporate issue weights into brute-force computations, we have the following corollary to Theorems 5.1

and 5.2.

Corollary 5.7. 1. VB-SM-PLP-WIW and VB-AM-PLP-WIW parameterized by the budget and by the discretization level are in
FPT.

2. VB-SM-PLP-WIW parameterized by the budget is in FPT.

It is not hard to transfer the W [2]-hardness results from the unweighted to the weighted case. However, it is unclear
to us if or how the membership proofs of the preceding section transfer. The difficulty appears to lie in the weights that
the reducing machine or the produced Turing machine would have to handle. Since it is not known in advance which items
will be bribed to meet the objective requirement O, the summation of item weights cannot be performed by the reducing
machine, but must be done by the produced nondeterministic multi-tape Turing machine. However, this Turing machine
may only use time that can be measured in the parameter, which has been budget per issue in the unweighted case. We do
not see how to do this. Therefore, we can state only the following.

Corollary 5.8. VB-SM-PLP-WIW and VB-AM-PLP-WIW parameterized by the budget per issue are W [2]-hard.

The proof of the following theorem is similar to the one of Theorem 5.3, although being a bit more technical. Details can
be found in the Appendix.

Theorem 5.9. VB-SM-PLP-WIW parameterized by the budget per issue and by the objective is in W [2].

It might be that W [2] is not the smallest class in the W -hierarchy where the problem discussed in the preceding theorem
could be placed. However, we do not know how to find an FPT or W [1] algorithm for it, even in the case when all weights
equal one. This is in contrast to the possibly related problem Partial t-Domination, which asks whether there is a set of
at most k vertices in a graph that dominates at least t vertices. Our belief that these two problems are related is motivated
by the fact that the classical dominating set problem was the starting point of the reduction showing hardness for Optimal
Lobbying. Kneis, Mölle, and Rossmanith showed that the problem Partial t-Domination is in FPT evenwhen parameterized
by the threshold parameter t alone [58].

6. Approximability

As seen in Tables 1 and 2, many problem variants of probabilistic lobbying are NP-complete. Hence, it is interesting to
study them not only from the viewpoint of parameterized complexity, but also from the viewpoint of approximability.

The budget constraint on the bribery problems studied so far gives rise to naturalminimizationproblems: Try tominimize
the amount spent on bribing. For clarity, let us denote these minimization problems by prefixing the problem name with
Min, leading to, e.g., Min-OL.

6.1. Voter bribery is hard to approximate

The already-mentioned reduction of Christian et al. [2] (that proved that OL is W [2]-hard) is parameter-preserving
(regarding the budget). The reduction also has the property that a possible solution found in the OL instance can be re-
interpreted as a solution to the Dominating Set instance that the reduction started with, and the OL solution and the
Dominating Set solution are of the same size. This in particular means that inapproximability results for Dominating Set
transfer to inapproximability results for OL. Similar observations are true for the interrelation of Set Cover and Dominating
Set, as well as for OL and VB-SM-PLP-WIW (or VB-AM-PLP-WIW).

The known inapproximability results [59,60] (see also [61] for a survey) for Set Cover hence give the following result
(see also Footnote 4 in [3]).

Theorem 6.1. There is a constant c > 0 such that Min-OL is not approximable within factor c · log n (where n denotes the
number of issues) unless NP ⊂ DTIME(nlog log n).

Since OL can be viewed as a special case of both problem VB-Y-PLP and of problem VB-Y-PLP-WIW for Y ∈ {SM,AM},
we have the following corollary.

Corollary 6.2. For Y ∈ {SM,AM}, there is a constant cY > 0 such that both Min-VB-Y-PLP and Min-VB-Y-PLP-WIW are not
approximable within factor cY · log n unless NP is contained in DTIME(nlog log n), where n denotes the number of issues.

Proof. The proof of Theorem 4.3 explains in detail how to interpret an instance ofOL as a VB-Y-PLP instance, Y ∈ {SM,AM}.
The relation B = n · b between the budget B and the number of voters b holds for both optimum and approximate solutions.
Hence, the n is canceled out when looking at the approximation ratio. �
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Conversely, a logarithmic-factor approximation can be given for the minimum-budget versions of all our problems, as
we will show now. We first discuss the relation to the well-known Set Cover problem, sketching a tempting, yet flawed
reduction and pointing out its pitfalls. Avoiding these pitfalls, we then give an approximation algorithm forMin-VB-AM-PLP.
Moreover, we define the notion of cover number, which allows us to state inapproximability results for Min-VB-AM-PLP.
Similar results hold forMin-VB-SM-PLP, the constructions are sketched at the end of the section.

Voter bribery problems are closely related to set cover problems,9 in particular in the average-majority scenario, so that
we should be able to carry over approximability ideas from that area. The intuitive translation of aMin-VB-AM-PLP instance
into a Set Cover instance is as follows: The universe of the derived Set Cover instance should be the set of issues, and the
sets (in the Set Cover instance) are formed by considering the sets of issues that could be influenced (by changing a voter’s
opinion) through bribery of a specific voter. Namely, when we pay voter v a specific amount of money, say d dollars, he or
she will credit d/n dollars to each issue and possibly change v’s opinion (or at least raise v’s acceptance probability to some
‘‘higher level’’). The weights associated with the sets of issues correspond to the bribery costs that are (minimally) incurred
to lift the issues in the set to some ‘‘higher level’’. There are four differences to classical set covering problems:

1. Multiple voters may cover the same set of issues (with different bribing costs).
2. The sets associatedwith one voter are not independent. For each voter, the sets of issues that can be influenced by bribing

that voter are linearly ordered by set inclusion. Moreover, when bribing a specific voter, we have to first influence the
‘‘smaller sets’’ (which might be expensive) before possibly influencing the ‘‘larger ones’’; so, weights are attached to set
differences, rather than to sets.

3. A cover number c(rj) is associated with each issue rj, indicating by how many levels voters must raise their acceptance
probabilities in order to arrive at average majority for rj. The cover numbers can be computed beforehand for a given
instance. Then, we can also associate cover numbers with sets of issues (by summation), which finally leads to the cover
number N =

n
j=1 c(rj) of the whole instance.

4. Themoney paid ‘‘per issue’’ might not have been sufficient for influencing a certain issue up to a certain level, but it is not
‘‘lost’’; rather, itwouldmake thenext bribery step cheaper, hence (again) changingweights in the set cover interpretation.

To understand these connections better, let us have another look at our running example (under voter bribery with
average-majority evaluation, i.e., Min-VB-AM-PLP), assuming an all-ones target vector. If we paid 30 dollars to voter v1, he
or she would credit 10 dollars to each issue, which would raise his or her acceptance probability for the second issue from
0.3 to 0.4; no other issue level is changed. Hence, this would correspond to a set containing only r2 withweight 30. Note that
by this bribery, the costs for raising the acceptance probability of voter v1 to the next level would be lowered for the other
two issues. For example, spending 15 more dollars on v1 would raise r3 from 0.5 to 0.6, since all in all 45 dollars have been
spent on voter v1, which means 15 dollars per issue. If the threshold is 60% in that example, then the first issue is already
accepted (as desired by The Lobby), but the second issue has gone up from 0.5 to only 0.55 on average, which means that
we have to raise either the acceptance probability of one voter by two levels (for example, by paying 210 dollars to voter
v1), or we have to raise the acceptance probability of each voter by one level (by paying 30 dollars to voter v1 and another
30 dollars to voter v2). This can be expressed by saying that the first issue has a cover number of zero, and the second has a
cover number of two.

Whenwe interpret anOL instance as aVB-AM-PLP instance, the cover number of the resulting instance equals the number
of issues, assuming that the votes for all issues need amendment. Thus we have the following corollary:

Corollary 6.3. There is a constant c > 0 such that Min-VB- AM-PLP is not approximable within factor c · logN unless
NP ⊂ DTIME(N log logN), where N is the cover number of the given instance. A fortiori, the same statement holds for the problem
Min-VB-AM-PLP-WIW.

Let H denote the harmonic sum function, i.e., H(r) =
r

i=1 1/i. It is well known that H(r) = O(log r). More precisely, it
is known that

ln r ≤ H(r) ≤ ln r + 1.

We now show the following theorem.

Theorem 6.4. Min-VB-AM-PLP can be approximated within a factor of ln(N) + 1, where N is the cover number of the given
instance.

Proof. Consider the greedy algorithm shown in Fig. 1, where t is the given threshold and we assume that The Lobby has
the all-ones target vector. Note that the cover numbers (per referendum) can be computed from the cost matrix CP and the
threshold t before calling the algorithm the very first time.

Observe that our greedy algorithm influences voters by raising their acceptance probabilities by only one level, so that
the amount dv possibly spent on voter v in Step 3 of the algorithm actually corresponds to a set of referenda; we do not have
to consider multiplicities of issues (raised over several levels) here.

9 As pointed out by a reviewer, our lobbying problems are also closely related to the problem of approximating winners in the Dodgson voting systems,
as they too can be seen as extensions of the Set Cover problem. Indeed, our approximation algorithm in Fig. 1 is similar to that due to Caragiannis et al. [62].
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Fig. 1. Greedy approximation algorithm forMin-VB-AM-PLP in Theorem 6.4.

Let ℓ be the number of times Step 3 of the greedy bribery algorithm is executed. Let S1, . . . , Sℓ be the sequence of sets
of referenda influenced by the greedy bribery algorithm, along with the sequence v1, . . . , vℓ of voters and the sequence
d1, . . . , dℓ of bribery dollars spent this way. Let R1 = R, . . . , Rℓ, Rℓ+1 = ∅ be the corresponding decreasing sequence of
current sets of referenda yet to be won, with the accordingly modified cover numbers ci. Let j(r, k) denote the index of the
set in the sequence influencing referendum r the kth time with k ≤ c(r), i.e., r ∈ Sj(r,k) and |{i < j(r, k) | r ∈ Si}| = k − 1.
To cover r the kth time, we have to pay χ(r, k) = dj(r,k)/|Sj(r,k)| dollars. The greedy algorithm will incur a cost of
χgreedy =


r∈R

c(r)
k=1 χ(r, k) in total.

An alternative view of the greedy algorithm is from the perspective of the referenda: By running the algorithm, we
implicitly define a sequence s1, . . . , sN of referenda, where N = c(R) =


r∈R c(r) is the cover number of the original

instance, such that S1 = {sλ(1), . . . , sρ(1)}, S2 = {sλ(2), . . . , sρ(2)}, . . . , Sℓ = {sλ(ℓ), . . . , sρ(ℓ)}, where λ, ρ : {1, . . . , ℓ} →

{1, . . . ,N} are functions such that λ(i) gives the element of Si with the smallest subscript and ρ(i) gives the element of Si
with the greatest subscript for each i, 1 ≤ i ≤ ℓ:

λ(i) = 1 +


j<i

|Sj| and ρ(i) =


j≤i

|Sj|.

Ties (how to list elements within any Si) are broken arbitrarily.
Consider sj with λ(i) ≤ j ≤ ρ(i). Slightly abusing notation, we associate a cost χ ′(sj) = di/|Si| with Si for each i (keeping

in mind the multiplicities of covering implied by the sequence ⟨Si⟩i), so that di =


λ(i)≤j≤ρ(i) χ ′(sj) and hence

χgreedy =

ℓ
k=1

dk =

N
j=1

χ ′(sj). (1)

The current referendum set Ri has cover number

c(Ri) = ci(Ri) = N − λ(i) + 1 ≤ N − j + 1, (2)

as λ(i) ≤ j.
Let χopt be the cost of an optimum bribery strategy B∗ of the original universe. B∗ also yields a cover of any referendum

set Ri, 1 ≤ i ≤ ℓ, with cost at most χopt . The average cost per element (taking into account multiplicities as given by the
cover numbers) is at most χopt/c(Ri). (So, whether or not some new levels are obtained through bribery does not really
matter here.)

The strategyB∗ can also be described by a sequence of sets of referenda S∗

1 , . . . , S
∗
q , with corresponding voters v∗

1 , . . . , v
∗
q

and dollars d∗

1, . . . , d
∗
q spent. Hence, χopt =

q
κ=1 d

∗
κ . With each bribery step we associate the cost factor χ ′

opt(r) = d∗
κ/|S

∗
κ |

for each issue r contained in S∗
κ .
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Recall that B∗ could be also viewed as a bribery strategy for Ri. By the pigeon hole principle, there is a referendum r in
Ri (to be influenced the kth time in B∗) with cost factor of

χ ′

opt(r) =
d∗

κ

|S∗
κ |

≤
d∗

κ

|S∗
κ ∩ Ri|

≤
χopt

c(Ri)
, (3)

where κ is the index such that S∗
κ contains r for the kth time in B∗ (usually, the cost would be smaller, since part of the

bribery has already been paid before).
Since (Si, vi) was picked by our greedy algorithm in the situation described by Ri so as to minimize di/|Si|, we find with

Eq. (3) for any sj with λ(i) ≤ j ≤ ρ(i):

χ ′(sj) =
di
|Si|

≤
d∗

κ

|S∗
κ ∩ Ri|

≤
χopt

c(Ri)
. (4)

We conclude from Eq. (4) together with Eq. (2) that

χ ′(sj) ≤
χopt

c(Ri)
=

χopt

N − λ(i) + 1
≤

χopt

N − j + 1
.

Hence, due to Eq. (1),

χgreedy =

N
j=1

χ ′(sj) ≤

N
j=1

χopt

N − j + 1
= H(N)χopt ≤ (ln(N) + 1)χopt ,

which completes the proof. �

In the strict-majority scenario (SM), cover numbers would have a different meaning—we thus call them strict cover
numbers: For each referendum, the corresponding strict cover number tells in advance how many voters have to change
their opinions (bringing them individually over the given threshold t) to accept this referendum. Again, the strict cover
number of a problem instance is the sum of the strict cover numbers of all given referenda.

The corresponding greedy algorithm would therefore choose to influence voter vi (with di dollars) in the ith loop so that
vi changes his or her opinion on some referendum rj such that di/|ρj| is minimized.10

We can now read the approximation bound proof given for the average-majority scenario nearly literally as before, by
re-interpreting the formulation ‘‘influencing referendum r ’’ meaning now a complete change of opinion for a certain voter
(not just gaining one level somehow). This establishes the following result.

Theorem 6.5. Min-VB-SM-PLP can be approximated within a factor of ln(N) + 1, where N is the strict cover number of the
given instance.

Note that this result is in some sense stronger than Theorem 6.4 (which refers to the average-majority scenario), since
the cover number of an instance could be larger than the strict cover number.

This approximation result is complemented by a corresponding hardness result.

Theorem 6.6. There is a constant c > 0 such that Min-VB-SM-PLP is not approximable within factor c · logN unless
NP ⊂ DTIME(N log logN), where N is the strict cover number of the given instance. A fortiori, the same statement holds for
Min-VB-SM-PLP-WIW.

Unfortunately, those greedy algorithms do not (immediately) transfer to the case when issue weights are allowed. These
weights might also influence the quality of approximation, but a simplistic greedy algorithm might result in covering the
‘‘wrong’’ issues. Also, the proof of the approximation factor given above will not carry over, since we need as one of the
proof’s basic ingredients that an optimum solution can be interpreted as a partial one at some point. Those problems tend
to have a different flavor.

6.2. Polynomial-time approximation schemes

Those problems for which we obtained FPT results in the case of issue weights actually enjoy a fully polynomial-time
approximation scheme (FPTAS) when viewed as minimization problems.11 The proof of Theorem 5.6 yields an FPTAS. That
result was obtained by transferring pseudo-polynomial time algorithms: For each fixed value of the parameter (the budget
B or the objective O), we obtain a polynomial-time algorithm for the decision problem, which can be used to approximate
the minimization problem.

10 Possibly, there is a whole set ρj of referenda influenced this way.
11 A fully polynomial-time approximation scheme is an algorithm that for each pair (x, ε), where x is an instance of an optimization problem and ε > 0
is a rational constant, runs in time polynomial in |x| and in 1/ε and outputs an approximate solution for xwithin a factor of 1 + ε.
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Theorem 6.7. BothMin-MB-SM-PLP-WIW and Min-MB-AM-PLP-WIW admit an FPTAS.

Proof. We provide some of the details for Min-MB-SM-PLP-WIW only. As in the proof of Theorem 5.6, we first com-
pute the amount, dj, to be spent to win referendum rj in polynomial time. We then re-interpret the given instance of
Min-MB-SM-PLP-WIW as a Min-Knapsack instance. Then the J ⊆ {1, . . . , n} that is a solution to the MB-SM-PLP-WIW
instance is also a solution to the Knapsack instance, and vice-versa. Furthermore, the FPTAS algorithm that approximates
Min-Knapsack also gives an FPTAS forMB-SM-PLP-WIW. �

Let us mention here that the issue-weighted problem variants are actually bicriteria problems: We want to achieve as
much as possible (expressed by the objective O) and pay as little as possible (expressed by the budget B). So, we could also
consider this as a maximization problem (where now B becomes again part of the input). By the close relation to Knapsack
mentioned above, the pseudo-polynomial time algorithms again result in PTAS results for this model:

Theorem 6.8. BothMax-MB-SM-PLP-WIW andMax-MB-AM-PLP-WIW admit an FPTAS.

It would be interesting to study this optimization criterion in the light of other bribery scenarios.

7. Conclusions

This paper lies at the intersection of three research streams: computational social choice, reasoning under uncertainty,
and computational complexity. It extends the study of lobbying initiated by Christian et al. [2] to probabilistic settings. We
have shown that uncertainty complicates the picture; the choice of model strongly affects computational complexity.

We have studied four lobbying scenarios in a probabilistic setting, bothwith andwithout issueweights. Among these, we
identified problems that can be solved in polynomial time, problems that are NP-complete yet fixed-parameter tractable,
and problems that are hard (namely,W [2]-complete orW [2]-hard) in terms of their parameterized complexitywith suitable
parameters. We also investigated the approximability of hard probabilistic lobbying problems (without issue weights) and
obtained both approximation and inapproximability results.

Our research in computational complexity of thementioned problems falls into three categories: (1) classical complexity
(i.e., mainly NP-completeness results), (2) approximability and (3) parameterized complexity.

An interesting direction for future work would be to study the parameterized complexity of such problems under
different parameterizations. Wewould also like to investigate the open question of whether one can find logarithmic-factor
approximations for voter bribery with issue weights. It would be also interesting to design parameterized approximation
algorithms (a new trend bridging the areas of parameterized and of approximation algorithms) in particular for those
problems where we cannot expect FPT results and (at the same time) APX results. We refer the interested reader to the
survey paper by Marx [63].

From the viewpoint of parameterized complexity, it would be interesting to solve the questions left open in this paper
(see the question marks in Tables 1 and 2), in particular regarding voter bribery under average majority, with and without
issue weighting, parameterized by the budget or by the budget per issue. The parameterized complexity of the problems
involving microbribery with issue weighting, under either strict majority or average majority, parameterized by the budget
per issue, is an open issue as well (again, see Table 2). In fact, we did not see how to put these problems in any level of the
W -hierarchy. Problems that involve numbers seem to have a particular flavor that makes them hard to tackle with these
techniques [64], but we suggest this as the subject of further studies. Note that all probabilistic lobbying problems that
have been connected with W [2] somehow in this paper are in fact strongly NP-hard, i.e., their hardness does not depend
on whether the numbers in their inputs are encoded in unary or in binary. We suspect that this adds to the difficulty when
dealing with these problems from a parameterized perspective.

From the viewpoint of Social Choice, it would be interesting to introduce and discuss other scenarios that involve
randomness in someway. Our approach is only one amongmany different possible venues, inspired by themodel underlying
Optimal Lobbying.
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Appendix. Two proofs of membership inW [2]

We collect here two proofs that are similar to the one of Theorem 5.3 and that might be of less interest, although several
details have to be taken care of.
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A.1. A detailed proof of Theorem 5.5

Proof. As mentioned above, we already have hardness for a discretization level of zero, i.e., when the second parameter is
fixed to the lowest possible value.We implicitly showmembership inW [2] for VB-SM-PLP in Theorem 5.3 when the second
parameter only plays a role in the polynomial part of the run time estimate. Hence, the claim is a simple corollary of what
we have already shown above.

It remains to prove membership in W [2] for VB- AM-PLP. This can be seen by modifying the proof of Theorem 5.3. To
showmembership inW [2], we reduce VB-AM-PLP to ShortMulti-tape Nondeterministic TuringMachine Computation.
So, it suffices to describe how a nondeterministic multi-tape Turing machine can solve such a lobbying problem.

Consider an instance ofVB-SM-PLP: a probabilitymatrix P ∈ Qm×n
[0,1] with a costmatrix CP , a budget B, and a fixed threshold

t . Again, we may identify t with a certain step level for the price functions.
From this input, the reducing machine computes the following:

• It does some preprocessing, so that it is guaranteed that the overall money that could bemeaningfully spent on any voter
is bounded by ⌈B/n⌉, which is the first parameter. No larger amount of money is available, anyhow. Confidence steps
that cannot be reached at all are modeled by requiring an investment of (all in all) ⌊B/n⌋ + 1 dollars on that voter for
each issue.

• It computes the entity s(j) that now denotes the number of confidence steps issue rj has to be raised in total to ensure
a win of that referendum. Notice that s(j) can be assumed to be bounded by the product of the first parameter, more
precisely, by ⌊B/n⌋ + 1 (as argued before), and the second parameter, more precisely, by k + 1: Each bribe (to whatever
voter v) of n dollars (recall that we can again rely on bribery money being used in multiples of n, the number of issues)
will raise v’s confidence in voting according to the agenda of The Lobby by at most k + 1 steps.

• It finally computesWi(ℓ) which now gives the list of issues whose confidence is raised when investing ℓ · n dollars on vi
(compared to (ℓ − 1) · n dollars), plus the number of confidence steps by which the corresponding issue is raised.

The nondeterministic multi-tape TuringmachineM we describe next has, in particular, access toWi(ℓ) and to s(j).M has
n + 1 working tapes Tj, 0 ≤ j ≤ n, all except one of which correspond to issues rj, 1 ≤ j ≤ n. We will use the set of voters,
V = {v1, . . . , vm}, as part of the work alphabet. The (formal) input tape ofM is ignored.

M starts by writing s(j) symbols # onto tape j for each j, 1 ≤ j ≤ n. By using simultaneous writing steps, this needs at
most f (B/n, k) := (⌊B/n⌋ + 1) (k + 1) steps, since s(j) ≤ f (B/n, k) as argued above. The ‘‘information hiding’’ trick works
as before.

Second, for each i ∈ {1, . . . ,m}, M writes ki symbols vi from the alphabet V on the zeroth tape, T0, such that
m

i=1 ki ≤

B/n. This is the nondeterministic guessing phase where the amount of bribery money spent on each voter, namely ki · n for
voter vi, is determined. The finite control is used to ensure that a word from the language {v1}

∗
· {v2}

∗
· · · {vm}

∗ is written
on tape T0.

In the third phase, M reads tape T0. In its finite control, M stores the ‘‘current voter’’ whose bribery money is read. For
each voter vi, a counter ci is provided (within the finite memory of M). If a symbol vi is read, ci is incremented, and then M
simultaneously moves all heads on the tapes Tj, where j is contained in Wi(ci); notice that the number of steps each head
has to move is now also stored inWi(ci). Hence, the string on tape T0 is being processed in at most f (B/n, k) (simultaneous)
steps.

Finally, it is checked if the left border is reached (again) for all tapes Tj, j > 0. This is the case if and only if the guessed
bribery was successful. �

A.2. Proof of Theorem 5.9

Proof. Membership in W [2] is a bit more tricky than in the unweighted case from Theorem 5.3. To show membership in
W [2], we reduce VB-SM-PLP-WIW to Short Multi-tape Nondeterministic Turing Machine Computation. We describe
how a nondeterministic multi-tape Turing machineM can solve such a lobbying problem.

Consider an instance of VB-SM-PLP-WIW: a probability matrix P ∈ Qm×n
[0,1] with a cost matrix CP , a budget B, and a fixed

threshold t , as well as an objective O. We may again identify t with a certain step level for the price functions.
We describe the work of the reducing machine in the following.

• The reducingmachine calculates the difference O′ between the target weight and the sum of theweights of the referenda
that are already won.

• The reducing machine replaces issue weights bigger than O′ with O′
+ 1.

• The reducing machine eliminates all referenda that are already won.
• For each referendum that is not already won, the reducing machine introduces a special letter ri to be used on tape T0 of

the Turing machine to be constructed.

For simplicity, we assume in the following that O′
= O, i.e., the reduction steps described above have not changed the

instance.
After these steps, all the weights are bounded by the second parameter. Moreover, recall that by the problem definition,

the weight associated to each issue is at least one.
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Otherwise, the reducing machine works as described in the proof of Theorem 5.3. In particular, from P , CP , and t , the
machine extracts the information Hi,j(d), 1 ≤ d ≤ B, and then s(j) (per rj) and finally the winning table Wi(ℓ).

We now describe how the Turing machineM works.

• M begins by guessing ν ≤ O referenda that should also be won. (Recall that the weight associated to each issue is at least
one, so guessing more than O referenda is not necessary.) Then, M spends O(f (O)) time calculating whether winning
those guessed referenda rγ (1), . . . , rγ (ν), ν ≤ O, would be sufficient to exceed the threshold O. If not,M halts and rejects,
otherwise it continues working.

• Thementioned threshold test can be implemented as follows:M guesses at most O referenda andwrites the correspond-
ing symbols on tape T0. It first checks if all guessed referenda are pairwise different. If not,M stops and rejects. Otherwise,
M writes a special symbol O−1 times on the second tape, T1, and moves its head on this tape to the right. Then, it moves
its head wj steps to the left on tape T1 (replacing the special symbol by the blank symbol again) upon reading symbol rj
on tape T0. The threshold O is passed if and only if the blank symbol is read on T1 after processing rγ (ν) on tape T0. Notice
that tape T1 will be empty again after this phase, while tape T0 will still contain the guessed referenda. Observe that the
time needed by the Turing machineM depends only on O.

• M will then continue to work as described in the proof of Theorem 5.3. During this phase, the weights will be completely
ignored. In particular, this part ofM can be produced in polynomial time by the reducing machine. As can be seen in the
proof of Theorem 5.3, the time needed byM in this phase depends only on B/n.

• Finally,M will verify if all (at most O) referenda guessed initially have been won. In contrast to the proof of Theorem 5.3,
this test can now be implemented in a sequential fashion (upon reading rj on tape T0, the corresponding test is performed
on tape Tj), needing time dependent on O.

This concludes the proof. �
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