
Finding Best k Policies

Peng Dai1, Judy Goldsmith2

1 Computer Science & Engineering University of Washington, Seattle WA 98195-2350
http://www.cs.washington.edu/homes/daipeng, daipeng@cs.washington.edu

2 Univ. of Kentucky, Dept. of Comp. Sci. Lexington, KY, USA 40506-0046
http://www.cs.uky.edu/˜goldsmit, goldsmit@cs.uky.edu

Abstract. An optimal probabilistic-planning algorithm solves a prob-
lem, usually modeled by a Markov decision process, by finding its optimal
policy. In this paper, we study the k best policies problem. The prob-
lem is to find the k best policies. The k best policies, k > 1, cannot
be found directly using dynamic programming. Näıvely, finding the k-th
best policy can be Turing reduced to the optimal planning problem, but
the number of problems queried in the näıve algorithm is exponential
in k. We show empirically that solving k best policy problem by using
this reduction requires unreasonable amounts of time even when k = 3.
We then provide a new algorithm, based on our theoretical contribution
to prove that the k-th best policy differs from the i-th policy, for some
i < k, on exactly one state. We show that the time complexity of the
algorithm is quadratic in k, but the number of optimal planning prob-
lems it solves is linear in k. We demonstrate empirically that the new
algorithm has good scalability.

1 Introduction

Markov Decision Processes (MDPs) [1] are a powerful and widely-used formu-
lation for modeling probabilistic planning problems [2, 3]. For instance, NASA
researchers use MDPs to model the Mars rover decision making problems [4, 5].
MDPs are also used to formulate military operations planning [6] and coordi-
nated multi-agent planning [7], etc.

An optimal planner typically takes an MDP model of a problem and out-
puts an optimal plan. This is not always sufficient. In many cases, a planner is
expected to generate more than one solution.

Furthermore, in the modeling phase, not every aspect of nature can be easily
factored in a problem representation. For the case of NASA rover, for example,
there are many safety constraints that need to be satisfied [5]. An optimal plan
might be very close to a risky value—but another may not have many risks and
so it is better to prefer the slightly suboptimal one. Similarly there are many
decision criteria—probability of reaching the goal, expected reward, expected
risk, various preferences, etc. Combining them into a single criterion is hard,
and multi-objective planning is too slow [8, 9]. Thus, a good alternative is to
look for many suboptimal plans given a single criterion and later pick one that
looks the best according to all criteria.

In this paper, we look at the k best policies problem. Given an MDP model,
the problem is to find the k best policies, ranked by the expected value of the
initial state, tie-broken by the “closeness” to a better policy, followed by lex-
ical order of the policies. The classical optimal planning problem is a special
case of the k best policy problem where k = 1. The optimal planning problem
can be solved by dynamic programming, as the property of the optimality of
sub-problems holds. The k best policy problem be directly solved by dynamic
programming. However, finding the k-th best policy can be brute-force reduced
to exponentially many instances of the optimal planning problem. Our experi-
ments show that solving the k best policy problem this way requires unreasonable
time even when k = 3.

A very similar problem has been explored by Nielsen, et al. [10–12]. Nielsen
and Kristensen observed that the problem of finding optimal history-dependent
policies (maps from the state space crossed with the time step to the action
space) can be modeled as finding “a minimum weight hyperpath” in directed
hypergraphs. A vertex in the hypergraph represents a state of the MDP at a
particular time; the hypergraphs are, therefore, acyclic. They present an elegant
and efficient algorithm for finding the k best time-dependent policies for an
MDP. However, their algorithm cannot handle MDPs with probabilistic cycles,
therefore its usefulness is limited.

Our new solution to the k best policy problem follows from the property:
The k-th best policy differs from a better policy on exactly one state. We propose
an original algorithm for the k best policy problem that leverages this property.
We demonstrate both theoretically and empirically that the new algorithm has
low complexity and good scalability.

2 Background

2.1 Markov Decision Processes

AI researchers often use MDPs to formulate probabilistic planning problems. An
MDP is defined as a four-tuple 〈S,A, T, C〉, where S is a finite set of discrete
states, A is a finite set of all applicable actions, T is the transition matrix
describing the domain dynamics, and C denotes the cost of action transitions.

The agent executes its actions in discrete time steps called stages. At each
stage, the system is at one distinct state s ∈ S. The agent can pick any action
a from a set of applicable actions Ap(s) ⊆ A, incurring a cost of C(s, a). The
action takes the system to a new state s′ stochastically, with probability Ta(s′|s).

The horizon of an MDP is the number of stages for which costs are accumu-
lated. We focus our attention on a special set of MDPs called stochastic shortest
path (SSP) problems. The horizon in such an MDP is indefinite and the costs
are accumulated with no discounting. There are an initial state s0, and a set of
sink goal states G ⊆ S. Reaching any state g ∈ G terminates the execution. The
cost of the execution is the sum of all costs along the path from s0 to g. Any infi-
nite horizon discounted reward MDP can easily be converted to an undiscounted
SSP [13].

To solve the MDP we need to find an optimal policy (π∗ : S → A), a prob-
abilistic execution plan that reaches a goal state with the minimum expected
cost. We evaluate any policy π by a value function.

Vπ(s) = C(s, π(s)) +
∑
s′∈S

Tπ(s)(s′|s)Vπ(s′).

Any optimal policy must satisfy the following system of Bellman equations:

V ∗(s) = 0 if s ∈ G else (1)

V ∗(s) = min
a∈Ap(s)

[C(s, a) +
∑
s′∈S

Ta(s′|s)V ∗(s′)].

The corresponding optimal policy can be extracted from the value function:

π∗(s) = argmina∈Ap(s)[C(s, a) +
∑
s′∈S

Ta(s′|s)V ∗(s′)].

2.2 Dynamic Programming

We define a sub-problem of an MDP with state space S ′ ⊆ S to be a self-
contained MDP with state space S ′ and associated action transitions. We define
the sub-policy of a policy π given a sub-problem with state space S ′ ⊆ S to be
the mapping from all s ∈ S ′ to π(s). An optimal policy satisfies the following
necessary and sufficient condition: for any sub-problem, the corresponding sub-
policy is also optimal. Many optimal MDP algorithms are based on dynamic
programming. Its usefulness was first proved by a simple yet powerful algorithm
called value iteration (VI) [1]. Value iteration first initializes the value function
arbitrarily. Then the values are updated iteratively using an operator called Bell-
man backup to create successively better approximations per state per iteration.
Value iteration stops updating when the value function converges (one future
backup can change a state value by at most ε, a pre-defined threshold).

Another algorithm, named policy iteration (PI) [14], starts from an arbitrary
policy and iteratively improves the policy. Each iteration of PI consists of two
sequential steps. The first step, policy evaluation, finds the value function of the
current policy. Values are calculated by solving the system of linear equations
(in the original PI algorithm), or by iteratively updating the value functions in
the VI manner till convergence (modified policy iteration [15]). The second step,
policy improvement, updates the current policy by choosing a greedy action per
state by a one step lookahead, based on the value function calculated in the policy
evaluation step. PI stops when the policy improvement step doesn’t change the
policy.

3 k Best Policy Problem

Classical dynamic programming successfully finds one optimal policy of an MDP
in time polynomial in |S| and |A| [16, 17]. In this paper, we find the k best policies

of an MDP. We first give the formal definition of the k best policy problem. Then
we introduce the main theoretical contribution of the paper by proving a very
strong result about the k-th best policy.

Let M be an MDP, π a policy for M . We define the policy graph of M given
π, denoted by Gπ, to be a graph constructed by: (1) the set of states (vertices)
that are reachable from s0 given π, and (2) their corresponding transitions in π
(edges).

Let s and s′ be states of M . We say that s′ is a policy descendant of s
with respect to π if there is a path from s to s′ in Gπ or if s = s′. We define
Policydesc(s, π) to be the set of all policy descendant states of s under policy π.
We assume that, for every state s ∈ S, there are at least two possible actions for
s.

Note that, for a given MDP and a given value function, there may be multiple
policies with that value function. We define a notion of “best among equals”,
namely, the “closest” to better policies followed by a lexicographic ordering, so
that the notion of “best policy” is well defined.

Lemma 1. Using value iteration, we can find an optimal value function for M ,
and the optimal Vπ∗(s0). We can then find the lexicographically least policy, π1,
that has that value for Vπ1(s0) = Vπ∗(s0).

The proof of Lemma 1 is straightforward. Given the value function, for each
state, we choose the lexicographically first action that achieves the desired value.
(If A = {a0, a1, . . . , aj}, the lexicographically first action satisfying a property
is the lowest-numbered ai with that property.) Once we have the best policy, we
then need to define an ordering on policies so that we may define the k-th best.

Definition 1. Given two policies π and π′, we can consider them as vectors of
length |S| over alphabet |A|, and define the Hamming distance Ham(π, π′) to be
the number of states on which π and π′ differ. We also define <lex to be the
lexicographic ordering on such vectors.

Finally, we define an order on policies.

Definition 2. Given an MDP M and a dynamic list of p best policies gener-
ated so far {π1 . . . , πp}, the next best policy is computed based on the following
ordering ≺ on the rest of the policies for M .

π ≺ π′ if Vπ(s0) < Vπ′(s0)
else if minj≤pHam(πj , π) < minj≤pHam(πj , π′)
else if π <lex π

′.

Intuitively, two policies with the same initial state value are first compared
by how “close” each one is to some better policy, followed by lexicographic order
if they are equally close.

Theorem 1. Let M be an MDP, and let {π1, . . . , πk} be the k best policies for
M , in order. Let k ≥ 1. Then there is some m < k such that πk differs from πm
on exactly one state.

The proof sketch to Theorem 1 is provided in the Appendix.

4 Algorithm

Algorithm 1 k best näıve (KBN)
1: Input: M (an MDP), k
2: find best policy π1 by VI
3: Π ← {π1}
4: for i← 2 to k do
5: πi ← best policy that differs from any policy π ∈ Π by at least one state
6: Π ← Π ∪ {πi}
7: return π1, . . . , πk

Consider the k-th (k > 1) best policy of an MDP M , called πk. The neces-
sary and sufficient condition of the optimality on sub-problems does not hold.
With the loss of the optimality on sub-problems, dynamic programming is not
immediately applicable. However, we can reduce it to many optimal planning
problems, each solved by dynamic programming. Before illustrating the reduc-
tion, we present the high-level idea of our first algorithm in Algorithm 1. We call
it k best näıve algorithm (KBN), as it is a brute force algorithm that doesn’t
use Theorem 1. KBN is based on the following observation: The k + 1-st best
policy must differ from each of the k best policies on at least one state. We can
enumerate the possible sets of state/action pairs the new policy must avoid, and
find an optimal policy for each thus-constrained MDP, then take the best of
those policies.

For instance, given the best and second best policies, π1 and π2, to find π3,
we say that either it differs from π1 on s0 and from π1 on s0, or from π1 on s0 and
from π1 on s1, or.... In this case, we solve |S|2 many optimal planning problems.
To find the k-th best policy, we solve |S|k many. Each newly-computed policy
will be compared with the best policy computed so far, so that the number of
comparisons is linear in the number of policies computed. Suppose we use VI to
solve those optimal planning problems, KBN has a complexity |S|k×O(V I), an
exponential function of k.

Some of these combinations of constraints may constrain away all actions for
a particular state, so do not yield a next-best policy. However, the next best
policy must be among those computed, and will be the best such.

Using Theorem 1, we have a new algorithm, called k best improved (KBI).
The KBI pseudo-code is shown in Algorithm 2. KBI keeps a set of candidate
policies P, which is initially empty. We first find the optimal policy by value
iteration. To find the i-th best policy, we generate k − i + 1 distinct policies as
candidates. These candidates (1) must not be duplicates of any policy in P, and
(2) each differs from πi−1 on exactly one state. We have the following theorem.

Theorem 2. The i-th best policy must be an element of P.

Proof. As we know from Theorem 1 that the i-th (i ≤ k) best policy is exactly
one state different from one of π1, . . . , πi−1, say, πj , where j < i. Therefore, it

Algorithm 2 k best improved (KBI)
1: Input: M (an MDP), k
2: find best policy π1 by VI
3: P ← empty set
4: for i← 2 to k do
5: generate distinct k− i+1 best policies that each differs from πi−1 on exactly one

state and differs from {π1, . . . , πi−1} and insert them into P in order, discarding
duplicates

6: πi ← the best policy in P
7: delete πi from P
8: return π1, . . . , πk

must have been generated when πj+1 was computed. Since it is the i-th best
policy, it would have been amongst the i − j-th best of those policies that are
one state different from πj , so it belongs to the k − j best policies added to P
at stage j + 1.

Thus, we find the i-th best policy by picking the best policy in P. There are
(|A| − 1)× |S| policies that are exactly one state different from πi. Finding the
best k−i of them has a complexity |A|×|S|×O(policy evaluation), plus the com-
plexity of keeping the list P in sorted order (O(k2 log k)). KBI computes these
policies k−1 times, so its complexity is (k−1)×|A|×|S|×O(policy evaluation),
a linear function of k. (Note that the sorting term is dominated by |A| × |S| ×
O(policy evaluation).)

5 Experiments

We address the following three questions in our experiments: (1) How does
KBI compare with KBN on different problems and k values? (2) Does KBI scale
well on large k values? (3) How different are the k best policies from the optimal
policy?

We implemented KBN and KBI in C. We performed all experiments on a
2.2GHz Dual-Core Intel(R) Core(TM)2 Processor with 6GB memory. We picked
problems from three domains, namely Racetrack [18], Single-arm pendulum
(SAP) and Double-arm pendulum (DAP) [19]. We used a threshold value of
ε = 10−6.

5.1 Comparing KBI and KBN

We compare KBN and KBI on a suite of six problems of various sizes. The
running times of both algorithms when k = 2 are listed in Table 1. We see
that KBI outperforms KBN on all problems. In four problems, the speedup is
an order of magnitude. According to our analysis in the Algorithm section, when
k increases by 1, the running time of KBN increases by a factor of |S|, so for
cases k = 3 and k = 4 we take the expectations of its running time based on

Domain States k = 2 k = 3 k = 4
|S| KBN KBI KBN KBI KBN KBI

(expected) (expected)

DAP 1 625 0.90 0.44 102 0.87 105 1.32

Racetrack 1 1,847 0.56 0.07 103 0.14 106 0.21

SAP 1 2,500 12.39 2.58 104 4.93 107 7.29

SAP 2 10,000 461.87 66.15 106 131.30 1010 196.46

DAP 2 10,000 944.14 333.97 106 665.89 1010 1001.23

Racetrack 2 21,371 11.10 2.02 105 4.03 109 6.02

Table 1. Running time (seconds) of KBN and KBI in various problems with different k
values. The running time of KBN on k > 2 are expectations. KBI outperforms KBN on
most problems by an order of magnitude even when k = 2.

its performance on the same problem when k = 2. Even for small k values, the
running times of KBN are prohibitively high. For example, in SAP 2 problem,
its expected running time is approximately one thousand hours for k = 3 and
tens of millions of hours for k = 4.

5.2 The scalability of KBI

In this experiment we investigate whether the KBI algorithm scales to large k
values. We run KBI for k = 100 on the same set of problems, and record the
elapsed times when it finishes generating the i-th best policy (i = 2, . . . , k) of
each problem. Figure 1 clearly shows that, for all problems KBI spends times
linear in k when calculating k-th best policies. This experiment indicates that
KBI has good scalability.

5.3 How k best policies differ from the optimal

We are also curious to know how the k best policies differ from the optimal policy.
We analyze the list of k best policies calculated in the previous experiment, and
compare the total number of different states, d, between each of these policies
and the optimal policy π1 for each problem. When d is small for a problem, it
means that the k best policies are very similar to the optimal policy. This shows
that zmany good policies can be generated by a few small changes to the optimal
policy. In other words, changes to few states can have very little impact on the
optimality of the rest of the policy. When d is large, the optimal policy is more
tightly coupled. When a sub-optimal action is chosen for a state, in order to get
a good sub-optimal plan, changes to other states are usually also required.

We plot the d values for the k best policies on the same set of problems
in Figure 2. These problems have relatively low d values (< 20 for all k). This
shows that the k best policies are always quite close the the optimal policies.

0

10

20

30

40

50

0 20 40 60 80 100

k

R
u

n
ni

n
g

 T
im

e

0

2

4

6

8

0 20 40 60 80 100

k

R
u

nn
in

g
tim

e

0

50

100

150

200

250

0 20 40 60 80 100

k

R
u

n
ni

n
g

 ti
m

e

0
1000
2000
3000
4000
5000
6000
7000

0 20 40 60 80 100

k

R
u

n
ni

n
g

 ti
m

e

0
5000

10000
15000
20000
25000
30000
35000

0 20 40 60 80 100

k

R
u

n
ni

n
g

 ti
m

e

0

50

100

150

200

0 20 40 60 80 100

k

R
u

n
ni

n
g

 ti
m

e

Fig. 1. Running time (seconds) of KBI when k = 2, . . . , 100 on DAP 1, Racetrack
1, SAP 1, SAP 2, DAP 2, Racetrack 2 problems (left to right, top to bottom). The
running times increase linearly in k for all problems.

Some problems have relatively higher d values than others, namely SAP 1, DAP
2, and Racetrack 2, which means they have relatively tightly coupled optimal
policies. As these problems are from diverse domains and of different sizes, it
seems that the tightness of coupling of the optimal policies is probably problem-
dependent.

6 Conclusions

This paper makes several contributions. First, we introduce the k best policy
problem, and argue for its importance. Second, we prove a strong and useful
theorem that the k-th best policy differs from some m(< k)-th best policy on
exactly one state. Without that result, the brute-force algorithm for solving
the k best policy problem (KBN) has time complexity exponential in k. Third,
we propose a new algorithm, named k best policy improved (KBI), based on

0

1

2

3

4

5

0 20 40 60 80 100

k

d

0

2

4

6

8

0 20 40 60 80 100

k

d

0
2
4
6
8

10
12
14

0 20 40 60 80 100

k

d

0

1

2

3

4

5

0 20 40 60 80 100

k

d

0

5

10

15

20

0 20 40 60 80 100

k

d

0

5

10

15

20

0 20 40 60 80 100

k

d

Fig. 2. the total number of different states between the k-th best policy and the optimal
policy when k = 2, . . . , 100 on DAP 1, Racetrack 1, SAP 1, SAP 2, DAP 2, Racetrack
2 problems (left to right, top to bottom). All k best policies are quite close to their
π1’s.

our theorem. We show that the time complexity of KBI is dominated by a
computation linear in k. Fourth, we demonstrate that KBI outperforms KBN by
an order of magnitude when k = 2 in most cases. The KBN algorithm does not
scale to larger k values, as its running time increases exponentially in k. On
the other hand, the running time of KBI increases only linearly in k. This makes
KBI suitable for problems for which we want a long list of best policies. Fifth, we
notice that the k best policies for different MDPs are quite similar to the optimal
policies, though some problems’ optimal policies are more tightly coupled than
others’.

This is just the beginning of work on k best policies. There is much to be
done in improving the algorithms, and in looking at applications-driven variants.

Acknowledgments

Dai was partially supported by Office of Naval Research grant N00014-06-1-
0147. Goldsmith was partially supported by NSF grant ITR–0325063. We thank
Mausam for helpful discussions on the problem.

References

1. Bellman, R.: Dynamic Programming. Princeton University Press (1957)
2. Boutilier, C., Dean, T., Hanks, S.: Decision-theoretic planning: Structural assump-

tions and computational leverage. J. of Artificial Intelligence Research 11 (1999)
1–94

3. Bonet, B., Geffner, H.: Planning with incomplete information as heuristic search
in belief space. In: ICAPS. (2000) 52–61

4. Bresina, J.L., Dearden, R., Meuleau, N., Ramkrishnan, S., Smith, D.E., Washing-
ton, R.: Planning under continuous time and resource uncertainty: A challenge for
AI. In: UAI. (2002) 77–84

5. Bresina, J.L., Jónsson, A.K., Morris, P.H., Rajan, K.: Activity planning for the
mars exploration rovers. In: ICAPS. (2005) 40–49

6. Aberdeen, D., Thiébaux, S., Zhang, L.: Decision-theoretic military operations
planning. In: ICAPS. (2004) 402–412

7. Musliner, D.J., Carciofini, J., Goldman, R.P., E. H. Durfee, J.W., Boddy, M.S.:
Flexibly integrating deliberation and execution in decision-theoretic agents. In:
ICAPS Workshop on Planning and Plan-Execution for Real-World Systems. (2007)

8. Galand, L., Perny, P.: Search for compromise solutions in multiobjective state
space graphs. In: ECAI. (2006) 93–97

9. Bryce, D., Cushing, W., , Kambhampati, S.: Probabilistic planning is multiobjec-
tive! Technical Report ASU CSE TR-07-006 (June 2007)

10. Nielsen, L.R., Kristensen, A.R.: Finding the k best policies in finite-horizon mdps.
European Journal of Operational Research 175(2) (2006) 1164–1179

11. Nielsen, L.R., Pretolani, D., Andersen, K.A.: Finding the k shortest hyperpaths
using reoptimization. Oper. Res. Lett. 34(2) (2006) 155–164

12. Nielsen, L.R., Andersen, K.A., Pretolani, D.: Finding the k shortest hyperpaths.
Computers & OR 32 (2005) 1477–1497

13. Bertsekas, D.P., Tsitsiklis, J.N.: Neuro-Dynamic Programming. Athena Scientific
(1996)

14. Howard, R.: Dynamic Programming and Markov Processes. MIT Press, Cam-
bridge, Massachusetts (1960)

15. Puterman, M.: Markov Decision Processes: Discrete Stochastic Dynamic Program-
ming. John Wiley, New York (1994)

16. Littman, M.L., Dean, T., Kaelbling, L.P.: On the complexity of solving Markov
decision problems. In: UAI. (1995) 394–402

17. Bonet, B.: On the speed of convergence of value iteration on stochastic shortest-
path problems. Mathematics of Operations Research 32(2) (2007) 365–373

18. Barto, A., Bradtke, S., Singh, S.: Learning to act using real-time dynamic pro-
gramming. Artificial Intelligence J. 72 (1995) 81–138

19. Wingate, D., Seppi, K.D.: Prioritization methods for accelerating MDP solvers.
JMLR 6 (2005) 851–881

20. Munos, R., Moore, A.: Influence and variance of a Markov chain: Application to
adaptive discretization in optimal control. In: CDC. (1999)

21. Bertsekas, D.P., Tsitsiklis, J.N.: An analysis of stochastic shortest path problems.
Mathematics of Operations Research 16(3) (1991) 580–595

Appendix

In order to prove Theorem 1, we consider the effects of changing a policy one state at
a time.

Lemma 2. Let M be an MDP, and π and π′ be two policies for M that differ only
on state s. Suppose that Vπ(s) ≤ Vπ′(s). Then Vπ(s0) ≤ Vπ′(s0). More strongly, if
s ∈ Policydesc(s0, π) (which implies s ∈ Policydesc(s0, π

′)) and Vπ(s) < Vπ′(s), then
Vπ(s0) < Vπ′(s0).

Proof. We know the values of Vπ(s) and Vπ′(s) are two unknown constants with Vπ(s) ≤
Vπ′(s). We write the two systems of linear equations with respect to π and π′ by ignoring
variables Vπ(s) and Vπ′(s) on the left hand side, and replacing them with their values
whenever they are on the right hand side. We find the two systems of equations have
the same set of coefficients, but the one given π has smaller or equal constant values
on the right hand sides. If we solve the equations by factoring out all the variables
on the right hand side iteratively, the same process as replacing a variable by its
corresponding state’s influence [20], we finally get the same value for all states where
s is not a policy descendant given π′, since all states’ influences are the same in π and
π′, and a better value in π for all states where s is a policy descendant given π′, since
the influence of s on them is decreased (due to a smaller value), where the influence of
other states remain unchanged. We call this property monotonicity of influence. This
implies Vπ(s0) ≤ Vπ′(s0). Here, we actually proved a more general result, namely that
∀s′ ∈ S[Vπ(s′) ≤ Vπ′(s′)].

Lemma 3. Let M be an MDP, and π and π′ be two policies for M that differ only on
state s. Suppose that Vπ(s0) < Vπ′(s0). Then Vπ(s) < Vπ′(s). More strongly, ∀s′ ∈ S,
[Vπ(s′) ≤ Vπ′(s′)].

Proof (Sketch). Suppose that Vπ(s) ≥ Vπ′(s).
We divide the states in Policydesc(s0, π

′) into two subsets: (1) policy ancestors of
s given π′, the set of states where s is a policy descendant given π′, and (2) non-policy
ancestors of s given π′, the complement of (1).

We claim that the values of the non-policy ancestors of s given π′ are the same as
those given π. This is because the values of those states do not depend on s or any policy
ancestors of s given π′, so their values are not influenced by any potential value changes
caused by s. For policy ancestors of s given π′, their values cannot be improved, by
the monotonicity of influence. Because their coefficients remain unchanged while the
constants (values of non-policy ancestors of s given π′ and value of s) are equal or
larger. This contradicts the assumption that Vπ(s0) < Vπ′(s0). Now, we know that
Vπ(s) < Vπ′(s). From Lemma 2 we have that ∀s′ ∈ Policydesc(s0, π

′) [Vπ(s) ≤ Vπ′(s)].

Lemma 4. Let M be an MDP, and π and π′ be two policies for M that differ only
on two states s1 and s2. Suppose that Vπ(s0) ≤ Vπ′(s0). Consider the following two
policies π1, π2 obtained from by starting with π by replacing exactly one distinct action

each from π(s), s ∈ {s1, s2}, with the corresponding π′(s). Without loss of generality,
suppose πi(si) = π′(si). Then π1 and π2 cannot both have larger initial state values
than π′ does.

Proof (Sketch). For either si, if si is not a policy descendant of s0 given π or π′, then
Vπ′(s0) = Vπi(s0), and we’re done.

Now suppose Vπ′(s0) < Vπi(s0) for i = 1, 2. From Lemma 3, we have

∀s′ ∈ S[Vπ′(s
′) ≤ Vπ1(s′)], and Vπ′(s

2) < Vπ1(s2), (2)

∀s′ ∈ S[Vπ′(s
′) ≤ Vπ2(s′)], and Vπ′(s

1) < Vπ2(s1). (3)

There are three cases. Case 1: Neither s1 nor s2 is a policy descendant of the other
given π. From Equation 2 we know Vπ′(s

2) < Vπ1(s2) = Vπ(s2), as the values of all
policy descendants of s2 given π1 and π are the same, and π1(s2) = π(s2). From
Equation 3 we know Vπ′(s

1) < Vπ2(s1) = Vπ(s1) for the same reason. Then from the
monotonicity of influence together with all derived inequalities, we know Vπ′(s0) <
Vπ(s0). A contradiction.

Case 2: s2 is a policy descendant of s1 given π, but s1 is not a policy descendant of
s2 given π (or vice versa). From Equation 2 we first know Vπ′(s

2) < Vπ1(s2) = Vπ(s2).
From Equation 3, and Vπ′(s

2) < Vπ(s2), by the monotonicity of influence we know
Vπ′(s

1) < Vπ(s1). Then, from the monotonicity of influence together with all derived
inequalities, we know Vπ′(s0) < Vπ(s0). A contradiction.

Case 3: s1 and s2 are both policy descendants of each other given π′. From both
Equations 2 and 3 and the monotonicity of influence we can prove Vπ′(s

1) < Vπ(s1) and
Vπ′(s

2) < Vπ(s2). Then from the monotonicity of influence together with all derived
inequalities, we know Vπ′(s0) < Vπ(s0). A contradiction.

Lemma 5. Let M be an MDP, and π and π′ be two policies for M that differ only
on m states s1, s2, . . . , sm, m > 1. Suppose that Vπ(s0) = Vπ′(s0). Consider the 2m

distinct policies πT , T ⊆ {s1, s2, . . . , sm} that agree with π on all states not in T , and
agree with π′ on T . Then for at least one such T of size 1, VπT (s0) ≤ Vπ′(s0).

This Lemma can be proved inductively from Lemma 5.
Note that a fundamental assumption underlying dynamic programming algorithms

for MDPs is: If M is a MDP and π a non-optimal policy (in the sense of having a
non-optimal value function), then there is some s ∈ S and a ∈ A such that vπ(s) >
C(s, a) + γ

∑
s′∈S Ta(s′|s) · vπ(s′). Bertsekas and Tsitsiklis showed that this holds for

stochastic shortest path problems, when γ = 1 [21]. Their proof can be extended.

Lemma 6. If If Vπ(s0) is not optimal, there must be an s+ ∈ Policydesc(s0, π) and
a ∈ A such that vπ(s+) > C(s+, a) +

∑
s′∈S Ta(s′|s+,) · vπ(s′). If we let π′(s) = π(s)

for s 6= s+, and let π′(s+) = a, then Vπ′(s0) < Vπ(s0).

Proof (Theorem 1). Let M be an MDP, and Πi = {π1, . . . , πi} be the list of i best
policies, for i ≤ k. We claim that, for k > 1, there is some j < k and state s such that
πj differs from πk exactly on s.

If Vπk (s0) = Vπ1(s0), the theorem follows from Lemma 5.
If Vπk (s0) > Vπ1(s0), the theorem follows from Lemma 6.

