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Abstract. We propose various models for lobbying in a probabilistic environ-
ment, in which an actor (called “The Lobby”) seeks to influence the voters’ pref-
erences of voting for or against multiple issues when the voters’ preferences are
represented in terms of probabilities. In particular, we provide two evaluation
criteria and three bribery methods to formally describe these models, and we
consider the resulting forms of lobbying with and without issue weighting. We
provide a formal analysis for these problems of lobbying in astochastic envi-
ronment, and determine their classical and parameterized complexity depend-
ing on the given bribery/evaluation criteria. Specifically, we show that some
of these problems can be solved in polynomial time, some are NP-complete
but fixed-parameter tractable, and some are W[2]-complete. Finally, we provide
(in)approximability results.

1 Introduction

In the American political system, laws are passed by electedofficials who are supposed
to represent their constituency. Many factors can affect a representative’s vote on a
particular issue: a representative’s personal beliefs about the issue, campaign contribu-
tions, communications from constituents, communicationsfrom potential donors, and
the representative’s own expectations of further contributions and political support.

It is a complicated process to reason about. Earlier work considered the problem of
meting out contributions to representatives in order to pass a set of laws or influence
a set of votes. However, the earlier computational complexity work on this problem
made the assumption that a politician who accepts a contribution will in fact—if the
contribution meets a given threshold—vote according to thewishes of the donor.

It is said that “An honest politician is one who stays bought,” but that does not take
into account the ongoing pressures from personal convictions and opposing lobbyists
and donors. We consider the problem of influencing a set of votes under the assump-
tion that we can influence only theprobability that the politician votes as we desire.
The methods for exerting influence on the voters is discussedin the section on bribery
criteria while the notion of sufficient influence for a voter is discussed in the section on
evaluation criteria.
⋆ Supported in part by DFG grants RO 1202/11-1 and RO 1202/12-1, the European Science

Foundation’s EUROCORES program LogICCC, the Alexander vonHumboldt Foundation’s
TransCoop program, and NSF grant ITR-0325063.



Lobbying has been studied formally by economists, computerscientists, and special
interest groups since at least 1983 [13] and as an extension to formal game theory since
1944 [15]. Each discipline has considered mostly disjoint aspects of the process while
seeking to accomplish distinct goals with their respectiveformal models. Economists
have formalized models and studied them as “economic games,” as defined by von Neu-
mann and Morgenstern [15]. This analysis is focused on learning how these complex
systems work and deducing optimal strategies for winning the competitions [13,1,2].
This work has also focused on how to “rig” a vote and how to optimally dispense the
funds among the various individuals [1]. Economists are interested in finding effective
and efficient bribery schemes [1] as well as determining strategies for instances of two
or more players [1,13,2]. Generally, they reduce the problem of finding an effective
lobbying strategy to one of finding a winning strategy for thespecific type of game.
Economists have also formalized this problem for bribery systems in both the United
States [13] and the European Union [6].

In the emerging field of computational social choice, votingand preference aggre-
gation are studied from a computational perspective, with aparticular focus on the
complexity of winner determination, manipulation, procedural control, and bribery in
elections (see, e.g., the survey [9] and the references cited therein), and also with respect
to lobbying in the context of direct democracy where voters vote on multiple referenda.
In particular, Christian et al. [5] show that “Optimal Lobbying” (OL) is complete for
the (parameterized) complexity class W[2]. The OL problem is a deterministic and non-
weighted version of the problems that we present in this paper. Sandholm noted that the
“Optimal Weighted Lobbying” (OWL) problem, which allows different voters to have
different prices, can be expressed as and solved via the “binary multi-unit combinatorial
reverse auction winner-determination problem” (see [14]).

We extend the models of lobbying, and provide algorithms andanalysis for these
extended models in terms of classical and parameterized complexity. Our problems are
still related to the reverse auction winner-determinationproblem—in particular, our
extensions of the optimal lobbying problem allow the sellerto express desire over
the objects, thus crucially changing the original problem in both the economic and
complexity-theoretic senses. This change is a result of theprobabilistic modeling of the
seller’s reaction to the bribery. We also show novel computational and algorithmic ap-
proaches to these new problems. In this way we add breadth anddepth to not only the
models but also the understanding of lobbying behavior.

2 Models for Probabilistic Lobbying

2.1 Initial Model

We begin with a simplistic version of the PROBABILISTIC LOBBYING PROBLEM (PLP,
for short), in which voters start with initial probabilities of voting for an issue and are
assigned known costs for increasing their probabilities ofvoting according to “The
Lobby’s” agenda by each of a finite set of increments.

The question, for this class of problems, is: Given the aboveinformation, along with
an agenda and a fixed budgetB, can The Lobby target its bribes in order to achieve its
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agenda? The complexity of the problem seems to hinge on the evaluation criterion for
what it means to “win a vote” or “achieve an agenda.” We discuss the possible interpre-
tations of evaluation and bribery later in this section. First, however, we will formalize
the problem by defining data objects needed to represent the problem instances.

Let Qm×n
[0,1]

denote the set ofm×n matrices overQ[0,1] (the rational numbers in the

interval [0,1]). We sayP ∈ Qm×n
[0,1]

is a probability matrix (of sizem×n), where each
entry pi, j of P gives the probability that votervi will vote “yes” for referendum (syn-
onymously, for issue)r j . The result of a vote can be either a “yes” (represented by 1) or
a “no” (represented by 0). Thus, we can represent the result of any vote on all issues as
a 0/1 vectorX = (x1,x2, . . . ,xn), which is sometimes also denoted as a string in{0,1}n.

We now associate with each pair(vi , r j ) of voter/issue, a discrete price functionci, j

for changingvi ’s probability of voting “yes” for issuer j . Intuitively, ci, j gives the cost
for The Lobby of raising or lowering (in discrete steps) theith voter’s probability of
voting “yes” on thejth issue. A formal description is as follows.

Given the entriespi, j = ai, j/bi, j of a probability matrixP∈Qm×n
[0,1]

, choose somek∈N

such thatk+ 1 is a common multiple of allbi, j , where 1≤ i ≤ m and 1≤ j ≤ n, and
partition the probability interval[0,1] into k+ 1 steps of size1/(k+1) each. For each
i ∈ {1,2, . . . ,m} and j ∈ {1,2, . . . ,n}, ci, j : {0,1/(k+1),2/(k+1), . . . ,k/(k+1),1} → N is the
(discrete) price function for pi, j , i.e.,ci, j(ℓ/(k+1)) is the price for changing the probability
of the ith voter voting “yes” on thejth issue frompi, j to ℓ/(k+1), where 0≤ ℓ ≤ k+ 1.
Note that the domain ofci, j consists ofk+2 elements ofQ[0,1] including 0,pi, j , and 1.
In particular, we requireci, j(pi, j) = 0, i.e., a cost of zero is associated with leaving the
initial probability of votervi voting on issuer j unchanged. Note thatk = 0 meanspi, j ∈
{0,1}, i.e., in this case each voter either accepts or rejects eachissue with certainty and
The Lobby can only flip these results.4 The image ofci, j consists ofk+2 nonnegative
integers including 0, and we require that, for any two elementsa,b in the domain ofci, j ,
if pi, j ≤ a≤ b or pi, j ≥ a≥ b, thenci, j(a) ≤ ci, j(b). This guarantees monotonicity on
the prices.

We represent the list of price functions associated with a probability matrixP as a
tableCP whosem·n rows give the price functionsci, j and whosek+ 2 columns give
the costsci, j(ℓ/(k+1)), where 0≤ ℓ≤ k+1. Note that we choose the samek for eachci, j ,
so we have the same number of columns in each row ofCP. The entries ofCP can be
thought of as “price tags” that The Lobby must pay in order to change the probabilities
of voting.

The Lobby also has an integer-valued budgetB and an “agenda,” which we will de-
note as a vectorZ ∈ {0,1}n, wheren is the number of issues, containing the outcomes
The Lobby would like to see on the corresponding issues. For simplicity, we may as-
sume that The Lobby’s agenda is all “yes” votes, so the targetvector isZ = 1n. This
assumption can be made without loss of generality, since if there is a zero inZ at po-
sition j, we can flip this zero to one and also change the correspondingprobabilities
p1, j , p2, j , . . . , pm, j in the jth column ofP to 1− p1, j ,1− p2, j , . . . ,1− pm, j (see the eval-
uation criteria in Section 2.3 for how to determine the result of voting on a referendum).

4 This is the special case of Optimal Lobbying.
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Example 1.We create a problem instance withk = 9, m= 2 (number of voters), and
n = 3 (number of issues). We will use this as a running example forthe rest of this
paper. In addition to the above definitions fork, m, andn, we also give the following
matrix for P. (Note that this example is normalized for an agenda ofZ = 13, which
is why The Lobby has no incentive for lowering the acceptanceprobabilities, so those
costs are omitted below.)

Our example consists of a probability matrixP:

r1 r2 r3

v1 0.8 0.3 0.5
v2 0.4 0.7 0.4

and the corresponding cost matrixCP:

ci, j 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

c1,1 −− −− −− −− −− −− −− −− 0 100 140
c1,2 −− −− −− 0 10 70 100 140 310 520 600
c1,3 −− −− −− −− −− 0 15 25 70 90 150
c2,1 −− −− −− −− 0 30 40 70 120 200 270
c2,2 −− −− −− −− −− −− −− 0 10 40 90
c2,3 −− −− −− −− 0 70 90 100 180 300 450

In Section 2.2, we describe three bribery methods, i.e., three specific ways in which
The Lobby can influence the voters. These will be referred to as Bi , i ∈ {1,2,3}. In
addition to the three bribery methods described in Section 2.2, we also define two ways
in which The Lobby can win a set of votes. These evaluation criteria are defined in
Section 2.3 and will be referred to as Cj , j ∈ {1,2}. They are important because votes
counted in different ways can result in different outcomes depending on voting and
evaluation systems (cf. Myerson and Weber [11]).

We now introduce the six basic problems that we will study. For i ∈ {1,2,3} and
j ∈ {1,2}, we define:

Name: Bi -C j PROBABILISTIC LOBBYING PROBLEM (Bi -C j -PLP, for short).
Given: A probability matrixP∈ Qm×n

[0,1] with tableCP of price functions, a target vector

Z ∈ {0,1}n, and a budgetB.
Question: Is there a way for The Lobby to influenceP (using bribery method Bi and

evaluation criterion Cj , without exceeding budgetB) such that the result of the
votes on all issues equalsZ?

2.2 Bribery Methods

We begin by first formalizing the bribery methods by which TheLobby can influence
votes on issues. We will define three methods for donating this money.
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Microbribery (B1) The first method at the disposal of The Lobby is what we will
call microbribery. We define microbribery to be the editing of individual elements of
the P matrix according to the costs in theCP matrix. Thus The Lobby picks not only
which voter to influence but also which issue to influence for that voter. This bribery
method allows the most flexible version of bribery, and models private donations made
to candidates in support of specific issues.

Issue Bribery (B2) The second method at the disposal of The Lobby isissue bribery.
We can see from theP matrix that each column represents how the voters think about a
particular issue. In this method of bribery, The Lobby can pick a column of the matrix
and edit it according to some budget. The money will be equally distributed among all
the voters and the voter probabilities will move accordingly. So, ford dollars each voter
receives a fraction ofd/m and their probability of voting “yes” changes accordingly.This
can be thought of as special-interest group donations. Special-interest groups such as
PETA focus on issues and dispense their funds across an issuerather than by voter. The
bribery could be funneled through such groups.

Voter Bribery (B3) The third and final method at the disposal of The Lobby isvoter
bribery. We can see from theP matrix that each row represents what an individual voter
thinks about all the issues on the docket. In this method of bribery, The Lobby picks a
voter and then pays to edit the entire row at once with the funds being equally distributed
over all the issues. So, ford dollars a fraction ofd/n is spent on each issue, which moves
accordingly. The cost of moving the voter is generated usingtheCP matrix as before.
This method of bribery is analogous to “buying” or pushing a single politician or voter.
The Lobby seeks to donate so much money to an individual voterthat he or she has no
choice but to move his or her votes toward The Lobby’s agenda.

2.3 Evaluation Criteria

Defining criteria for how an issue is won is the next importantstep in formalizing our
models. Here we define two methods that one could use to evaluate the eventual out-
come of a vote. Since we are focusing on problems that are probabilistic in nature, it
is important to note that no evaluation criteria will guarantee a win. The criteria below
yield different outcomes depending on the model and probleminstance.

Strict Majority (C1) For each issue, a strict majority of the individual voters have
probability at least some threshold,t, of voting according to the agenda. In our running
example (see Example 1), witht = 50%, the result of the votes would beX = (0,0,0),
because none of the issues has a strict majority of voters with above 50% likelihood of
voting according to the agenda.

Average Majority (C2) For each issue,r j , of a given probability matrixP, we define:
p j = (∑m

i=1 pi, j)/m. We can now evaluate the vote to say thatr j is accepted if and only if
p j > t wheret is some threshold. This would, in our running example, witht = 50%,
give us a result vector ofX = (1,0,0).
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2.4 Issue Weighting

Our modification to the model will bring in the concept of issue weighting. It is rea-
sonable to surmise that certain issues will be of more importance to The Lobby than
others. For this reason we will allow The Lobby to specify higher weights to the issues
that they deem more important. These weights will be defined for each issue.

We will specify these weights as a vectorW ∈ Zn with size n equal to the total
number of issues in our problem instance. The higher the weight, the more important
that particular issue is to The Lobby. Along with the weightsfor each issue we are also
given an objective valueO∈ Z+ which is the minimum weight The Lobby wants to see
passed. Since this is a partial ordering, it is possible for The Lobby to have an ordering
such as:w1 = w2 = · · · = wn. If this is the case, we see that we are left with an instance
of Bi -C j -PLP.

We now introduce the six probabilistic lobbying problems with issue weighting. For
i ∈ {1,2,3} and j ∈ {1,2}, we define:

Name: Bi -C j -PROBABILISTIC LOBBYING PROBLEM WITH ISSUEWEIGHTING (Bi -
C j -PLP-WIW, for short).

Given: A probability matrixP ∈ Qm×n
[0,1]

with tableCP of price functions and a lobby

target vectorZ∈ {0,1}n, a lobby weight vectorW ∈Zn, an objective valueO∈Z+,
and a budgetB.

Question: Is there a way for The Lobby to influenceP (using bribery method Bi and
evaluation criterion Cj , without exceeding budgetB) such that the total weight of
all issues for which the result coincides with The Lobby’s target vectorZ is at
leastO?

3 Complexity-Theoretic Notions

We assume the reader is familiar with standard notions of (classical) complexity theory,
such as P, NP, and NP-completeness. Since we analyze the problems stated in Section 2
not only in terms of their classical complexity, but also with regard to theirparameter-
izedcomplexity, we provide some basic notions here (see, e.g., Downey and Fellows [7]
for more background). As we derive our results in a rather specific fashion, we will em-
ploy the “Turing way” as proposed by Cesati [4].

A parameterized problemP is a subset ofΣ∗×N, whereΣ is a fixed alphabet and
N is the set of nonnegative integers. Each instance of the parameterized problemP is a
pair (I ,k), where the second componentk is called theparameter. The languageL(P)
is the set of allYES instances ofP. The parameterized problemP is fixed-parameter
tractable if there is an algorithm (realizable by a deterministic Turing machine) that
decides whether an input(I ,k) is a member ofL(P) in time f (k)|I |c, wherec is a
fixed constant andf is a function whose argumentk is independent of the overall input
length,|I |. The class of all fixed-parameter tractable problems is denoted by FPT.

There is also a theory of parameterized hardness (see, e.g.,[7]), most notably the
W[t] hierarchy, which complements fixed-parameter tractability: FPT= W[0]⊆W[1]⊆
W[2] ⊆ ·· ·. It is commonly believed that this hierarchy is strict. Onlythe second level,
W[2], will be of interest to us in this paper (see, e.g., [7] for thedefinition).
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Table 1. Complexity results for Bi -C j -PLP

Bribery Evaluation Criterion
Criterion C1 C2

B1 P P
B2 P P
B3 W[2]-completeW[2]-complete

The complexity of a classical problem depends on the chosen parameterization.
For problems that involve a budgetB ∈ N (and hence can be viewed as minimization
problems), the most obvious parameterization would be the given budget boundB. In
this sense, we state parameterized results in this paper. (For other applications of fixed-
parameter tractability and parameterized complexity to problems from computational
social choice, see, e.g., [10].)

4 Classical Complexity Results

We now provide a formal complexity analysis of the probabilistic lobbying problems
for all combinations of evaluation criteria and bribery methods.

Table 1 summarizes our results for Bi -C j -PLP,i ∈ {1,2,3} and j ∈ {1,2}. Some of
these results are known from previous work by Christian et al. [5], as will be mentioned
below. In this sense, our results generalize the results of [5] by extending the model to
probabilistic settings.

4.1 Microbribery

The following result can be easily seen.

Theorem 1. B1-C1-PLP is in P.

The complexity of microbribery with evaluation criterion C2 is somewhat harder to
determine. We use the following auxiliary problem. Here, aschedule Sof q jobs (on a
single machine) is a sequenceJi(1), . . . ,Ji(q) such thatJi(r) = Ji(s) impliesr = s. Thecost
of schedule Sis c(S) = ∑q

k=1c(Ji(k)). S is said torespect the precedence constraintsof
graphG if for every (path)-componentPi = Ji,1, . . . ,Ji,p(i) and for eachk with 2≤ k ≤
p(i), we have: IfJi,k occurs in the scheduleS thenJi,k−1 occurs inSbeforeJi,k.

Name: PATH SCHEDULE

Given: A setV = {J1, . . . ,Jn} of jobs, a directed graphG = (V,A) consisting of pair-
wise disjoint pathsP1, . . . ,Pz, two numbersC,q∈ N, and a cost functionc : V → N.

Question: Can we find a scheduleJi(1), . . . ,Ji(q) of q jobs of cost at mostC respecting
the precedence constraints ofG?

PATH SCHEDULE is in P by dynamic programming. Then we show how to reduce
B1-C2-PLP to PATH SCHEDULE, which implies that B1-C2-PLP is in P as well.
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Table 2. Complexity results for Bi -C j -PLP-WIW

Bribery Evaluation Criterion
Criterion C1 C2

B1 NP-compl., FPTNP-compl., FPT
B2 NP-compl., FPTNP-compl., FPT
B3 W[2]-complete W[2]-complete

Lemma 1. PATH SCHEDULE is in P.

Theorem 2. B1-C2-PLP is in P.

Proof. Let (P,CP,Z,B) be a given B1-C2-PLP instance, whereP ∈ Qm×n
[0,1]

, CP is a

table of price functions,Z ∈ {0,1}n is The Lobby’s target vector, andB is its budget.
For j ∈ {1,2, . . . ,n}, let d j be the minimum cost for The Lobby to bring referendumr j

into line with the jth entry of its target vectorZ. If ∑n
j=1d j ≤ B then The Lobby can

achieve its goal that the votes on all issues equalZ. We now focus on the first task.
For everyr j , create an equivalent PATH SCHEDULING instance. First, compute forr j

the minimum numberb j of bribery steps needed to achieve The Lobby’s goal onr j .
That is, choose the smallestb j ∈ N such thatp j + b j/(k+1)m> t. Now, for every votervi ,
derive a pathPi from the price functionci, j . Let s, 0≤ s≤ k+1, be minimum with the
propertyci, j(s) ∈ N>0. Then create a pathPi = ps, . . . , pk+1, whereph represents the
hth entry ofci, j (viewed as a vector). Assign the cost ˆc(ph) = ci, j(h)−ci, j(h−1) to ph.
Observe that ˆc(ph) represents the cost of raising the probability of voting “yes” from
(h−1)/(k+1) to h/(k+1). In order to do so, we must have reached an acceptance probability
of (h−1)/(k+1) first. Now, let the number of jobs to be scheduled beb j . Note that one can
takeb j bribery steps at the cost ofd j dollars if and only if one can scheduleb j jobs
with a cost ofd j . Hence, we can decide whether or not(P,CP,Z,B) is in B1-C2-PLP
by using Lemma 1. ❑

4.2 Issue Bribery

A greedy strategy succeeds for proving:

Theorem 3. B2-C1-PLPandB2-C2-PLPare inP.

4.3 Probabilistic Lobbying with Issue Weighting

Table 2 summarizes our results for Bi -C j -PLP-WIW, i ∈ {1,2,3} and j ∈ {1,2}. The
most interesting observation is that introducing issue weights raises the complexity
from P to NP-completeness for all cases of microbribery and issue bribery by using
KNAPSACK in the reduction (though it remains the same for voter bribery). Nonethe-
less, we show later as Theorem 6 that these NP-complete problems are fixed-parameter
tractable.

Theorem 4. For i, j ∈ {1,2}, Bi -C j -PLP-WIW is NP-complete.
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5 Parameterized Complexity Results

5.1 Voter Bribery

Christian et al. [5] proved that the following problem is W[2]-complete. We state this
problem here as is common in parameterized complexity:

Name: OPTIMAL LOBBYING (OL, for short).
Given: An m×n matrix E and a 0/1 vectorZ of lengthn. Each row ofE represents a

voter. Each column represents an issue in the election. The vectorZ represents The
Lobby’s target outcome.

Parameter: A positive integerk (representing the number of voters to be influenced).
Question: Is there a choice ofk rows of the matrix (i.e., ofk voters) that can be changed

such that in each column of the resulting matrix (i.e., for each issue) a majority vote
yields the outcome targeted by The Lobby?

Christian et al. [5] proved this problem to be W[2]-complete by a reduction from
k-DOMINATING SET to OL (showing the lower bound) and from OL to INDEPEN-
DENT-k-DOMINATING SET (showing the upper bound). To employ the W[2]-hardness
result of Christian et al. [5], we show that OL is a special case of B3-C1-PLP and
thus (parameterized) polynomial-time reduces to B3-C1-PLP. The “Turing” approach
suggested by Cesati [4] shows membership in W[2]. Analogous arguments apply to
B3-C2-PLP.

Theorem 5. For j ∈ {1,2}, B3-C j -PLP (parameterized by the budget) isW[2]-
complete.

5.2 Probabilistic Lobbying with Issue Weighting

Recall from Theorem 4 that Bi -C j -PLP-WIW, where i, j ∈ {1,2}, is NP-hard.
Theorem 6 says that each of these problems is fixed-parametertractable when parame-
terized by the budget, using KNAPSACK again.

Theorem 6. For i, j ∈ {1,2}, Bi -C j -PLP-WIW (parameterized by the budget) is in
FPT.

Voter bribery with issue weighting remains W[2]-complete for both evaluation cri-
teria; the membership proof is somewhat more involved than the one in the unweighted
case.

Theorem 7. For j ∈ {1,2}, B3-C j -PLP-WIW (parameterized by the budget) isW[2]-
complete.
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6 Approximability

As seen in Tables 1 and 2, many problem variants of probabilistic lobbying are NP-
complete. Hence, it is interesting to study them not only from the viewpoint of param-
eterized complexity, but also from the viewpoint of approximability.

The budget constraint on the bribery problems studied so fargives rise to natural
minimization problems: Try to minimize the amount spent on bribing. For clarity, let us
denote these minimization problems by prefixing the problemname with MIN, leading
to, e.g., MIN-OL.

The already mentioned reduction of Christian et al. [5] (that proved that OL is
W[2]-hard) is parameter-preserving (regarding the budget). Itfurther has the property
that a possible solution found in the OL instance can be re-interpreted as a solution
to the DOMININATING SET instance the reduction started with, and the OL solution
and the DOMININATING SET solution are of the same size. This in particular means
that inapproximability results for DOMININATING SET transfer to inapproximability
results for OL. Similar observations are true for the interrelation of SET COVER and
DOMINATING SET, as well as for OL and B3-C1-PLP-WIW (or B3-C2-PLP-WIW).

The known inapproximability results [3,12] for SET COVER hence give the follow-
ing result (see also Footnote 4 in [14]).

Theorem 8. There is a constant c> 0 such thatMIN -OL is not approximable within
factor c· log(n) unlessNP⊂ DTIME(nloglog(n)), where n denotes the number of issues.

Since OL can be viewed as a special case of both B3-Ci -PLP and
B3-Ci -PLP-WIW for i ∈ {1,2}, we have the following corollary.

Corollary 1. For i ∈ {1,2}, there is a constant ci > 0 such that bothMIN -B3-Ci -PLP
andMIN -B3-Ci -PLP-WIWare not approximable within factor ci · log(n) unlessNP⊂
DTIME(nloglog(n)), where n denotes the number of issues.

A cover number c(r j ) is associated with each issuer j , indicating by how many lev-
els voters must raise their acceptance probabilities in order to arrive at average majority
for r j . The cover numbers can be computed beforehand for a given instance. Then, we
can also associate cover numbers to sets of issues (by summation), which finally leads
to the cover numberN = ∑n

j=1c(r j ) of the whole instance.
When we interpret an OL instance as a B3-C2-PLP instance, the cover number of

that resulting instance equals the number of issues, assuming that the votes for all issues
need amendment. Thus we have the following corollary:

Corollary 2. There is a constant c> 0 such thatMIN -B3-C2-PLPis not approximable
within factor c· log(N) unlessNP⊂ DTIME(Nlog log(N)), where N is the cover number
of the given instance. A fortiori, the same statement holds for MIN -B3-C2-PLP-WIW.

Let H denote the harmonic sum function, i.e.,H(r) = ∑r
i=1

1/i. It is well known that
H(r) = O(log(r)). More precisely, it is known that

⌊ln r⌋ ≤ H(r) ≤ ⌊ln r⌋+1.

We show the following theorem by providing and analyzing a greedy approximation
algorithm.
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Theorem 9. MIN -B3-C2-PLP can be approximated within a factor ofln(N) + 1,
where N is the cover number of the given instance.

In the strict-majority scenario, cover numbers would have adifferent meaning—
we thus call themstrict cover numbers: For each referendum, the corresponding strict
cover number tells in advance how many voters have to change their opinions (bringing
them individually over the given thresholdt) to accept this referendum. The strict cover
number of a problem instance is the sum of the strict cover numbers of all given issues.

Theorem 10. MIN -B3-C1-PLP can be approximated within a factor ofln(N) + 1,
where N is the strict cover number of the given instance.

Note that this result is in some sense stronger than Theorem 9(which refers to the
average-majority scenario), since the cover number of an instance could be larger than
the strict cover number.

This approximation result is complemented by a corresponding hardness result.

Corollary 3. There is a constant c> 0 such thatMIN -B3-C1-PLP is not approx-
imable within factor c· log(N) unlessNP⊂ DTIME(Nlog log(N)), where N is the strict
cover number of the given instance. A fortiori, the same statement holds forMIN -
B3-C1-PLP-WIW.

Unfortunately, those greedy algorithms do not (immediately) transfer to the case
when issue weights are allowed.

7 Conclusions

We have studied six lobbying scenarios in a probabilistic setting, both with and with-
out issue weights. Among the twelve problems studied, we identified those that can be
solved in polynomial time, those that are NP-complete yet fixed-parameter tractable,
and those that are hard (namely, W[2]-complete) in terms of their parameterized com-
plexity with suitable parameters. It would be interesting to study these problems in
different parameterizations. Finally, we investigated the approximability of hard prob-
abilistic lobbying problems (without issue weights) and obtained both approximation
and inapproximability results. A number of related resultscan be found in the full
version [8]. An interesting open question is whether one canfind logarithmic-factor
approximations for voter bribery with issue weights.
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