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Abstract. A language is L-printable if there is a logspace algorithm which, on input 1n, prints
all members in the language of length n. Following the work of Allender and Rubinstein [SIAM J.
Comput., 17 (1988), pp. 1193–1202] on P-printable sets, we present some simple properties of the
L-printable sets. This definition of “L-printable” is robust and allows us to give alternate characteri-
zations of the L-printable sets in terms of tally sets and Kolmogorov complexity. In addition, we show
that a regular or context-free language is L-printable if and only if it is sparse, and we investigate
the relationship between L-printable sets, L-rankable sets (i.e., sets A having a logspace algorithm
that, on input x, outputs the number of elements of A that precede x in the standard lexicographic
ordering of strings), and the sparse sets in L. We prove that under reasonable complexity-theoretic
assumptions, these three classes of sets are all different. We also show that the class of sets of small
generalized Kolmogorov space complexity is exactly the class of sets that are L-isomorphic to tally
languages.
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1. Introduction. What is an easy set? Typically, complexity theorists view
easy sets as those with easy membership tests. An even stronger requirement might
be that there is an easy algorithm to print all the elements of a given length. These
“printable” sets are easy enough that we can efficiently retrieve all of the information
we might need about them.

Hartmanis and Yesha first defined P-printable sets in 1984 [HY84]. A set A is
P-printable if there is a polynomial-time algorithm that on input 1n outputs all of
the elements of A of length n. Any P-printable set must lie in P and be sparse; i.e.,
the number of strings of each length is bounded by a fixed polynomial of that length.
Allender and Rubinstein [AR88] give an in-depth analysis of the complexity of the
P-printable sets.

Once P-printability has been defined, it is natural to consider the analogous notion
of logspace-printability. Since it is not known whether or not L = P, an obvious ques-
tion to ask is: do the L-printable sets behave differently than the P-printable sets? In
this paper, we are able to answer this question in the affirmative, at least under plausi-
ble complexity-theoretic assumptions. Jenner and Kirsig [JK89] define L-printability
as the logspace computable version of P-printability. Because L-printability implies
P-printability, every L-printable set must be sparse and lie in L. In this paper we give
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the first in-depth analysis of the complexity of L-printable sets. (Jenner and Kirsig
focused only one chapter on printability, and most of their printability results concern
NL-printable sets.)

Whenever a new class of sets is analyzed, it is natural to wonder about the
structure of those sets. Hence, we examine the regular and context-free L-printable
sets. Using characterizations of the sparse regular and context-free languages, we
show in section 4 that every sparse regular or context-free language is L-printable.
(Although the regular sets are a special case of the context-free sets, we include the
results for the regular languages because our characterization of the sparse regular
languages is simple and intuitive.)

We might expect many of the properties of P-printable sets to have logspace
analogues, and, in fact, this is the case. In section 5 we show that L-printable sets
(like their polynomial-time counterparts) are closely related to tally sets in L and to
sets in L with low generalized space-bounded Kolmogorov complexity.

A set is said to have small generalized Kolmogorov complexity if all of its strings
are highly compressible and easily restorable. Generalized time-bounded Kolmogorov
complexity and generalized space-bounded Kolmogorov complexity are introduced in
[Har83] and [Sip83]. Several researchers [Rub86, BB86, HH88] show that P-printable
sets are exactly the sets in P with small generalized time-bounded Kolmogorov com-
plexity. [AR88] show that a set has small generalized time-bounded Kolmogorov
complexity if and only if it is P-isomorphic to a tally set. Using similar techniques,
we show in section 5 that the L-printable sets are exactly the sets in L with small gen-
eralized space-bounded Kolmogorov complexity. We also prove that a set has small
generalized space-bounded Kolmogorov complexity if and only if it is L-isomorphic to
a tally set.

In section 6, we note that sets that can be ranked in logspace (i.e., given a string
x, a logspace algorithm can determine the number of elements in the set ≤ x) seem
different from the L-printable sets. For sparse sets, P-rankability is equivalent to
P-printability. We show a somewhat surprising result in section 6, namely, that the
sparse L-rankable sets and the L-printable sets are the same if and only if there are
no tally sets in P − L if and only if LinearSPACE = E.

Are all sparse sets in L either L-printable or L-rankable? Allender and Rubin-
stein [AR88] show that every sparse set in P is P-printable if and only if there are no
sparse sets in FewP − P. In section 6, we similarly show a stronger collapse: every
sparse set in L is L-printable if and only if every sparse set in L is L-rankable if and
only if there are no sparse sets in FewP − L if and only if LinearSPACE = FewE.

Unlike L-printable sets, L-rankable sets may have exponential density. Blum
(see [GS91]) shows that every set in P is P-rankable if and only if every #P function
is computable in polynomial time. In section 6, we also show that every set in L is
L-rankable if and only if every #P function is computable in logarithmic space.

2. Definitions. We assume a basic familiarity with Turing machines and Tur-
ing machine complexity. For more information on complexity theory, we suggest
either [BDG88] or [Pap94]. We also assume a familiarity with regular languages and
expressions and context-free languages as found in [Mar91]. We denote the character-
istic function of A by χA. We use the standard lexicographic ordering on strings and
let |w| be the length of the string w. (Recall that w ≤lex v iff |w| < |v| or |w| = |v|
and, if i is the position of the leftmost bit where w and v differ, wi < vi.) The alpha-
bet Σ = {0, 1}, and all strings are elements of Σ∗. We denote the complement of A
by A.
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The class P is deterministic polynomial time, and L is deterministic logarithmic
space; remember that in calculating space complexity, the machine is assumed to have
separate tapes for input, computation, and output. The space restriction applies only
to the work tape. It is known that L ⊆ P, but it is not known whether the two classes
are equal. The class E is deterministic time 2O(n), and LinearSPACE is deterministic
space O(n).

Definition 2.1. A set A is in the class PP if there is a polynomial-time non-
deterministic Turing machine that, on input x, accepts with more than half its com-
putations if and only if x ∈ A. A function f is in #P if there is a polynomial-time
nondeterministic Turing machine M such that for all x, f(x) is the number of ac-
cepting computations of M(x).

Allender[All86] defined the class FewP. FewE is defined analogously.
Definition 2.2 (see [All86]). A set A is in the class FewP if there is a polynomial-

time nondeterministic Turing machine M and a polynomial p such that on all inputs
x, M accepts x on at most p(|x|) paths. A set A is in the class FewE if there is an
exponential-time nondeterministic Turing machine M and a constant c such that on
all inputs x, M accepts x on at most 2cn paths. (Note that this is small compared
to the double exponential number of paths of an exponential-time nondeterministic
Turing machine.)

Definition 2.3. A set S is sparse if there is some polynomial p(n) such that for
all n, the number of strings in S of length n is bounded by p(n) (i.e., |S=n| ≤ p(n) ).

A set T over alphabet Σ is a tally set if T ⊆ {σ}∗, for some character σ ∈ Σ.

The work here describes certain enumeration properties of sparse sets in L. There
are two notions of enumeration that are considered: rankability and printability.

Definition 2.4. If C is a complexity class, then a set A is C-printable if and
only if there is a function computable in C that, on any input of length n, outputs all
the strings of length n in A.

Note that P-printable sets are necessarily in P and are sparse, since all of the
strings of length n must be printed in time polynomial in n. Since every logspace
computable function is also computable in polynomial time, L-printable sets are also
P-printable, and thus are also sparse.

Definition 2.5. If C is a complexity class, then a set, A, is C-rankable if and
only if there is a function rA computable in C such that rA(x) = |{y ≤lex x : y ∈ A}|.
(In other words, rA(x) gives the lexicographic rank of x in A.) The function rA is
called the ranking function for A.

Note that P-rankable sets are necessarily in P but are not necessarily sparse.
Furthermore, a set is P-rankable if and only if its complement is P-rankable. Finally,
note that any P-printable set is P-rankable.

Definition 2.6. If C is a complexity class, then two sets, A and B, are C-
isomorphic (A ∼=C B) if there are total functions f and g computable in C that are
both one–one and onto, such that f(g(x)) = x and g(f(y)) = y, f is a reduction from
A to B, and g is a reduction from B to A.

In order for two sets to be P-isomorphic, their density functions must be close to
each other: if one set is sparse and the other is not, then any one–one reduction from
the sparse set to the dense set must have superpolynomial growth rate. By the same
argument, if one has a superpolynomial gap, the other must have a similar gap.

A lexicographic (or order-preserving) isomorphism from A to B is, informally, a
bijection that maps the ith element of A to the ith element of B and maps the ith
element of A to the ith element of B. Note that in the definition of similar densities,
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the isomorphisms need not be computable in any particular complexity class. This
merely provides the necessary condition on densities in order for the two sets to be
P-isomorphic or L-isomorphic.

Definition 2.7. Two sets, A and B, have similar densities if the lexicographic
isomorphisms from A to B and from B to A are polynomial-size bounded.

The notion of printability, or of ranking on sparse sets, can be considered a form of
compression. Another approach to compression is found in the study of Kolmogorov
complexity; a string is said to have “low information content” if it has low Kolmogorov
complexity. We are interested in the space-bounded Kolmogorov complexity class
defined by Hartmanis [Har83].

Definition 2.8. Let Mv be a Turing machine, and let f and s be functions on
the natural numbers. Then we define

KSv[f(n), s(n)] = {w : |w| = n and ∃y(|y| ≤ f(n) and Mv(y) = w

and Mv uses s(n) space)}.

Following the notation of [AR88], we refer to y as the compressed string, f(n) as
the compression, and s(n) as the restoration space. Hartmanis [Har83] shows that
there exists a universal machine Mu such that for all v, there exists a constant c such
that KSv[f(n), s(n)] ⊆ KSu[f(n) + c, cs(n) + c]. We will drop the subscript and let
KS[f(n), s(n)] = KSu[f(n), s(n)].

3. Basic results. We begin by formalizing some observations from the previous
section.

Observation 3.1. If A is L-printable, then A has polynomially bounded density,
i.e., A is sparse.

This follows immediately from the fact that logspace computable functions are P-
time computable (i.e., L-printability implies P-printability), and from the observations
on P-printable sets.

Proposition 3.2 (see [JK89]). If A is L-printable, then A ∈ L.
Proof. To decide x ∈ A, simulate the L-printing function for A with input 1|x|.

As each y ∈ A is “printed,” compare it, bit by bit, with x. If y = x, accept. Because
the comparisons can be done using O(1) space, and the L-printing function takes
O(log |x|) space, this is a logspace procedure.

Proposition 3.3. If A is L-rankable, then A ∈ L.
Proof. Note that the function x − 1 (the lexicographic predecessor of x) can be

computed (though not written) in space logarithmic in |x|. Since logspace computable
functions are closed under composition, rA(x − 1) can be computed in logspace, as
can rA(x) − rA(x− 1) = χA(x).

Proposition 3.4. If A is L-printable, then A is L-rankable.
Proof. To compute the rank of x, we print the strings of A up to |x| and count the

ones that are lexicographically smaller than x. Since A is sparse, by Observation 3.1,
we can store this counter in logspace.

We can now prove the following, first shown by [JK89] with a different proof.
Proposition 3.5 (see [JK89]). If A is L-printable, then A is L-printable in

lexicographically increasing order.
Proof. To prove this, we use a variation on selection sort. Suppose the logspace

machine M L-prints A. Then we can construct another machine, N , to L-print A in
lexicographically increasing order. Note that it is possible to store an instantaneous
description of a logspace machine, i.e., the position of the input head, the state, the
contents of the worktape, and the character just output, in O(log |x|) space.



L-PRINTABLE SETS 141

The basic idea is that we store, during the computation, enough information
to produce three strings: the most recently printed string (in the lexicographically
ordered printing), the current candidate for the next string to be printed, and the
current contender. We can certainly store three IDs for M in logspace. Each ID
describes the state of M immediately prior to printing the desired string.

In addition to storing the IDs, we must simulate M on these three computations
in parallel, so that we can compare the resulting strings bit by bit. If the contender
string is greater than the last string output (so it has not already been output) and
less than the candidate, it becomes the new candidate. Otherwise, the final ID of
the computation becomes the new contender. These simulated computations do not
produce output for N ; when the next string is found for N to print, its initial ID is
available, and the simulation is repeated, with output.

Using the same technique as in the previous proof, one can easily show the fol-
lowing.

Proposition 3.6. If A is L-printable, and A ∼=log B, then B is L-printable as
well.

4. L-printable sets. We begin this section with a very simple example of a class
of L-printable sets.

Proposition 4.1 (see [JK89]). The tally sets in L are L-printable.
Proof. On input of length n, decide whether 1n ∈ A. If so, print it.
One may ask: are all of the L-printable sets as trivial as Proposition 4.1? We

demonstrate in the following sections that every regular language or context-free lan-
guage that is sparse is also L-printable (see Theorem 4.8 and Corollary 4.14). We also
give an L-printable set that is neither regular nor context-free (see Proposition 4.15).

4.1. Sparse regular languages. We show that the sparse regular languages
are L-printable. In order to do so, we give some preliminary results about regular
expressions.

Definition 4.2 (see [BEGO71]). Let r be a regular expression. We say r is
unambiguous if every string has at most one derivation from r.

Theorem 4.3 (see [BEGO71]). For every regular language L, there exists an
unambiguous regular expression r such that L(r) = L.

Proof (sketch). Represent L as the union of disjoint languages whose determin-
istic finite automatons (DFAs) have a unique final state. Using the standard union
construction of a nondeterministic finite automaton (NFA) from a DFA, we get an
NFA with the property that each string has a unique accepting path. Now, using
state elimination to construct a regular expression from this NFA, the unique path
for each string becomes a unique derivation from the regular expression.

We should note that even though removal of ambiguity from a regular expression
is, in general, PSPACE-complete [SH85], this does not concern us. Theorem 4.3
guarantees the existence of an unambiguous regular expression, corresponding to every
regular language, that is sufficient for our needs.

We now define a restricted form of regular expression that will generate precisely
the sparse regular languages. (Note that a similar, although more involved, character-
ization was given in [SSYZ92]. They give characterizations for a variety of densities,
whereas we are only concerned with sparse sets.)

Definition 4.4. We define a static regular expression (SRE) on an alphabet Σ
inductively, as follows.

1. The empty expression is an SRE, and defines ∅, the empty set.
2. If x ∈ Σ or x = λ (the empty string ), then x is an SRE.
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3. If s and t are SREs, then st, the concatenation of s and t, is an SRE.
4. If s and t are SREs, then s + t, the union of s and t, is an SRE.
5. If s is an SRE, then s∗ is an SRE if and only if:

a) s does not contain a union of two SREs and
b) s does not contain any use of the ∗ operator.

Note the restriction of the ∗ operator in the above definition. That is, ∗ can only
be applied to a string. This is the only difference between SREs and standard regular
expressions.

We can alternatively define an SRE as a regular expression that is the sum of
terms, each of which is a concatenation of letters and starred strings.

Theorem 4.5. Let R be an unambiguous regular expression. Then L(R) is sparse
if and only if R is static.

Proof. We first prove two lemmas about “forbidden” subexpressions.
Lemma 4.6. Let α, β, S be nonempty regular expressions such that S = (α+ β)∗

and S is unambiguous. Then there is a constant k > 0 such that, for infinitely many
n, L(S) contains 2

n

k strings of length n.
Proof. Let u, v ∈ Σ∗ such that u ∈ L(α) and v ∈ L(β). Let k = |u| · |v|. Because

S is unambiguous, there must be at least two strings of length k in L(S), namely, u|v|

and v|u|. So, for any length n such that n = ik, i ≥ 1, there are at least 2i = 2i·
k

k = 2
n

k

strings of length n in L(S).
Lemma 4.7. Let α, β, S be nonempty regular expressions such that S is unam-

biguous, where S is either of the form (α∗β)∗ or of the form (αβ∗)∗. Then, there is
a constant k such that, for infinitely many n, L(S) contains 2

n

k strings of length n.
Proof. Let u, v ∈ Σ∗ such that u ∈ L(α) and v ∈ L(β). Suppose S = (α∗β)∗. Let

k = |u| · |v|+ |v|. If S is unambiguous, there are at least two distinct strings of length
k in L(S), namely, u|v|v and v|u|+1. So, for any length n such that n = ik, i ≥ 1,
there are at least 2i = 2

n

k strings of length n in L(S).
The proof is very similar if S = (αβ∗)∗ is unambiguous.
It is clear that unambiguity is necessary for both lemmas. For example, the

expression (a + a)∗ is not static, but L((a + a)∗) = L(a∗), which is sparse.
Note that if R is the empty expression, the theorem is true, since R is static, and

L(R) = ∅, which is certainly sparse. So, for the rest of the proof, we will assume that
R is nonempty.

To show one direction of Theorem 4.5, suppose R is not static. Then it contains
a subexpression that is either of the form (γ0(α+β)γ1)∗ or of the form (γ0α∗γ1)∗. In
the first case, by a small modification to the proof of Lemma 4.6, L(R) is not sparse.
In the second case, by a similar modification to the proof of Lemma 4.7, L(R) cannot
be sparse.

Now, suppose R is static. If R = x, x ∈ Σ, L(R) contains only the string x. If
R = r∗, where r is either a string of characters or a single character, L(R) can have
at most one string of any length.

Suppose R = r + s, where r and s are SREs. Let pr(n) and ps(n) bound the
number of strings in L(r) and L(s), respectively. Then there are at most pr(n)+ps(n)
strings of length n.

Finally, suppose R = rs, where r and s are SREs. Let pr(n) and ps(n) bound
the number of strings in L(r) and L(s), respectively. Then, the number of strings of
length n is:

q(n) ≤
n∑

i=0

pr(i) · ps(n− i).
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The degree of q is bounded by 1 + degree(pr(n)) + degree(ps(n)). By induction
on the complexity of R, L(R) is sparse.

Note that the second half of the proof does not use unambiguity. Hence, any
static regular expression generates a sparse regular language.

Theorem 4.8. Let R be an SRE. Then L(R) is L-printable.

Proof. Basically, we divide R into terms that are either starred expressions or
nonstarred expressions. For example, we would divide 0(1 + 0)10(11)∗00(0 + 11) into
three parts: 0(1 + 0)10, (11)∗, and 00(0 + 11). Then, we internally L-print each
term independently, and check to see if the strings generated have the correct length.
In our example, to print strings of length 9, we might generate 0110, 11, and 0011,
respectively, and check that the combined string is in fact 9 characters long. (In this
case, the string is too long and is not printed.)

Let k be the number of stars that appear in R. Partition R into at most 2k + 1
subexpressions, k with stars, and the others containing no stars.

The machine to L-print L(R) has two types of counters. For each starred subex-
pression, the machine counts how many times that subexpression has been used. For
a string of length n, no starred subexpression can be used more than n times. Each
counter for a starred subexpression only needs to count up to n.

Each nonstarred subexpression generates only a constant number of strings. Thus,
up to k + 1 additional counters, each with a constant bound, are needed. (Note that
the production may intermix the two types of counters, for instance, if (x∗ + y∗)
occurs.)

The machine uses two passes for each potential string. First, the machine gen-
erates a current string, counting its length. If the string is the correct length, it
regenerates the string and prints it out. Otherwise, it increments the set of counters
and continues. In this way, all strings of lengths ≤ n are generated, and all strings of
length n are printed.

Lastly, we need to argue that this procedure can be done by a logspace machine.
Each of the at most 2k + 1 counters must count up to n (for n sufficiently large, say,
larger than |R|). Thus, the counting can be done in logn space. In addition, the
actual production of a string requires an additional counter, to store a loop variable.
The rest of the computation can be handled in O(1) space, using the states of the
machine. Thus, L(R) is L-printable.

Note that this L-printing algorithm may generate some strings in L(R) more
than once. To get a nonredundant L-printer, simply modify the program to output
the strings in lexicographic order, as in Proposition 3.5, or use an unambiguous SRE
for L(R).

Theorem 4.8 does not characterize the L-printable sets, as we see below.
Proposition 4.9. There exists a set S such that S is L-printable and not regu-

lar.

Proof. The language S = {0k1k : k ∈ N} is L-printable (for any n, we print out
0

n

2 1
n

2 only if n is even), but not regular.

4.2. Sparse context-free languages. Using the theory of bounded context-
free languages we can also show that every sparse context-free language is L-printable.

Definition 4.10. A set A is bounded if there exist strings w1, . . . , wk such that

A ⊆ (w1)
∗ · · · (wk)

∗.
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Note the similarity between bounded languages and languages generated by SREs.
Note also that every bounded language is sparse.

Ibarra and Ravikumar [IR86] prove the following.
Theorem 4.11 (see [IR86]). If A is a context-free language then A is sparse if

and only if A is bounded.

Ginsburg [Gin66, p. 158] gives the following characterization of bounded context-
free languages.

Theorem 4.12 (see [Gin66]). The class of bounded context-free languages is the
smallest class consisting of the finite sets and fulfilling the following properties.

1. If A and B are bounded context-free languages then A ∪B is also a bounded
context-free language.

2. If A and B are bounded context-free languages then AB = {xy | x ∈ A and
y ∈ B} is also a bounded context-free language.

3. If A is a bounded context-free language and x and y are fixed strings then the
following set is also a bounded context-free language:

{xnayn : a ∈ A and n ∈ N}.

Corollary 4.13. Every bounded context-free language is L-printable.

Proof. Every finite set is L-printable. The L-printable sets are closed under the
three properties in Theorem 4.12.

Corollary 4.14. Every sparse context-free language is L-printable.

This completely characterizes the L-printable context-free languages. However,
the sparse context-free languages do not characterize the L-printable languages.

Proposition 4.15. There exists an L-printable set S such that S is not context-
free.

Proof. The language S = {0n1n0n : n ∈ N} is L-printable, but it is not context-
free.

5. L-isomorphisms. It is easy to show that two P-printable sets, or P-rankable
sets, of similar densities are P-isomorphic. Since the usual proof relies on binary
search, it does not immediately extend to L-rankable sets. However, we are able to
exploit the sparseness of L-printable sets to show the following.

Theorem 5.1. If A and B are L-printable and have similar densities, then A
and B are L-isomorphic (i.e., A ∼=log B).

Proof. For each x, define yx to be the image of x in the lexicographic isomorphism
from A to B. Since A and B are L-printable, they are both sparse. Let p(n) be a
strictly increasing polynomial that bounds the densities of both sets. If x /∈ A, then
x is “close” to yx in the sense that there are at most p(|x|) strings between them in
the lexicographic ordering. (Recall Definition 2.7.) In fact, for all x, |yx| ≤ p(|x|+1).

Let rA(x) be the rank of x in A. If x /∈ A, then the rank of x in A is x− rA(x).
Furthermore, x − rA(x) = yx − rB(yx), and yx is the unique element of B for which
this holds. Note that both rA(x) and rB(yx) can be written in space O(log |x|). Thus,
to compute yx, we need to compute x − rA(x) + rB(yx). We do so by maintaining
a variable d that is initialized to rA(x). Counter c is initialized to 0. The following
loop is iterated until c reaches p(|x| + 1):

1. L-print (in lexicographic order) the elements of B of length c; for each string
that is lexicographically smaller than (x− d), decrement d;

2. increment c.
Output x− d.
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Note that, if d is written on the work tape, each bit of x − d can be computed
in logspace as needed, and the output of the L-printing function can be compared to
x− d in a bit-by-bit manner.

If x ∈ A, since the L-printing function outputs strings in lexicographic order,
computing yx is easy: compute rA(x), then “L-print” B internally, actually outputting
the rA(x)th string.

Without loss of generality, we can assume that the simulated L-printer for B
prints B in lexicographic order. Thus, as soon as the (rA(x) − 1)st element of B is
printed internally, the simulation switches to output mode.

The following is an overview of the logspace algorithm computing the desired
isomorphism.

1. Compute A(x).
2. Compute rA(x), and write it on a work tape.
3. If x ∈ A, find the rA(x)th element of B, and output it.
4. If x /∈ A, find the unique string yx /∈ B such that x − rA(x) = yx − rB(yx),

and output yx.
Using this theorem, we can now characterize the L-printable sets in terms of

isomorphisms to tally sets, and in terms of sets of low Kolmogorov space complexity.
Theorem 5.2. The following are equivalent:

1. S is L-printable.
2. S is L-isomorphic to some tally set in L.
3. There exists a constant k such that S ⊆ KS[k log n, k log n] and S ∈ L.

Although it is not known whether or not every sparse L-rankable set is L-isomor-
phic to a tally set (see Theorem 6.1), we can prove the following lemma, that will be
of use in the proof of Theorem 5.2.

Lemma 5.3. Let A be sparse and L-rankable. Then there exists a tally set T ∈ L
such that A and T have similar density.

Proof. Let A≤n denote the strings of length at most n in A. Let p(n) be an
everywhere positive monotonic increasing polynomial such that |A≤n| ≤ p(n) for all
n, and such that p(n) − p(n− 1) is greater than the number of strings of length n in
A. Let r(x) be the ranking function of A. We define the following tally set:

T = {1p(|x|−1)+r(x)−r(1|x|−1) : x ∈ A}.

To show that T ∈ L, notice that of the tally strings 1i, p(n−1) < i ≤ p(n), 1i ∈ T
if and only if p(n−1) < i ≤ p(n−1)+r(1i)−r(1i−1). So, to decide T (1m), we first find
the largest n such that p(n − 1) < m ≤ p(n). (Note that n can be written in binary
in space O(logm).) Then compute d1 = m− p(n− 1). This difference is bounded by
p(n), and thus can be written in logspace. Finally, compute d2 = r(1n)− r(1n−1) and
compare to d1. Accept if and only if d1 ≤ d2.

Finally, we show that T and A have similar density. Let f : A → T be the
lexicographic isomorphism between T and A. Note that f maps strings of length n to
strings of length at most p(n), so f is polynomially bounded. Note that p is always
positive, which implies that f is length-increasing. So, f−1 must also be polynomially
bounded. Thus, T and A have similar density.

The following proof of Theorem 5.2 is very similar to the proof of the analogous
theorem in [AR88].

Proof. [1 ⇒ 2] Let S be L-printable. Then it is sparse and L-rankable. Let T be
the tally set guaranteed by Lemma 5.3. By Proposition 4.1, T is L-printable. Thus,
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T and S are L-printable, and T and S have similar density. So, by Theorem 5.1,
S ∼=log T .

[2 ⇒ 3] Let S be L-isomorphic to a tally set T , and let f be the L-isomorphism
from S to T . Let x ∈ S be a string of length n. Let f(x) = 0r. Since f is logspace
computable, there exists a constant c such that r ≤ nc, i.e., |r| ≤ c log n. In order to
recover x from r, we only have to compute f−1(0r). Computing 0r given r requires
log n space for one counter. Further, there exists a constant l such that computing
f−1(0r) requires at most lc log n space, since r ≤ nc. So, the total space needed to
compute x given r is less than or equal to logn+ lc log n ≤ k log n for some k. Hence,
S ⊆ KS[k log n, k log n]. If T ∈ L, then S ∈ L, since S ∼=log T .

[3 ⇒ 1] Assume S ⊆ KS[k log n, k log n] for some k, and S ∈ L. On input 0n, we
simulate Mu for each string of length k log n. For a given string x, |x| = k log n, we
first simulate Mu(x) and check whether it completes in space k log n. If it does, we
recompute Mu(x), this time checking whether the output is of length n and in S. If it
is, we recompute Mu(x) and print out the result. The entire computation only needs
O(log n) space, so S is L-printable.

It was shown in [AR88] that a set has small generalized Kolmogorov complexity
if and only if it is P-isomorphic to a tally set. (Note: this was an improvement
of the result in [BB86], which showed that a set has small generalized Kolmogorov
complexity if and only if it is “semi-isomorphic” to a tally set.) Using a similar
argument and Theorem 5.2 we can show an analogous result for sets with small
generalized Kolmogorov space complexity. First, we prove the following result.

Proposition 5.4. For all Mv and k, KSv[k log n, k log n] is L-printable.

Proof. To L-print for length n, simulate Mv on each string of length less than or
equal to k log n and output every string of length n produced.

Corollary 5.5. There exists a k such that A ⊆ KS[k log n, k log n] if and only
if A is L-isomorphic to a tally set.

Proof. Suppose A is L-isomorphic to a tally set. Then, by the argument given in
the proof of [2 ⇒ 3] in Theorem 5.2, A ⊆ KS[k log n, k log n].

Now, suppose A ⊆ KS[k log n, k log n]. By Proposition 5.4 and Theorem 5.2,
KS[k log n, k log n] is L-isomorphic to a tally set in L via some L-isomorphism f . It
is clear that A is L-isomorphic to f(A). Since f(A) is a subset of a tally set, f(A)
must also be a tally set.

6. Printability, rankability, and decision. In this section we examine the
relationship among L-printable sets, L-rankable sets, and L-decidable sets. We show
that any collapse of these classes, even for sparse sets, is equivalent to some unlikely
complexity class collapse.

Theorem 6.1. The following are equivalent:

1. Every sparse L-rankable set is L-printable.
2. There are no tally sets in P − L.
3. E = LinearSPACE.

Proof. [2 ⇔ 3] This equivalence follows from techniques similar to those of
Book [Boo74].

[2 ⇒ 1] Suppose A is a sparse L-rankable set. Note that A ∈ L.

Let

T = {1〈i,j〉 : The ith bit of the jth string in A is 1},
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where

〈i, j〉 =
(i + j)(i + j + 1)

2
+ i.

Note that 〈i, j〉 can be computed in space linear in |i| + |j|. Since A is sparse, i and
j are bounded by a polynomial in the length of the jth string. Hence, 〈i, j〉 can be
computed using logarithmic space with respect to the length of the jth string.

Given 〈i, j〉, we can determine i and j in polynomial time, and we can find the
jth string of A by using binary search and the ranking function of A. Hence, T ∈ P.
So, by assumption, T ∈ L.

Next we give a method for printing A in logspace. Given a length n, we compute
(and store) the ranks of 0n and 1n in A. Let rstart and rend be the ranks of 0n and
1n, respectively. If 0n 0∈ A, the string with rank rstart has length less than n. First,
we check to see if 0n ∈ A, and if so, print it. Then, for each j, rstart < j ≤ rend,
we output the jth string by computing and printing T (1〈i,j〉) for each bit i. This
procedure prints the strings of A of length n.

Note that since A is sparse, we can store rstart and rend in O(log n) space. Since
i ≤ n, we can also store and increment the current value of i in logn space.

[1 ⇒ 2] Let T ∈ P be a tally set. Since the monotone circuit value problem
is P-complete (see [GHR95]), there exists a logspace computable function f and a
nondecreasing polynomial p such that f(n) produces a circuit Cn with the following
properties.

1. Cn is monotone (i.e., Cn uses only AND and OR gates).
2. Cn has p(n) gates.
3. The only inputs to Cn are 0 and 1.
4. Cn outputs 1 if and only if 1n is in T .

We can assume that the reduction orders the gates of Cn so that the value of gate
gi depends only on the constants 0 and 1 and the values of gates gj for j < i [GHR95].
Let xn be the string of length p(n) such that the ith bit of xn is the value of gate gi.

Let A = {xn : n ∈ N}. Then A contains exactly one string of length p(n) for all
n and no strings of any other lengths.

Claim 6.1.1. The set A is L-rankable.

Proof. To prove this claim, let w be any string. In logspace, we can find the
greatest n such that p(n) ≤ |w|. If p(n) 0= |w| then w 0∈ A, and the rank of w is n.
Suppose |w| = p(n). Since xn is the only string of length p(n) in A, the rank of w is
n− 1 if w < xn, and n otherwise.

Consider the ith bit of w as a potential value for gate gi in Cn. Let j be the
smallest value such that wj is not the value of gj . In order to find the value of a gate
gi, we first use f(n) (our original reduction) to determine the inputs to gi. By the
time we consider the ith bit of w, we know that w is a correct encoding of all of the
gates gk such that k < i, so we can use those bits of w as the values for the gates.
Thus, we can determine the value of gi and compare it to the ith bit of w. If they
differ, we are done. If they are the same, we continue with the next gate. We can
count up to p(n) in logspace, so this whole process needs only O(log p(n)) space to
compute.

Once j is found, there are three cases to consider.
1. If j doesn’t exist then w = xn.
2. If the jth bit of w is 0 then w < xn.
3. If the jth bit of w is 1 then w > xn.
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These follow since the ith bit of xn matches the ith bit of w for all i < j.
Thus A is L-rankable and, by assumption, L-printable.
So, to determine if 1n is in T , L-print A for length p(n) to get xn. The bit of xn

that encodes the output gate of Cn is 1 if and only if 1n ∈ T . Since every step of this
algorithm is computable in logspace, T ∈ L.

This completes the proof of Theorem 6.1.
Corollary 6.2. There exist two non-L-isomorphic L-rankable sets of the same

density, unless there are no tally sets in P − L.

Proof. Consider the sets T and A from the second part of the proof of Theorem 6.1.
The set B = {1p(n) : n ∈ N} has the same density as A. By Proposition 4.1, B is
L-printable. If A and B were L-isomorphic then by Proposition 3.6, A would also be
L-printable and T would be in L.

One may wonder whether every sparse set in L is L-printable or at least L-
rankable. We show that either case would lead to the unlikely collapse of FewP and
L. Recall that FewP consists of the languages in NP accepted by nondeterministic
polynomial-time Turing machines with at most a polynomial number of accepting
paths.

Fix a nondeterministic Turing machine M and an input x. Let p specify an
accepting path of M(x) represented as a list of configurations of each computation
step along that path. Note that in logarithmic space we can verify whether p is such
an accepting computation since if one configuration follows another only a constant
number of bits of the configuration change.

We can assume without loss of generality that all paths have the same length and
that no accepting path consists of all zeros or all ones.

Define the set PM by

PM = {x#p : p is an accepting path of M on x}.

From the above discussion we have the following proposition that we will use in the
proofs of Theorems 6.6 and 6.7.

Proposition 6.3. For any nondeterministic machine M , PM is in L.

Allender and Rubinstein [AR88] showed the following about P-printable sets.
Theorem 6.4 (see [AR88]). Every sparse set in P is P-printable if and only if

there are no sparse sets in FewP − P.

Allender [All86] also relates this question to inverting functions.
Definition 6.5. A function f is strongly L-invertible on a set S if there exists

a logspace computable function g such that for every x ∈ S, g(x) prints out all of the
strings y such that f(y) = x.

We extend the techniques of Allender [All86] and Allender and Rubinstein [AR88]
to show the following.

Theorem 6.6. The following are equivalent.

1. There are no sparse sets in FewP − L.
2. Every sparse set in L is L-printable.
3. Every sparse set in L is L-rankable.
4. Every L-computable, polynomial-to-one, length-preserving function is strong-

ly L-invertible on {1}∗.
5. FewE = LinearSPACE.

Proof. [1 ⇒ 2] Let A be a sparse set in L. Then A is in P. By (1) we have that
there are no sparse sets in FewP − P. By Theorem 6.4, A is P-printable.
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Consider the following set B:

B = {1〈n,i,j,b〉 : the ith bit of the jth element of A of length n is b}.

Since A is P-printable then B is in P. By statement 1 (as B is sparse and in P ⊆
FewP), we have that B is in L. Then A is L-printable by reading the bits off from B.

[2 ⇒ 3] Follows immediately from Proposition 3.4.
[3 ⇒ 1] Let A be a sparse set in FewP accepted by a nondeterministic machine

M with computation paths of length q(n) for inputs of length n.
Consider the set PM defined as above. Note that PM is sparse since for any length

n, M only accepts a polynomial number of strings with at most a polynomial number
of accepting paths each. Also, by Proposition 6.3, we have PM in L.

By statement 3 we have that PM is L-rankable. We can then determine in loga-
rithmic space whether M(x) accepts (and thus x is in A) by checking whether

rPM
(x#0q(|x|)) < rPM

(x#1q(|x|)).

[2 ⇒ 4] Let f be an L-computable, polynomial-to-one, length-preserving function.
Consider S = {y : f(y) ∈ {1}∗}. Since S is in L, S is L-printable.

[4 ⇒ 2] Let A be a sparse set in L. Define f(x) = 1|x| if x is in A and x otherwise.
If g is a strong L-inverse of f on {1}∗ then g(1n) will print out the strings of length
n of A and 1n. We can then print out the strings of length n in logspace by printing
the strings output by g(1n), except we print 1n only if 1n is in A.

[1 ⇔ 5] In [RRW94], Rao, Rothe, and Watanabe show that there are no sparse sets
in FewP − P if and only if FewE = E. A straightforward modification of their proofs
is sufficient to show that there are no sparse sets in FewP − L if and only if FewE =
LinearSPACE.

Unlike L-printability, L-rankability does not imply sparseness. One may ask
whether every set computable in logarithmic space may be rankable. We show this
equivalent to the extremely unlikely collapse of PP and L.

Theorem 6.7. The following are equivalent.
1. Every #P function is computable in logarithmic space.
2. L = PP.
3. Every set in L is L-rankable.

Our proof uses ideas from Blum (see [GS91]), who shows that every set in P is
P-rankable if and only if every #P function is computable in polynomial time. Note
that Hemachandra and Rudich [HR90] proved results similar to Blum’s.

Proof. [1 ⇒ 2] If A is in PP then there is a #P function f such that x is in A if
and only if the high-order bit of f(x) is 1.

[2 ⇒ 1] Note that L = PP implies that P = PP implies that P = PPP implies that
P = P#P. Thus we have L = P#P and we can compute every bit of a #P function in
logarithmic space.

[1 ⇒ 3] Let A be in L. Consider the nondeterministic polynomial-time machine
M that on input x guesses a y ≤lex x and accepts if y is in A. The number of
accepting paths of M(x) is a #P function equal to rA(x).

[3 ⇒ 1] Let f be a #P function. Let M be a nondeterministic polynomial-time
machine such that f(x) is the number of accepting computations of M(x). Let q(n) be
the polynomial-sized bound on the length of the computation paths of M . Consider
PM as defined above. By Proposition 6.3 we have that PM is in L, so by (3) PM is
L-rankable. We then can compute f(x) in logarithmic space by noticing

f(x) = rPM
(x#1q(|x|)) − rPM

(x#0q(|x|)).
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7. Conclusions. The class of L-printable sets has many properties analogous to
its polynomial-time counterpart. For example, even without the ability to do binary
searching, one can show that two L-printable sets of the same density are isomorphic.
However, some properties do not appear to carry over: it is very unlikely that every
sparse L-rankable set is L-printable.

Despite the strict computational limits on L-printability, this class still has some
bite: every tally set in L, every sparse regular and context-free language, and every
L-computable set of low space-bounded Kolmogorov complexity strings is L-printable.
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