
Real Time Hand Gesture Recognition With 2 Kinect Sensors

Radu Paul Mihail
315 Davis Marksbury Building

329 Rose Street
University of Kentucky
Lexington, Kentucky
r.p.mihail@uky.edu

Nathan Jacobs
319 Davis Marksbury Building

329 Rose Street
University of Kentucky
Lexington, Kentucky
jacobs@cs.uky.edu

Judy Goldsmith
309 Davis Marksbury Building

329 Rose Street
University of Kentucky
Lexington, Kentucky
goldsmit@cs.uky.edu

Abstract

In this paper, we propose a robust static hand gesture
recognition algorithm that makes use of two Kinect sensors.
This will be used to control an avatar in a decision aid for
rheumatoid arthritis patients who have a difficult time us-
ing a standard keyboard and mouse interface. The sensors
are placed on the left and right sides of a target sensing
area, easily set up in a doctor’s office or waiting room. The
Kinects provide a rich point cloud, out of which gestures
from a known vocabulary are recognized in real time. We
use 6 point cloud descriptors simultaneously and employ
the majority rule voting scheme to pick a “winner” gesture
in real time. We achieve rotation invariance by using part
of the forearm as a good indicator of hand orientation and
aligning the hand with the world coordinate system origin.
We evaluate the performance of the recognition system un-
der various motion and rotation conditions.

Contact author:
Radu Paul Mihail, r.p.mihail@uky.edu

Keywords:
gesture recognition, kinect, majority rule, voting,

rheumatoid arthritis

Conference submitted to:
IPCV

1



1. Introduction
Rheumatoid arthritis (RA) is a potentially debilitating,

life-long autoimmune disease that affects millions of adults
around the world. Individuals suffering from RA face a
daunting array of treatment choices, each with its own ben-
efits and side effects. The challenge in making such choices
is often difficulty in comprehending the consequences of a
particular choice of medications and other treatments. To
the best of our knowledge, decision tools for RA based on
computer game technology have not been explored. The
problem for RA patients is that the standard modes of inter-
action are often impossible because the disease limits range
of motion and can cause physical deformities: simply ma-
nipulating a mouse or grabbing a Wii-mote may be impos-
sible.

In this paper, we propose a real-time gesture recogni-
tion system that uses a pair of Kinect sensors to distinguish
between static hand gestures. Our system is designed to
be easily customized for individual users and to be rapidly
configured in a doctor’s office. Given the physical deformi-
ties and limited range of motion, each user may require a
special set of gestures that are determined interactively by a
therapist. Therefore, we minimize training time by using a
lazy-learning algorithm to classify individual gestures.

In the context of our larger research program, this ges-
ture recognition system will enable RA sufferers to control
a character in a virtual environment. The goal is for them
to use this system to visualize the outcome of a particular
treatment plan by enabling them to perform actions, such
as making a cup of coffee, which might be impossible for
them in the physical world. For this task, our gesture recog-
nition system might include gestures for grabbing, standing,
walking, and placing-on-a-table to control avatar motions.
Figure 1 shows examples from the library of natural static
hand gestures we use in our experiments. The heart of our
proposed system is a voting-based scheme that combines
the results of 6 nearest-neighbor classifiers to determine the
current gesture. The resulting system works in real time on
a modest computer with average resources. An important
feature of our method is that it does not require tracking or
manual pose initialization; these techniques were deemed
too brittle for our proposed users, and, as our results show,
were not necessary. Instead, we classify individual gestures
on a per-frame basis using a single point cloud, fused from
two Kinect sensors, as input. The most computationally de-
manding part of our system is the component that manip-
ulates the point cloud, namely a rigid-body transformation
and a hand segmentation procedure. Once segmented, we
convert the point cloud into a voxel-based representation
and extract 6 different features.

Our results demonstrate that the proposed system can
accurately classify a realistic set of gestures in real time.
We demonstrate that the system can be rapidly retrained for

new users. Future work will more extensively evaluate the
system and integrate this gesture recognition system into a
larger virtual environment to aid RA sufferers to make in-
formed medical decisions.

1.1. Related Work

Recovering the full kinematic parameters of the skeleton
of the hand over time, commonly known as the hand-pose
estimation problem, is challenging for many reasons: high
dimensionality of the state space, self occlusions, insuffi-
cient computational resources, uncontrolled environments,
rapid hand motion and noise in the sensing device [3]. Erol
et al. [3] provide a comprehensive review of research on this
problem. Given our application, we focus on a special case
of hand-pose estimation known as gesture recognition, in
which discrete hand poses are detected. Solutions to this
problem can be generally divided into appearance-based
methods, depth-camera methods, and tracking-based meth-
ods. In the remainder of this section we give an overview of
the gesture recognition literature.

Direct Appearance-Based Methods Athitsos et al. [1]
propose a real-time gesture recognition system that uses a
large database of synthetically generated images of hands
in various configurations. The proposed approach relies
on searching a database of tens of thousands of potential
gestures. They use an indexing scheme, known as Boost-
Map, to decrease query processing time and thus enable
real-time recognition. For their system, the input data con-
sists of 2D images, out of which the hand silhouettes are ex-
tracted through skin color segmentation. Their method re-
lies heavily on a relatively clean segmentation. Unlike typ-
ical appearance-based methods, where estimation is done
from a limited number of viewpoints such as Ying et al. [8],
Athitsos et al. [1] allows arbitrary views. [4] Hassan et al.
propose a method using 2D images from a simple camera
using the hand contour information and complex moments
which are rotationally invariant. The complex moments and
contour information are used as input to a feedforward neu-
ral network that classifies a vocabulary consisting of 6 ges-
tures. They obtain accuracy of 86.38%, which is lower but
comparable to our approach.

Direct Depth-Based Methods Gesture recognition has
been revisited with the introduction of inexpensive depth
cameras. Most similar to the current paper, is work by
Suryanarayan et al. [7] in which they propose a gesture
recognition system using a single ZCam camera from 3DV
Systems. One limitation of their approach is their method
of obtain invariance to hand rotation. Their method intro-
duces a limitation on the types of poses that can be suc-
cessfully distinguished. Our hand/forearm segmentation
method, coupled with a similar PCA-based normalization



1 2 3 4 5

6 7 8 9 10

Figure 1: Gesture vocabulary.

scheme, enables our system to accurately distinguish be-
tween a more varied set of gestures. Zhou et al. [6] pro-
posed a method to recognize hand gestures using a Kinect
sensor. Their approach uses color, as well as depth infor-
mation. The color is used to segment the hand from the
rest of the environment, while the depth is used in a tem-
plate matching algorithm where the dissimilarity measure
they use is “Finger-Earth Mover’s Distance” (FEMD). They
claim an average of 90.6% accuracy on a dataset, but men-
tion nothing about distortion or rotation invariance.

Tracking-Based Methods An alternative approach to
gesture recognition involves first solving the hand-pose esti-
mation problem. Once this is solved it is straightforward to
determine the gesture based on geometric parameters of the
hand. Hand-pose estimation methods often rely on track-
ing, where an initialization step has to be performed, and
the pose at the current frame relies on knowledge about the
previous frame. [5, 9] In such applications, if the system
loses track, it can only be recovered using manual initial-
ization. Unlike these systems, our approach estimates pose
from a known vocabulary at every frame, independent of
previous frames.

2. A Real-Time Gesture Recognition System

We propose a system that uses point clouds obtained
from two consumer depth cameras to recognize gestures in
real time. In this section, we first describe the intended use
of the system and then give details of the physical and con-
ceptual configuration of our system.

2.1. Usage Scenario

We designed the system to be robust and easy to set up
in a doctor’s office environment. The two Kinect sensors
can easily be placed on a desk, and the system runs on an

inexpensive machine. Our choices of gestures are famil-
iar gestures that will be useful for our application. We de-
signed this algorithm for natural interaction and control of
an avatar through gestures. A simulation involves directing
the avatar through hand gestures to perform certain activi-
ties.

Imagine that the user wishes her avatar to go to the
kitchen, get a cup of coffee, come back, and put the cof-
fee on a table. This may sound trivial to the reader, but for
someone with advanced rheumatoid arthritis (RA), this may
be impossible. Standing up and sitting down are painful,
sometimes impossible. Holding the coffee cup in one hand
requires a steady grip; we have heard patients describe
walking across the room with a cup, and suddenly the cup
and coffee are on the floor.

We want to show the user an avatar that attempts this se-
quence of actions. At one point in the process, the avatar
will display the user’s degree of RA and associated defor-
mation. At another point, the avatar will display a possible
effect of the medication (calculated according to the proba-
bilities of effects in the medical literature). The user, how-
ever, will not suddenly get better in the doctor’s waiting
room. So control of the avatar must be doable, even with
RA-inhibited or deformed hands.

The user will be able to gesture with a finger pointed up
to stand, a horizontal palm to turn, etc. These gestures will
all be user-tested for comfort and performability. We are
preparing an IRB application for a further study.

2.2. Data Acquisition

We create a point cloud using two Kinect sensors. In
this work, we ignore color information, and down-sample
by reading every third pixel in the depth map to increase
the per frame processing speed. There are two main rea-
sons why we can ignore color: first, the hand is relatively
flat textured and second, we can’t assume consistent light-



Figure 2: An example point cloud of gesture captured by
our system when inevitable occlusion is overcome by using
two Kinect sensors.

ing conditions. In fact, our system works in complete dark-
ness. In our experiments, the yaw angle for which the de-
vice has a motor is set at the default value, which results in
an orientation parallel to the table top on which the sensors
are placed. An angle of 45◦ provides the most information
when performing gestures that have inevitable occlusion as
depicted in Figure 2, because within a certain distance from
the cameras, each of the two sensors “sees” half of the hand,
hence capturing more structural information.

We map raw depth values for each Kinect, which are 12
bit integers, to metric 3-space using Nicholas Burrus’ for-
mula [2]. Because the two video streams come from two
sensors placed in different places, we have to perform a cal-
ibration step (see Appendix ??), which rotates and trans-
lates the coordinate system of one camera to match that of
the other camera. We do not use color information, but we
acknowledge that it could provide additional useful infor-
mation for solving the hand pose estimation problem.

2.3. World Coordinate System

The rotation around the Y-axis previously determined in
the calibration step (Θ) is part of the transformation that
maps one Kinect’s coordinate system to the other Kinect.
We create a world coordinate system, where the depth axis
points exactly in between the two Kinect sensors. This new
depth axis coincides with the bisector line of the normal
vectors with the origins at the center of the camera sensors
as depicted in Figure 3 by Zworld. Angle Θ is known from
the calibration step, so in practice we rotate the point clouds
around the world coordinate system Y-axis by Θ

2 and −Θ
2

(clockwise and counterclockwise respectively). We create
this coordinate system because users will interact with the
system by placing their hands between the two sensors with

Figure 3: World Coordinate System depth axis.

the arm pointing along our world coordinate system depth
Z-axis. This step is useful in creating a descriptor (Section
3.3) where the real depth coincides with the line from wrist
to the tip of the fingers. Having an intuitive world coor-
dinate system is invaluable if we need to extract the spatial
position and orientation of the user’s hand when performing
a certain gesture. In our proposed application, a user may
navigate the virtual 3D world by pointing with their index
finger to determine what direction the avatar will walk next.
When recognized, this gesture will cause the avatar to turn
her head in the direction where the user’s finger is pointing.
After a direction has been established, another gesture can
be used to make the avatar walk forward or back up. If, for
example, the user wishes to pick up an object in the virtual
world, the relative position of the hand in our world coordi-
nate system can be translated into that of the virtual world
so the avatar can move her hand in a 3D position indicated
by the user. The relative position of the hand is the center
of mass of the point cloud derived from the segmentation
process.

3. Gesture Recognition
We formulate the gesture recognition problem in the con-

text of this paper as follows: given a snapshot of a hand
configuration (a point cloud), decide which gesture from a
repertoire of known gestures has been performed. Using
a cluttered point cloud requires a segmentation process, to
isolate the hand from the rest of the scene. We use a sim-
ple segmentation process described in the next section. The
simplicity of the segmentation is acceptable due to the way
we engineered the system to allow for the hand to be the
closest object to the Kinect sensors.

3.1. Segmentation

Given the final point cloud Γ={p1, p2, ...pn} in the world
coordinate system mentioned above, we need to extract the
points that belong to the user’s hand. We assume that,
during usage, the hand will be the closest object to the
two Kinect sensors. We extract closest point pclosest =



(X,Y, Z). We then search Γ for a subset of points Γ′ =
(hp1, hp2, ..., hpn), where the following conditions hold.

1. pclosest.Z < hpn.Z < pclosest.Z + 0.30m

2. pclosest.X − 0.20m < hpn.X < pclosest.X + 0.20m

3. pclosest.Y − 0.20m < hpn.Y < pclosest.Y + 0.20m

The subset Γ′ is guaranteed to be contained in a box with
volume 0.30m ∗ 0.20m ∗ 0.20m = 0.048m3. We chose
0.30m for the depth because it captures part of the fore-
arm, which we use to achieve rotation invariance, process
described in section 3.2. The rotations with which we wish
to achieve invariance to are about the X-axis and Y-axis of
the world coordinate system. The values 0.20m for width
and height of the bounding box, were determined empiri-
cally to ensure it can contain hands of various sizes. The
second reason was the need to ensure the box can contain
a hand and part of the forearm rotated along either X or Y-
axis, which causes an increase in volume of the bounding
box. Assuming the segmentation process completes suc-
cessfully, Γ′ contains points pertaining to the hand and part
of the forearm.

3.2. Rotation Invariance

To achieve rotation invariance, we assume the forearm
to be a strong indicator of the hand orientation. We find the
principal component of this set and align Γ′ along the X and
Y components of the world coordinate system. It is true that
gestures such as “Palm Front” and “Attention” will affect
the principal component vector, and thus final rotation, but
the bias is consistent across users, so it can be ignored. We
call the angle that the principal component is rotated along
the Y-axis of the world coordinate system α and the rotation
angle along the X axis is β. This results in invariance to the
two rotations. Unconstrained rotation along the Z axis is
important because the semantics of the gestures depends on
it, e.g., gestures 7 and 8.

3.3. Descriptor

To discriminate between gestures that users perform, we
require a fast classification algorithm to process every frame
of the combined streams. Therefore, designing a system
that is computationally feasible on an average machine is
important due to a requirement of cost efficiency to imple-
ment and deploy systems in various settings. In Section
3.1 we describe the segmentation process used to isolate
hand and forearm points from the rest of the background
and align it with the world coordinate system to achieve ro-
tation invariance, and we named this set Γ′. The forearm
points were used for alignment purposes, and can now be
discarded. We eliminate them by “trimming” Γ′ of the trail-
ing 15cm volume.

In order to build a gesture vocabulary and implement a
classification algorithm, we need to compute a descriptor
for Γ′. We use six point distribution histograms for Γ′. We
subdivide the volume into 63, 83 and 103 voxel spaces of
equal size, distributed evenly.

For each such division, we produce two descriptors; one
where each dimension of the descriptor corresponds to the
point count in each voxel space and the other is a binary
value describing whether there is one or more pixels in each
voxel space. We use Ψ to denote a count histogram and
ψ to denote a binary histogram. The final descriptors are
Ψ63 , ψ63 ,Ψ83 , ψ83 and Ψ103 , ψ103 . Since the hand is ex-
tracted from the world coordinate system, the position is
important to our application. We determine the absolute po-
sition of the hand by computing the center of mass for the
point cloud Γ′ and name it Ω – a vector in 3-space.

3.4. Recognition

We use a nearest neighbor classifier in combination with
majority rule voting scheme to recognize unknown gestures.
For each unknown gesture, we compute the six descriptors
and map the points to the feature spaces of each descrip-
tor. We compute distances between all cluster centers. The
recognition process for an unknown gesture involves com-
puting the squared distance in each feature space between it
and known gestures in the vocabulary,

d2(Ψunknown, Ψknown) =
∑i

n=1(Ψunkown[i] − Ψknown[i])2

where i is the dimensionality (63, 83 or 103).
We retrieve the top two matches, and the threshold that

determines whether the gesture is known or not is twice the
distance between the top two cluster centers. For each fea-
ture space, the nearest neighbor is retrieved. The results
may not be the same for each descriptor due to noise, pose
and the user making slight variations in the way the gesture
is performed. We view this as a voting problem with 6 vot-
ers where each vote is a recognized gesture.We noticed that
the majority of descriptors agree on the correct gesture, so
we use the majority rule voting scheme to pick the “winner”
candidate gesture. In the case of a tie or if all are different,
we classify the gesture as unknown.

4. Evaluation
To evaluate the effectiveness of our approach, we de-

signed the following experiment: first we build a training
set by asking users (co-authors) to perform the 10 gestures
in an arbitrary order and repeat the process 3 times. We col-
lected a total of 30 data points per user in each of the feature
spaces. In the evaluation sessions, training data was limited
to the user testing the system. We did not mix training data
among users because of the wide variation in the way dif-
ferent people perform a single gesture. Furthermore, the



Figure 4: Each of the above points is a gesture in the set
Ψ63 . We used PCA to reduce dimensionality and show the
well separated clusters in the feature space.

system is intended to work with hand deformities and re-
stricted joint movements.

After training data was collected, users were asked to
perform gestures as prompted by the application for 6 sec-
onds with 3 second breaks between gestures. During the
break, the application prompts the next gesture that is to be
evaluated. We recorded the following information for ev-
ery frame: ground truth gesture, majority rule recognized
gesture, recognized gesture for each descriptor, time in mil-
liseconds to process raw kinect data (transformations, seg-
mentation, rotation based on principal component) and fi-
nally angles α and β found as described in Section 3.2. We
collected angles to determine whether there is a correlation
between hand orientation and recognition performance.

4.1. Training Data

The training process consists of computing a set of de-
scriptors Ψ and ψ for each gesture, for a total of 6 data
points. We asked users 1 to participate in the training pro-
cess by performing the 10 gestures in a specific order. They
repeat the 10 gestures 3 times with pauses in between. The
effect of an arbitrary ordering is more variation compared
to repeating the same gesture several times before moving
on the next. To demonstrate this variation, we reduced di-
mensionality using PCA for each descriptor to visualize the
clusters they form, see Figures 4 and 5. Notice how similar
gestures form clusters that are closer.

As an example, gestures 5 and 6 (“Palm Front” and “At-
tention”) are similar, as seen in the graphs. Gestures 2 and
5 (“Point Straight” and “Palm Front”) are significantly dif-
ferent, placing them farther apart in the feature space.

To further illustrate the effectiveness of the descriptor,

1The users for this study were the authors. We are preparing an IRB
application for a wider study.

Figure 5: Set of 3 ψ103 per gesture.

we compute distances between two random sets of gesture
examples and graph the results in Figure 6. As we ex-
pected, the main diagonal has low values, which means that
our descriptor is discriminative in ideal conditions. In prac-
tice, we have to take into consideration the limitations of
the Kinect sensors. As an example, the minimum depth
sensing distance is 3 feet. If a user gets closer than the
minimum distance, the end result is points being dropped
from the cloud, which negatively affect the recognition sys-
tem. Furthermore, because the depth sensor is based on a
pinhole camera with inexpensive optics, there is more dis-
tortion near the edges of the depth map. In our setup, unless
users are restricted to a relatively small space, the detected
hand may be near the edge of one or both of the depth maps,
which also negatively affect the recognition performance.
In the experiments below, we evaluate the performance of
our suggested approach by performing 3 experiments. In
the first experiment the user does not move the hand, in the
second one the user moves her hand arbitrarily and in the
third experiment, the user moves her hand in a plus like pat-
tern.

4.2. Experiments

Experiment with user not moving her hand In this ex-
periment, the user performed a set of 10 gestures without
moving her hand. Figure 7 shows the comparison between
the descriptors. The thick red line represents the majority
rule gesture accuracy. There were no incorrect classifica-
tions in this experiment over a total of 1477 frames col-
lected. We recorded the average α and β for this experiment
and graphed them in Figures 8 and 9. Higher normaliza-
tion angles resulted from the bias that some gestures cause;
e.g., gestures 5 and 6.

We also recorded the average processing time for each
frame. The processing times are inclusive of raw data ac-
quisition and transformation, segmentation and recognition.



Figure 6: Average distances between pairs of gestures using
Ψ63 descriptors.

Figure 7: In the above figure, the performance of the six
descriptors is graphed. Most descriptors performed well,
while the majority vote achieved 100% recognition rate.

Figure 8: In the above figure, the average orientation angle
α is graphed for both correct and incorrect classifications
by majority rule.

The average processing time per frame was found to be
around 35ms on a dual core Pentium D processor running at
2.8 Ghz, without any processor specific optimizations. We

Figure 9: Average orientation angle β.

Figure 10: In the above figure, the performance of the six
descriptors is graphed when the user moves their hand in a
circular pattern. The recognition rate is lower due to orien-
tation normalization.

wrote the prototype in C#.

Experiment with user making a circle pattern while ges-
turing This experiment is similar to the first, except the
user was asked to move her hand arbitrarily. The total num-
ber of frames processed for all gestures was 1274, out of
which 1187 were classified correctly (93.17%). Figure 10
shows the recognition accuracy of individual classifiers and
the majority rule vote. There is a weak correlation between
higher normalization angles and recognition accuracy as
seen in Figures 11 and 12. We present the conditional
probability distribution of misclassification given angle α
in Figure 13.

Experiment with a plus like motion In this experiment,
the user was asked to perform the set of gestures as in the
first two experiments, but he was asked to move his hand
in a plus like pattern. We show a confusion matrix in Table
1. In figure 14, the performance of individual descriptors
and the majority rule is graphed. A total of 1654 frames
have been processed, out of which 1602 have been correctly



Figure 11: The detected average orientation angle α is
graphed for correct and incorrect classifications. Note that
there is little correlation between normalization angles and
recognition accuracy.

Figure 12: Detected average orientation angle β.

Figure 13: In this figure we represent the conditional prob-
ability distribution of misclassification given angle α. We
noticed that rotation about the Y-axis of the world coordi-
nate system produces the most classification errors.

classified (96.86%).

Comparison to other methods We evaluated the effec-
tiveness of our system under various rotation and motion
conditions. Similar work has been done by Suryanarayan

Figure 14: Descriptor performance for the third experiment.

et al. [7], however, there are differences that prevent a
comprehensive comparison. First, they use a single time
of flight (TOF) camera to augment the 2D images in their
gesture vocabulary with depth data. They evaluate their sys-
tem using a vocabulary of 6 gestures, however, it is unclear
the motion and rotation constraints they imposed on their
evaluation data. They average slightly under 90% accuracy
across all 6 gestures. Our system accuracy is 100% when
no motion/rotation is performed, however, we analyzed ex-
treme cases of rotation which were found to decrease per-
formance. Our system outperforms the one proposed by
Suryanarayan et al. [7] under mild rotation conditions. Mo-
tion will decrease performance when the user moves his/her
hand fast enough to pass the limitation of the devices’ frame
capture rate of 30 per second.

5. Conclusion

In this paper we presented a novel algorithm for the
recognition of static hand poses using two Kinect sensors.
We describe how to merge two depth streams from sensors
placed at an angle which captures 3D points belonging to
a user’s hand. We used a trivial segmentation method for
the extraction of hand points and a used PCA to achieve
rotation invariance with respect to the X and Y axis of the
world coordinate system. The algorithm relies heavily on
a clean segmentation. We use multiple descriptors com-
puted from the point cloud and apply majority rule voting
scheme to improve the recognition process. The algorithm
is evaluated and we present detailed results that can be used
for future work in gesture recognition using Kinect sensors.
We found that hand orientation has a slight negative impact
on the recognition performance of our algorithm, hence a
shortcoming, however, this is mainly due to the segmenta-
tion process and distortion near the edges of the depth maps.
In future work, we will improve the segmentation process to
allow for a less constrained interaction environment.



Predicted gesture label
1 2 3 4 5 6 7 8 9 10 Unknown

1 0.9181 0 0 0 0 0 0.0058 0.0058 0 0.0234 0.0468
2 0 0.9673 0 0 0 0 0 0 0 0 0.0327
3 0 0.0058 0.9128 0.0581 0.0058 0 0 0 0 0 0.0174
4 0 0 0 0.9448 0 0 0 0.0123 0 0.0245 0.0184
5 0 0 0 0 1.0000 0 0 0 0 0 0
6 0 0.0065 0 0 0 0.9935 0 0 0 0 0
7 0 0 0.0159 0 0 0 0.9788 0 0 0 0.0053
8 0 0 0.0063 0 0 0 0 0.9938 0 0 0
9 0 0 0 0 0 0.0053 0 0 0.9842 0 0.0105

10 0 0 0 0 0 0 0 0 0 1.0000 0

Table 1: Confusion table. Each row represents a gesture that was evaluated.

6. Future Work

The results we obtained in our work can be improved by
employing a better segmentation process. Our segmentation
method is simple and effective when the user’s hand is the
closest object to the Kinect sensors. However, this requires
open space near the sensors which may be difficult to obtain
in a waiting room or doctor’s office. We will improve the
segmentation and test our system in a clinical setting with
patients. This work can also be used as a preprocessing step
to solve the hand pose estimation problem by discretizing
possible hand joint configuration spaces, thus limiting the
search problem.

References
[1] V. Athitsos, H. Wang, and A. Stefan. A database-based frame-

work for gesture recognition. Personal and Ubiquitous Com-
puting, 14(6):511–526, 2010. 2

[2] Nicholas Burrus homepage - kinect calibra-
tion. webpage, November 2010. URL:
http://nicolas.burrus.name/index.php/Research/KinectCalibration.
4

[3] H. A. Erol, G. Bebis, M. Nicolescu, R. D. Boyle, and
X. Twombly. Vision-based hand pose estimation: A review.
Computer Vision and Image Understanding, 108(1-2):52–73,
2007. 2

[4] H. Hasan and S. Abdul-Kareem. Static hand gesture recog-
nition using neural networks. Artificial Intelligence Review,
pages 1–35, 2012. 2

[5] S. Lu, D. N. Metaxas, D. Samaras, and J. Oliensis. Using mul-
tiple cues for hand tracking and model refinement. In CVPR
(2), pages 443–450, 2003. 3

[6] Z. Ren, J. Meng, J. Yuan, and Z. Zhang. Robust hand gesture
recognition with kinect sensor. In Proceedings of the 19th
ACM international conference on Multimedia, pages 759–
760. ACM, 2011. 3

[7] P. Suryanarayan, A. Subramanian, and D. Mandalapu. Dy-
namic hand pose recognition using depth data. In ICPR, pages
3105–3108, 2010. 2, 8

[8] Y. Wu, T. S. Huang, and T. S. Huang. View-independent
recognition of hand postures. In In CVPR, pages 88–94, 2000.
2

[9] Y. Wu, J. Y. Lin, and T. S. Huang. Capturing natural hand
articulation. In ICCV, pages 426–432, 2001. 3


