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Abstract. The groundswell for the ‘00s is imprecise probabilities. Whether
the numbers represent the probable location of a GPS device at its next
sounding, the inherent uncertainty of an individual expert’s probabil-
ity prediction, or the range of values derived from the fusion of sensor
data, probability intervals became an important way of representing un-
certainty. However, until recently, there has been no robust support for
storage and management of imprecise probabilities. In this paper, we
define the semantics of traditional query algebra operations of selection,
projection, Cartesian product and join, as well as an operation of con-
ditionalization, specific to probabilistic databases. We provide efficient
methods for computing the results of these operations and show how
they conform to probability theory.

1 Introduction

Reasoning with common sense leads to attempts to make decisions and inferences
with incomplete information about the real world. This process, whether applied
to medical decision-making [17] or pure logical reasoning [16,17] or to other
applications such as network modeling [2] or reasoning about databases [15], can
be implemented effectively using probability intervals. Models were proposed for
computations with interval probabilities [4,18,19] recently, but there has been
little work on incorporating management of interval probability distributions
into databases.

Many research areas deal with discrete random variables with finite domains.
Probability distributions of such random variables are finite objects, as probabil-
ities need to be specified only for a finite number of instances. Thus, representa-
tions of probability distributions can be stored as database objects. A number of
database models suitable for storing probability distributions has been proposed
recently [5,10,13,14].

The issue of querying interval probability distributions is independent of the
choice of representation. As previous research on probabilistic databases has
established [1,5,7,13], any manipulation of probabilities in a database must be
consistent with probability theory, and classical relational algebra operations fail
to take this into account. Even in the case of point probabilities, one must define
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the semantics of database operations carefully, as is the case in previously pro-
posed probabilistic relational algrebras [1,3,7]. In order to define query algrbra
operations on interval probability distributions we must define the semantics
of the underlying interval probability computations. Until recently, no formal
semantics for interval probabilities provided a clear and convenient way to com-
pute marginal or conditional probability distributions. In [4], we have introduced
a possible-world semantics (a generalization of a special-purpose model from [6])
for interval probability distributions which provides closed-form solutions for
such computations.

This work builds upon the semantics of [4] (briefly summarized in Section 2)
to introduce query algebra operations of selection, projection, conditionalization
[5,7], Cartesian product and join in databases that store interval probability
distributions of discrete random variables (Section 3). The query algebra intro-
duced in this paper is independent of any specific data model. Its operations
have already been implemented in at least two (to our best knowledge) different
frameworks [9, 10].

1.1 Related Work

Relational probabilistic database models were first proposed by Cavallo and
Pittarelli [3] and Barbara, Garcia-Molina and Proter [1] in late-80s/early-90s.
The former framework considered a single probability distribution as a com-
plete relation; the latter used non-1NF tuples to store probability distributions.
Dey and Sarkar [7] proposed a 1INF approach to storing probabilistic data and
first introduced the operation of conditionalization. Kornatzky and Shimony [12]
introduced the first object-oriented model for probabilistic data. All these frame-
works assumed point probabilities and in all but [1] a database record/object
represented information about a probability of a single event, rather than a
probability distribution.

Interval probabilities were introduced to databases by Lakshmanan et. al
in their ProbView [13] framework, which also used 1NF relation semantics to
store probability intervals for individual events. ProbView was a predecessor of
another object-oriented approach by Eiter et. al [8].

Probability distributions, rather than probabilities of individual events, be-
came the basis of the Semistructured Probabilistic Object model introduced by
Dekhtyar, Goldsmith and Hawkes [5]. In this framework, diverse discrete point
probability distributions are represented as database objects. To query these
objects, [5] introduced Semistructured Probabilistic Algebra. After that, Nier-
man and Jagadish [14] and Hung, Getoor and Subrahmnian [10] also represented
probabilistic information in semistructured (XML) form.

In parallel with the development of approaches to probabilistic databases,
imprecise probabilities have attracted the attention of AI researchers, as doc-
umented by the Imprecise Probability Project [11]. Walley’s seminal work [18]
made the case for interval probabilities as the means of representing uncertainty.
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2 Semantics of Interval Probabilities

This section briefly summarizes the possible worlds semantics for interval proba-
bility distributions described in [4]. We consider the probability space P = C[0,1],
the set of all subintervals of the interval [0, 1]. The rest of this section introduces
the formal semantics for the probability distributions over P and the notions of
consistency and tightness of interval distributions.

Definition 1. Let V be a set of random variables. A probabilistic interpre-
tation (p-interpretation) over V is a function Iy : dom(V) — [0,1], such
that Ziedom(V) IV(i) =1

The main idea of our semantics is that a probability distribution function
P : dom(V) — C[0,1] represents a set of possible point probability distri-
butions (a.k.a., p-interpretations). Given a probability distribution function
P : dom(V) — C[0,1], for each Z € dom(V'), we write P(Z) = [lz,uz]. Whenever
dom(V) = {Z1,...Zm}, we write P(Z;) = [l;,u;], 1 <4 < m.

Definition 2. Let V be a set of random variables and P : dom(V) — C[0,1]
a (possibly incomplete)' interval probability distribution function (ipdf) over V.
A probabilistic interpretation Iy satisfies P (Iv |= P) iff (VZ € dom(V))(lz <
Iv(Z) < ug).

An interval probability distribution function P : dom(V) — C[0,1] is consis-
tent iff there exists a p-interpretation Iy such that Iy = P.

Theorem 1. Let V be a set of random wvariables and P : dom(V) — C[0,1]
be a complete interval probability distribution function over V. Let dom(V) =
{Z1,...,Zm} and P(Z;) = [l;,u;]. P is consistent iff the following two condi-
tions hold: (1) Y70 1; <1; (2) Y0 ui > 1.

Let P' : X — C[0,1] be an incomplete interval probability distribution func-
tion over V. Let X = {Z1,...,Zm} and P'(Z;) = [l;,u;]. P' is consistent iff
Yt i <1

Consider the two interval probability distributions P and P’ shown on Fig-
ure 1.(b,c) and the four p-interpretations over the same random variables from
Figure 1.(a): We cansee that Iy = Pand I; = P'; I = Pbut I, - P'; I3 |= P’
but I3 £ P and I, does not satisfy either P or P’.

Definition 3. Let P : X — C[0,1] be an interval probability distribution func-
tion over a set of random variables V. Let X = {Z1,...,Zm} and P(Z;) = [l;,u;].
A number a € [l;,u;] is reachable by P at T; iff there exists a p-interpretation
Iy = P, such that 1(Z;) = a.

We observe that all points between any pair of reachable probability values
are themselves reachable. Intuitively, points unreachable by an interval probabil-
ity distribution do not provide any additional information about possible point

! “Incomplete”, in this context means that the function need not be defined on each
instance of its domain.
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P: P’
v |l I |I3 |14 vl wu vo'll w
a a |0.3|0.45|0.3(0.25 aal|0.3 0.45 aa|0.20.3
a b |0.2]0.2 10.1]0.25 abl|0.2 0.25 abl0.104
b a [0.3|0.25(0.4|0.25 b a [0.25 0.3 ba(0.20.4
b b |0.2]0.1 0.2/0.25 bb|0.1 0.25 b b (0.10.2
(a) (b) (c)

Fig. 1. Interval Probability Distributions

probabilities. Of the possible interval probability distributions, of primary inter-
est are those with no unreachable points. These distributions are called tight.
We can show that for each interval probability distribution, one can find an
equivalent tight probability distribution.

Definition 4. Let P : X — C[0,1] be an interval probability distribution over
a set V of random variables. P is called tight iff (Vi € X)(Va € [lz,uz])
(a is reachable by P at Z).

Let P' be an interval probability distribution function. An interval probability
distribution function P is its tight equivalent iff (i) P is tight and (i) For
each p-interpretation I, I = P' iff I = P.

Each complete interval probability distribution P has a unique tight equiv-
alent. It can be efficiently computed using the following tightening operator T.

Theorem 2. Let P : dom(V) — C[0,1] be a complete interval probability distri-
bution function over a set of random variables V. Let dom(V) = {Z1,...,Zm}
and P(Z;) = [l;,u;]. Then (V1 <i<m)

T(P)(E‘z): max l,‘,].— Zuj—ui ,min | u;, 1 — Zl]‘—li
j=1 j=1
3 Query Operations
Consider a finite collection Py, ..., Py of interval probability distributions over

the set of random variables V. The semantics of the operations we discuss below
is independent of the representation of interval probability distributions in the
database. The operations described below are applicable to any representation
that has the following properties: (i) it is possible to retrieve/construct an in-
dividual interval probability distribution from the representation and (7) there
exists an efficient procedure for converting an interval probability distribution
of discrete random variables into the representation. In what follows, we assume
that the collection D = {Py, ..., Py} is the database.
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3.1 Selection

In the relational model, selection is applied to flat tuples and its result is a
collection of flat tuples. When probability distributions of discrete random vari-
ables are the database objects they can be viewed as tables in which each row
describes the probability of a particular instance. Thus, selection operations on
probability distributions can do two things: (i) select a subset of the input set
of probability distributions and (ii) select a subset of rows in each input prob-
ability distribution. In particular, we consider three separate types of selection
conditions:

Selection on participating random variables. Given a list F = {v1,...,vs} of
random variables, o7 (D) returns the set of probability distributions that contain
all variables in F. The probability distributions are returned unchanged.

Selection on random variable values. Given a condition v = z, where v € V
is a random variable name and z € dom(v), 6,=;(D) will return the set of
probability distributions which contain v as a participating random variable. In
each distribution returned, only the rows satisfying the v = z condition will
remain.

Selection on probability. Given a condition ¢ = [ op = or ¢ = u op = where
z is a real number, op € {=,#,<,>,<,>} and | and u represent lower and
upper bound of the probability interval, o.(D) will return the set of probability
distributions which contain at least one row satisfying the condition ¢. In each
probability distribution returned, only the rows satisfying ¢ will remain.

These operations can be illustrated on the following example. Consider the
database D = {P, P'} consisting of the two probability distributions shown in
Figure 1. Figure 2 shows the result of the following queries: (a) 0,3 (D) (find all
distributions involving random variable v; returns both P and P’ unchanged);
(b)oy—o (D) (find all probabilities involving the value a of random variable v’
in the database; returns two rows from each distribution); (¢) oy=0.4(D) (find
all probability table rows with upper bound equal to 0.4; returns two rows from
ph.

Despite having different effects on the database, selection operations of dif-
ferent types commute.

Theorem 3. Let ¢; and c2 be two selection conditions and D be a database of
interval probability distributions. Then o.,(0c,(D)) = 0¢,(0c, (D)).

3.2 Projection

As described earlier, interval probability distributions have one column per par-
ticipating random variable and two additional columns for lower and upper prob-
abilities. Here, we only consider the semantics of the projection operation that
removes random variables from distributions Given a joint probability distribu-
tion of two or more random variables, the operation of obtaining a probability
distribution for a proper subset of them is called in probability theory comput-
ing the marginal probability distribution or marginalization. We use the terms
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O'{V} (D)

vio'lll  w |[vo'|l w | ov_.(D): Ou=0.4(D):
a a 0.3 0.45|a al0.20.3] [va']l u vo'll w vo'll w
a b|0.2 0.25/|a b |0.10.4| |aa|0.3 0.45||a a|0.20.3|] |a b |0.1 0.4
b a|0.250.3 |(ba|0.20.4] |ba|0.250.3 [{([ba|0.20.4] |ba (0.2 0.4

bb 0.1 0.25/[bb[0.10.2
(b) ()

(a)

Fig. 2. Selection on interval probability distributions.

projection and marginalization interchangeably. Marginalization is a straight-
forward operation on point probability distribution functions [5]: given a p-
interpretation I over set V' of random variables and a random variable v € V,
the marginal probability distribution I' over set V — {v} can be computed as
follows: my_ o} (I)(%) = I'(§) = Xzcdom(w) I (#;z)- But when probabilities are
expressed as intervals, what is a reasonable definition of the marginal probability
distribution?

Recall that an interval probability distribution P is interpreted as a set of
p-interpretations I satisfying it. So, when trying to represent the result of projec-
tion, we have to describe the set {my _(,}(I)|I = P}. This intuition is captured
in the following definition.

Definition 5. Let P be an ipdf over the set V of random variables and let
U C V. The result of projection (marginalization) of P onto U, denoted iy (P),
is defined as

WU(P)('%) = [minI\:P(Egedom(V—U) I('i.7g))> maXI\:P(Egedom(V—U) I('i.a g))]

Definition 5 specifies precisely the result of the projection operation, but
does not provide an algorithm for computing it. The following theorem presents
a straightforward way to compute the projection based on a search over the
space of all p-interpretations that satisfy P.

Theorem 4. Let P be an ipdf over the set V' of random variables and letU C V.
Let P" : U — C[0,1] be

P'z)=[min( Y  lgg,1), min( > u@eg, ).

g€dom(V-U) gE€dom(V-U)
Then my (P) = T(P").

The process of computing the projection 7, (P) is shown below. First the ran-

dom variable v' is removed from the probability distribution function. Then a

new probability distribution function P" is formed for the variable v, and the

intervals P"(a) and P"(b) are computed as the sums, i.e. P"(a) = [l(4,0) +

l(a,b), U(a,a) T U(a,b)] 2 and P"(b) = [l(b,a) + l(b,b)au(b,a) + U(b,b)]- Observe that P"

2 l(z,y) denotes the lower bound for v = z and v = U(z,y) denotes the upper bound
forv=2z and v' = y.
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is not tight: the upper bound of both probability intervals for P"(a) and P"(b)
are not reachable. Thus, the final probability distribution function m,y(P) is
computed by applying the tightening operation on P".

P:

vo'[l w vl  w P m(P) = T(P")
aa (0.3 045 =>a0.3 0.45 =>vl n =>vl u
ab|0.2 0.25 al0.2 0.25 al0.b 0.7 al0.b 0.65

b a |0.25 0.3 b(0.25 0.3 b[0.35 0.55 b|0.35 0.5

bb (0.1 0.25 b|0.1 0.25

Fig. 3. Projection for interval probability distributions.

3.3 Conditionalization

Given a joint probability distribution of random variables, selection operation
can return certain rows of its probability table and projection operation will
compute marginal probability distributions. There is, however, another impor-
tant operation on probability distributions, namely, computation of conditional
probability distribution, for which no existing classical relational algebra opera-
tion seems an appropriate match. Recognizing this, Dey and Sarkar [7] proposed
a new query algebra operation, conditionalization, which they denoted as p.
When point probability distributions are considered, conditionalization is a
straightforward operation: given a p-interpretation I over the set of random vari-
ables V, the conditional probability p,=z(I) of I under the assumption v = z is

H(5.2) ~ When defining conditionaliza-
2 edom(v—{vp) L(¥ @) g %

tion on interval probability distribution functions, we follow the same intuition
as with the projection operations.

computed as py—,(I)(7) =

Definition 6. Let V = (v1,...,v,) be a sequence of random variables, V* =
{vk,--svn}, k> 1 and V! =V —V*. Let C be a conditionalization constraint
v =X, where v = (Vg,...,v,). The conditionalization is defined as

2\ — | i Ix(9) Ix(9)
MC(P)(y) - [mln”:P (Ey’Edom(v’) I}?(gl)) ) MAXrEp (Ey’edam(v’) If(g’))] '
We provide a closed-form formula in [4,9] for computing it. Notice that there
are some problems inherent in this definition, as discussed in [4, 9], but that we
have implemented the operation in the database with a user-beware warning.

3.4 Cartesian Product and Join

In order to consider operations that combine different interval probability dis-
tributions into one, we must first consider an issue of computing the probability
of conjunctions.
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Probabilistic Conjunctions. Consider two events e; and e; with known prob-
abilities p(e1) and p(e2). When no additional information about the relationship
between e; and ey is available, the probability of e; A ez lies in the interval
[max(0,p(e1) + p(ea) — 1), min(p(e1), p(e2))]- Specific assumptions about the re-
lationship between the events may help us determine a more exact probability.

More formally, a probabilistic conjunction operation is a function ®, : [0, 1] x
[0,1] — C[0,1] that is commutative, associative and monotonic (a®qb C aQ,ciff
b < ¢) and satisfies the following conditions: (i) a®,0 = 0; (ii) a®,1 =a; and
(iii) a ®a b < min(a, b). Probabilistic conjunctions were introduced in ProbView
[13] and used in other probabilistic database frameworks [6,8]. Some examples
of probabilistic conjunctions are shown in the table below:

«a Qo
independence aQinab=1[a-b,a-b
ignorance a4 ®;g b= [max(0,a +b—1), min(a,b)]

positive correlation |a ®pc b = [min(a,b), min(a, b)]
negative correlation|a ®,. b = [max(0,a + b — 1), max(0,a + b — 1)]

Cartesian Product The Cartesian product of two interval probability distribu-
tions P and P’ can be viewed as the joint probability distribution of the random
variables from both P and P’. The resulting probability distribution will have
one row (Z, ) for each pair of rows Z from P and g from P’. Given a relationship
a together with ®,, we can define the corresponding Cartesian product of two
ipdfs. Notice that for the Cartesian product to be defined for two distributions P
and P’ their sets of participating random variables V and V' must be disjoint.

Definition 7. Let P : dom(V) — C[0,1] and P’ : dom(V') — C[0,1] be two
interval probability distributions such that VNV' =0. Let T = {I" : dom(V') x
dom(V') = [0,1]|(VZ € dom(V))(Vg € dom(V"))3I = P)3I' E P')I'"(z,7) €
I(Z) ® I'(g). The Cartesian product P X, P' under assumption « is defined as
(P %o P')(z,9) = [mingrez(I"(Z,9)), maxprer(I”(Z,9))]-

P Xind P”:

v v vl U
P: aa a |0.15 0.27
v o'l Uu P aa b [0.12 0.225
aa (0.3 045"l wu aba |01 015
abl|0.2 0.25(|a (0.5 0.6 ab b [0.08 0.125
ba|0.250.3 ||b [0.40.5 ba a [0.1250.18
bb|0.1 0.25 ba b [0.1 0.15

bb a [0.05 0.15

bb b [0.04 0.125

Fig. 4. Cartesian Product for interval probability distributions.

The result of Cartesian product can be computed directly.
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Theorem 5. Let P : dom(V) — C[0,1] and P' : dom(V') — C[0,1] be two
interval probability distributions such that V. N'V' = 0. Then
(P xa P')(2,7) = [lz ®a Ly, uz Ga ug].

Figure 4 depicts the process of computing the Cartesian product P x P’ under
the assumption of independence.

Join. When two ipdfs P and P’ contain common variables, the computation
of the joint distribution must ensure that the influence of common variables is
accounted for only once.

Consider two interval probability distributions P and P’ over sets of random
variables V' and V' respectively, and assume that VNV' =V*and § C V* C
VUV'. In what follows, let Z € dom(V—V*),§ € dom(V'—V*) and z € dom(V*).

Our goal is to define interval probability distribution P"” : dom(V — V*) x
dom(V*) x dom(V' — V*) — C[0,1], given P and P’'. Consider the instance
(Z,z,7) of dom(V—V*)xdom(V*)xdom(V'—V*). We can compute P"((Z, z, 7))
from P((z, %)) and P'((Z,7)), but with some extra effort. Direct computation of
P((z,2)) xa P'((Z,7)) is not meaningful because z affects probabilities in both
P and P'. In order to be able to apply cartesian product computation, zZ must
be factored out of one of the two distributions.

To do this, we verbalize the problem of computing P"((Z, z,7)) as “compute
the joint probability of (Z,z) from P and g from P', given that V* takes the
values of z”. This, in turn, suggests the use of conditionalization to factor z
out of P'((Z,7)). We note that in the same manner we could have attempted
to factor Z out of P. This leads to two families of join operations (left join and
right join).

Definition 8. Let P : dom(V) — C[0,1] and P' : dom(V') — C[0,1], and V N
VI =V*, where ) CV* C VUV'. Let a be a(n assumed) relationship between
variables in V and variables in V' — V* and 8 be a(n assumed) relationship
between variables in V — V* and V'. The operations of left and right join are
defined as follows.

(P xa P) (7,7,7)) = P((3,2)) X pv+—: (P (5,7))) -
(P Ap Pl) (("1_7727@)) = Hv=*=z (P( z,Z )) XB P((Z7g

4 Conclusions

Given the increasing interest in the use of interval probability distributions, there
is a clear and present need for database methods to handle the managmenet of
large collections of such data. This paper has presented the results of an initial
investigation into the semantics of traditional database operations on interval
probability distributions. The operations presented here are independent of any
representation of the distributions in the database.

Initial implementations of these operations are being implemented by the
authors of this paper as an extension of the SPO model described in [5]. This is
presented in [9]. Hung, Subrahmanian and Getoor use the semantics of some of
the operations presented here in their work on probabilistic XML [10].
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