
LAO*, RLAO*, or BLAO*?

Peng Dai and Judy Goldsmith
Computer Science Dept.
University of Kentucky
773 Anderson Tower

Lexington, KY 40506-0046

Abstract

In 2003, Bhuma and Goldsmith introduced a bidirectional
variant of Hansen and Zilberstein’s LAO* algorithm called
BLAO* for solving goal-based MDPs. BLAO* consistently
ran faster than LAO* on the race-track examples used in
Hansen and Zilberstein’s paper. In this paper, we analyze the
performance of BLAO* in comparison with both LAO* and
our newly proposed algorithm, RLAO*, thereverseLAO*
search, to understand what makes the bidirectional search
work well.

Introduction
This paper provides a careful analysis of the BLAO* algo-
rithm for Markov decision processes. BLAO* is a bidirec-
tional variant of Hansen and Zilberstein’s LAO* algorithm
(Hansen & Zilberstein 2001), which solves Markov deci-
sion problems. In this paper, three similar algorithms are
compared: LAO*, RLAO*, a backwards search version of
LAO*, and BLAO*. The three algorithms solve the prob-
lem of goal based Markov decision processes (MDP). Given
a MDP, a start state and a goal state, the goal based search
problem is to find a path from the start state to the goal state
that maximizes some type of gains along the path. Com-
pared with classic algorithms such as value iteration or pol-
icy iteration (Howard 1960), graph-search based algorithms
run much faster because instead of updating the value func-
tions of the entire state space, they only update a subset of
them. The use of heuristic functions helps them converge
faster.

One may conjecture that BLAO* runs faster because the
reverse search is itself faster than forward search. To inves-
tigate this, we code the backwards search as RLAO* and run
it separately. We discover that the performance of RLAO*
is particularly sensitive to the number of possible successor
states in the MDPs. The larger the “outdegree” of states,
the larger the “indegree” as well; with large indegree, back-
wards search bogs down even more than forward search.

We summarize the contributions of this paper: We dis-
prove the above conjecture and find the real reason is that
BLAO* can efficiently constrain the size of the search space
during iterations of value function update. We find the per-
formance of BLAO* is not only 10% better than LAO* on
Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

our benchmarks, as Bhuma and Goldsmith claimed (Bhuma
& Goldsmith 2003), but also BLAO* is able to run 3 times
faster than LAO* on some of the non-extreme cases. We also
try a different implementation of BLAO* by replacing the
original backwards search with our newly proposed RLAO*
algorithm, and find it does not provide obvious speedup
against the original BLAO*.

MDPs and previous algorithms
A Markov Decision Process (MDP) is a four-tuple
(S,A, T,R). The set of states,S, tells how a system can
be at a given time. We assume that systems evolve discretely
rather than continuously, so we can partition a system evolu-
tion into a sequence ofstages. Any event makes the system
change from one staget to the next staget+1. For each stage
t of the process, each states has a set of applicable actions
At

s. When an action is performed, the system changes from
the current state to the next state and proceeds to staget+1.
Ta: S ×S → [0, 1] is the set of transition functions for each
actiona, which specify the probability of changing from one
state to another after applyinga. R : S −→ R is the instant
reward (sometimesR can be replaced byC, which speci-
fies the instant cost). A value functionV , V : S −→ R

associates a value of total expected reward with being in a
states. The horizon of a MDP is defined to be the num-
ber of stages the system will be evolved. In finite-horizon
problems, we try to maximize the total expected reward as-
sociated with a course of actions ofH stages. The value
is defined asV (h) =

∑H

i=0 R(si). For infinite-horizon
problems, the reward is accumulated over an infinitely long
path. In this case, to avoid infinite value, a discount factor
γ ∈ [0, 1] is generally introduced. The value function for
an expected total discounted reward problem is defined as:
V (h) =

∑
∞

i=0 γiR(si).
Given a MDP, we look at the problem of finding thepolicy

that maximizes total expected reward for an infinite horizon.
A policy π : S → A tells which action to pick at any states.
Bellman (Bellman 1957) showed that the expected value of
this policy can be computed using the set ofvalue functions
V π. We initializeV π

0 (s) to beR(s), then:

V π

t+1 = R(s)+γ
∑

s′∈S

{Tπ(s)(s
′, s)V π

t (s′)}, γ ∈ [0, 1]. (1)

Theoptimalpolicy is the the mapping from the state space

to the set of actions, which defines the maximum expected
values. Based on Equation 1, dynamic programming algo-
rithms can be deployed to calculate the value functions.

Two basic dynamic programming based algorithms are
Value Iterationand Policy Iteration (Howard 1960). For
value iteration, the value functions of each state are calcu-
lated, and a policy is extracted. In each iteration, the value
functions are updated according to Equation 1. Policy iter-
ation is another dynamic programming algorithm for solv-
ing infinite horizon problems whose expected run time is
smaller than value iteration for solving the same problems.
The main drawback of both algorithms is that all the states
in the state space are involved in each iteration of dynamic
programming. There are several reasons that this is not nec-
essary. First, some states are never reachable from the start
state, so they are irrelevant in deciding the value functionof
the start state. Second, the value functions of some states
converge faster than others, so in some iterations, we ac-
tually only need to update values of a subset of the states.
Third, reaching a convergent status for every state seems to
be a hard task.

Barto et al. (Barto, Bradke, & Singh 1995) proposed an
algorithm named real-time dynamic programming to solve
MDPs. Its main contribution is that it minimizes the search
space of dynamic programming. RTDP explores possible
“trials” to investigate choices of actions for each state. For
each trial, the current state is initialized to the start state,
and propagates towards the goal state. In each step, it up-
dates the value function of the current state using Equation1
and greedily picks an action based on the current policy, and
changes the current state according to the transition function.
Each trial stops until the goal state is reached or a certain
number of steps are accomplished. So in this scenario, the
states that are unreachable from the start states are ignored
in the trial.

A*-based Algorithms
Another approach to speeding up dynamic programming is
to decrease the number of iterations by using heuristic func-
tions.

A* (Hart, Nilsson, & Raphael 1968) is a basic algorithm
used in graph search that combines the two evaluation func-
tions g and h, whereg(n) gives the reward accumulated
from the start state to the staten, and heuristic functionh(n)
tells the estimated maximum reward of the paths from the
staten to the goal (or the heuristic function). A* is opti-
mal given that the heuristic function is admissible (Dechter
& Pearl 1985).

AO* (Nilson 1980) is an extension to the A* algorithm
that applies to acyclicAND/OR graphsor acyclic MDPs. It
finds a solution/policy that has a conditional structure which
takes the form of a tree. Like other heuristic search algo-
rithms, AO* can find a solution graph1 without considering
the entire state space. The algorithm iteratively increases

1The solution graph is the subgraph that contain all the states
that are on the optimal path (the most probable path originating
from the start state, applying the optimal policy, and ending at the
goal state) and their descendents.

the explicit graph,G′. A non-goal state can be expanded by
adding toG′ one of its actions and the associated successor
states. A partial solution graph is defined as the best solution
graph out ofG′. AO* keeps expanding the best partial solu-
tion graph. In a specific expansion step, the algorithm picks
an arbitrary non-goal state and adds all its successors toG′.
A setZ is built which includes all the newly expanded states
and their ancestors. Then the algorithm repeatedly deletes
from Z a node with no descendents inZ. It updates the
node’s value according to

V (s) = mina∈A(s)[R(s) + γ
∑

s′∈S

T (s′|s, a)V (s′)], (2)

until Z becomes empty. The algorithm stops when a solution
graph is constructed.

LAO* (Hansen & Zilberstein 2001) is an extension to the
AO* algorithm that can handle the situation that solution
graphs contain loops. Thus, it can handle MDPs. Instead
of updating nodes inZ in a backward topological order, it
updates them all together by means of value iteration, be-
cause topological orders among them may not exist. Cer-
tain convergence tests are deployed to constrain the number
of iterations in dynamic programming steps. The heuristic
function used ismean first passage(Kirkland, Neumann, &
Xu 2001), the expected number of steps needed to reach the
goal state with the current knowledge. Mean first passage is
admissible.

BLAO* (Bhuma & Goldsmith 2003; Bhuma 2004) ex-
tends the LAO* algorithm by searching from the start state
and the goal state in parallel. In detail, BLAO* has two
searches: forward search and backward search. Initially, the
value functions of the state space are assigned by heuristic
functions. Both searches start concurrently in each iteration.
The forward search is almost the same as that of LAO*. It
keeps adding unexpanded states into the explicit graph by
means of expansion. In an expansion, an unexpanded “tip”
state is chosen, one greedy action and all its associated suc-
cessor states are included into the explicit graph. After one
such expansion, the value functions of the states inZ are
computed by value iteration.

The backward search is almost symmetric to the forward
search, with the exception of how a state is expanded back-
wards. A states which has not been expanded backwards is
expanded this way: an actiona together with a previous state
s′ that can reachs that yields the highest expected rewards
is chosen as the previous action and previous state ofs to
be expanded. Each backward expansion only adds one more
node to the explicit graph. The update of value functions
after each expansion is the same as the forward search.

Each forward (backward) search terminates when the
search loops back to an expanded state, or reaches the goal
(start) state or a nonterminal leaf state. After each iteration,
a convergence test is done. The convergence test checks
whether this iteration expands any states, or the highest dif-
ference between value functions of the current iteration and
last iteration of each state exceeds some predefined thresh-
old value. If not, the optimal policy is extracted and the
algorithm ends.

RLAO*

Our intuition of the algorithm is: if a state is far from the
goal state, its successor states are probably far from the goal
as well. Since we use mean first passage as the heuristic
function and Equation 2 to update value functions, if we ex-
pand from the start state, the value functions in the first few
iterations are far from accurate. This is because as in the
first few iterations, if we have not yet reached any terminal
states, when we update the value functions of the states in
the explicit graph, the value functions we have used in the
right hand side of Equation 2 are not true value functions,
but only heuristic values. We want to design an algorithm in
which at each step, we propagate much more accurate value
functions towards the start state. So we think about doing
the propagation in the backward manner.

We call our algorithm RLAO* because it can be seen as a
reverse version of LAO* algorithm. Imagine in the graphi-
cal representation of LAO*, each state node points to several
action nodes, which are the actions that are applicable at that
state, and each action node points to some state nodes, which
are the possible successor states of applying such action.
For our RLAO* algorithm, we maintain the same graphi-
cal structure. In addition, we also keep areverse graph, in
which it contains the same set of vertices and edges as the
original graph, but the directions of all the directed edges
in the original graph are reversed. This means all the states
points to the actions that lead to them, and all the actions
point to the states in which they can be applied.

The algorithm is given in Figure 1: The main idea is to
propagate the value functions from the goal to the start state
by means of expansion. In the main function, we iteratively
expand the graph. In each iteration, we pick the goal state
and expand it. In the expand function, we first mark it as
expanded and update the state’s value function according to
Equation 2 and check if all its outgoing edges in the reverse
graph point to states that have been expanded in this itera-
tion. If not, we pick one such unexpanded state, and recur-
sively call the expand function on that state. RLAO* algo-
rithm can also be seen as a depth first search on the reverse
graph. In this case, if we look on each expansion of LAO*
as moving forward one step, we can vaguely think of one ex-
pansion of RLAO* as moving backwards one step, although
some MDPs are densely connected, so we cannot clearly de-
fine what is one step backward.

The convergence judgment of RLAO* is also different
from the LAO* algorithm. For our algorithm, we do not
require all the states in the solution graph to be expanded.
In RLAO*, we cannot guarantee that all the states in the for-
ward graph have been expanded, since we search backwards.
We can only guarantee that all the states in thereverse so-
lution graph, the solution graph of the reverse graph, are
expanded. In reality, in most MDPs, the nature of the cyclic
and densely connected states of the graph does not require
states in the forward graph to be expanded before the value
function of the start state converges. In our experiments,
RLAO* gives the same policies as LAO* and BLAO* 100%
of the time.

Reverse LAO*

RLAO*()
1. for every states
2. V (s) = mean first passage ofs
3. iteration = 0;
4. iteration++;
5. expand(Goal);
6. if convergencetest(δ1, δ2)
7. return;
8. else goto 2;
expand(state s)
1. s.expanded = true
2. V (s) = R(s) + γ

∑
s′∈S

{Tπ(s)(s
′, s)V π(s′)};

3. if s has any unexpanded previous state s”
4. if s” is not the start state
5. expand(s”);
6. return;
convergencetest(δ1, δ2)
1. if (changes of value function of every node is less
thanδ1) and (change ofV (start) < δ2)
2. return true;
3. else return false;

Figure 1: Pseudocode of RLAO*

Experiments
We have tested algorithm LAO*, RLAO*, BLAO* on two
types of MDPs, racetrack MDPs and randomly generated
MDPs. We have all three algorithms coded in C, and run
them on the same processor Intel Pentium 4 1.50GHz with
1G main memory and a cache size of 256kB. The operat-
ing system is Linux version 2.6.15 and the compiler is gcc
version 3.3.4.

Race track problem
To test the performance of RTDP, Barto et al. (Barto 1995)
introduced a test problem namedrace track. The race track
problem is a simple illustration of a car race. A car always
starts at the start state and moves towards the goal. Each
position in the track is represented as a square cell on the
graph. At each instance of time, the car can choose to either
stand still or move one cell along eight possible directions.
When moving, the car has a possibility of 0.9 to succeed
and 0.1 to fail, which means ending up on some other state.
There are wall states in the graph. When the car hits a wall,
it starts over. We compared LAO*, RLAO* and BLAO* on
two instances of the race track problem. The results can be
seen in Table 1.

Although LAO* runs for the fewest iterations, its running
time is worse than BLAO*. The explanation is that BLAO*
updates fewer states in each iteration. The running time per
iteration of RLAO* is the worst of the three. We expected
this, because for the reverse graph we defined in Section , the
outdegree of a state is more than that of the original graph,
so that in one iteration, there are exponentially more nodes

Table 1: Comparisons of LAO*, RLAO* and BLAO* on
race track MDPs

Alg Running time # iter Optimal?

Small problem (1849 states)
LAO* 0.01 27 yes
RLAO* 0.03 52 yes
BLAO* 0.01 46 yes

Big problem (21371 states)
LAO* 1.83 137 yes
RLAO* 8.02 246 yes
BLAO* 1.49 195 yes

to update. This is the main deficiency of RLAO* algorithm.
We do not, however, emphasize the race track problem, be-
cause the problem is almost deterministic.

Random MDPs

We compare performances of LAO*, RLAO* and BLAO*
on another class of MDPs. (See (Hansen & Zilberstein
2001) for a comparison with value and policy iteration.) We
constructrandom MDPsby varying the number of actions
for each state, the number of states in the MDP, and the
maximum number of successor states in each action while
keeping other arguments fixed. Given the maximum num-
ber of successors, we let the successor states of each state be
uniformly randomly distributed over the entire state space,
and define the probabilities of each transition by a set of
normalized real values in[0, 1].

We try each algorithm on 50 MDPs with each config-
uration. We find that RLAO* runs about 5% faster than
LAO* and BLAO* when the state space is small (under 5000
states) and sparsely connected (each state has only two ac-
tions), which is consistent with our original intuition. For
densely connected graphs with large state space, Figure 2
shows the run time when the state space changes. Figure 3
and Figure 4 show the run time and number of iterations as
the number of successor states varies. Table 2 gives part of
the run time when the number of actions per state varies.
Figure 5 plots the run time of the three algorithms when
states have 10 to 50 actions available. Note that all the al-
gorithms gave the same policies on all the test cases that are
listed below.

From Figure 2, we know that, when the number of actions
of every state in MDP is 4 (we consider this to be small),
the performances of the three algorithms do not show huge
differences. However, BLAO* works better than the other
two (roughly 10% more efficient when the number of states
is around 30k). There are almost no differences between
LAO* and RLAO*, since when the branching factor of the
states is small, the structures of the original graph and re-
verse graph are quite similar. Our results are consistent with
those of (Bhuma & Goldsmith 2003).

From Figure 3 and Figure 4, we discovered that, when
the action number and the state space are fixed, the change

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30 35 40

T
im

e
(s

ec
on

ds
)

states (x103)

LAO*
RLAO*
BLAO*

Figure 2: Run time on 4-action 5-successor state MDPs

 2

 4

 8

 16

 32

 64

 128

 256

 0 5 10 15 20 25 30

T
im

e
(s

ec
on

ds
)

Max successor states

LAO*
RLAO*
BLAO*

Figure 3: Run time on 10,000-state 4-action MDPs

in the number of possible successor states does not make
any algorithm better than the others, since we notice that the
three lines in both figures are almost overlapped. This is be-
cause, when the number of possible successor states is large,
the main overhead of the algorithms is backing up states, or
the process of apply Equation 2. Consider if the average
number of successor states each state has is 10 and the state
space is 10,000, when we recursively expand the graph, in
the worst case, four step expansion will involve the update
of the value functions of the entire graph. Often our optimal
path contains tens of states; in this case, in each iterationthe
value functions of almost the entire state space are updated,
so that RLAO* becomes a symmetric version of LAO*, and
BLAO* reduces to LAO*.

However, when the number of actions changes, the re-
sults change drastically. As seen in Table 2 and Figure 5,
when the number of actions is under 6, LAO*, RLAO* and
BLAO* run in almost the same time, which confirms our
previous judgments. However, when the action number is
more than 10, we observe that the convergence of BLAO*
becomes more than twice as fast as LAO*.2 RLAO* is the

2Note that this result is not only limited to the case where the
state space is 10,000. We also experiment on state spaces of up to
100,000 states, and the run times show the same scale. Because of

 64

 128

 256

 512

 1024

 2048

 0 5 10 15 20 25 30

Ite
ra

tio
ns

Max successor states

LAO*
RLAO*
BLAO*

Figure 4: # of iterations on 10,000-state 4-action MDPs

Table 2: Run time on 10,000-state 5-successor state MDPs

actions LAO* RLAO* BLAO*

2 33.670000 32.830000 32.170000
4 13.570000 13.710000 13.070000
6 4.450000 4.600000 4.190000
8 1.600000 1.880000 1.310000
10 1.880000 2.210000 1.190000
20 1.420000 1.920000 0.760000
30 0.750000 1.770000 0.320000
40 0.660000 1.460000 0.240000
50 0.470000 1.430000 0.170000

slowest, because if the action state number ratio is suffi-
ciently large, the expanded graph includes more states. In
LAO*, when the expansion reaches the goal state, almost
the entire graph is involved in the forward graph, as we see
in Table 3. In this case, doing a backward expansion at the
same time keeps the size of the solution graph under con-
trol, but does not slow down convergence rate. We can see
this from the comparisons of the number of states updated
in each iteration and the number of iterations executed by
LAO* and BLAO*. RLAO* is the slowest because, when
the action choice becomes broader, the reverse graph be-
comes much denser than the original graph. This can be
seen from Table 3: when the action number increases, the
maximum number of states updated in each iteration does
not drop as in LAO* and BLAO*, but rather remains fixed
and occupies almost the entire graph. Moreover, the conver-
gence rate of BLAO* is no worse than LAO* or RLAO*,
which is shown in Table 4.

This reminds us how BLAO* is implemented. In the
backward search of BLAO*, the expansion is always under-
taken along the best previous action. We wonder whether we
can further constrain the number of expanded states in each
iteration by replacing its backwards search with RLAO*.

space constraints, we only display the case when the state space is
10,000.

 0

 0.5

 1

 1.5

 2

 2.5

 10 15 20 25 30 35 40 45 50

T
im

e
(s

ec
on

ds
)

actions

LAO*
RLAO*
BLAO*

Figure 5: Run time on 10,000-state 5-successor state MDPs
with

Table 3: Maximum # states updated each iteration on
10,000-state 5-successor state MDPs

actions LAO* RLAO* BLAO*

10 9064 9986 7455
15 8700 9967 7326
20 8247 9987 6135
25 8875 9994 6135
30 9103 9980 4179
35 8788 9995 4138
40 6421 9996 5879
45 5948 9972 3057

We consider a variant of the original BLAO* algorithm, in
which the backward expansion is not only along the best pre-
vious action, but every directed edge in the reverse graph.
This means all the states that can reach the current state are
expanded further. We find that the performances of these
two implementations are almost the same, as shown in Ta-
ble 5. We conclude that the two implementations can do
equally well in constraining the number of expanded states
in each iteration. So changing the reverse search does not
yield a better algorithm.

Conclusion and future work
We have studied the problem of goal-based graph search
and planning with Hansen and Zilberstein’s LAO*, Bhuma
and Goldsmith’s BLAO*, and our new RLAO*. Our exper-
iments show that BLAO* works the best of the three algo-
rithms in racetrack problems. In randomly generated MDPs,
RLAO* works the best only in sparsely connected graphs
with small state spaces, and it is noticeably worse than the
other two when the action number is quite large, because
of the large branching factor of the reverse graph. When
the number of actions per state is relatively small, BLAO*
displays no advantages over the other two algorithms. Nev-
ertheless, when the state space is fixed, as the number of

Table 4: # Iterations on 10,000-state 5-successor state MDPs

actions LAO* RLAO* BLAO*

10 25 35 29
15 25 29 29
20 24 23 24
25 19 23 19
30 6 12 10
35 6 8 7
40 7 9 11
45 10 8 18

Table 5: Comparison of two BLAO* implementations

original new
states time #iter time #iter
2000 0.47 114 0.46 117
4000 1.94 192 1.93 194
6000 2.47 152 2.44 163
8000 7.72 336 7.78 327
10000 6.05 215 6.04 211
20000 12.74 196 12.08 196
30000 21.08 252 19.74 220

actions increases, BLAO* beats the other two.
This phenomenon is more obvious when the number of

actions is large, since the backward expansion of BLAO*
manages to keep the number of states expanded in each it-
eration under control. Based on this result, we have im-
plemented another version of BLAO*, hoping to further
control the expanded states by strengthening the backward
search. However, the comparison between the two versions
of BLAO* proves that the new algorithm doesn’t trivialize
the problem, which from a different point of view, proves
the effectiveness of BLAO*.

From our experiments, we conjecture that RLAO* has
only a limited usage in MDPs that have small action per
state rates, while BLAO* is useful when problem spaces
have large branching factors. However, our conjecture is
only based on the tests of racetrack problem and artificial
MDPs. In the future, we want to test our RLAO* algorithm
more systematically on some more real MDP benchmarks,
and we want to compare our algorithm with other relevant
algorithms.

Acknowledgments We thank Lengning Liu and an anony-
mous referee for their comments on earlier drafts of this pa-
per. This work is partially supported by NSF grant ITR-
0325063.

References
Barto, A.; Bradke, S.; and Singh, S. 1995. Learning to
act using real-time dynamic programming.Artificial Intel-

ligence72:81–138.
Bellman, R. 1957.Dynamic Programming. Princeton, NJ:
Princeton University Press.
Bhuma, V. D. K., and Goldsmith, J. 2003. Bidirectional
LAO* algorithm. In IICAI, 980–992.
Bhuma, K. 2004. Bidirectional LAO* algorithm (a faster
approach to solve goal-directed MDPs). Master’s thesis,
University of Kentucky, Lexington.
Dechter, R., and Pearl, J. 1985. Generalized best-
first search strategies and the optimality of A*.J. ACM
32(3):505–536.
Hansen, E., and Zilberstein, S. 2001. LAO*: A heuristic
search algorithm that finds solutions with loops.Artificial
Intelligence129:35–62.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A for-
mal basis for the heuristic determination of minimum cost
paths. IEEE Transactions on Systems Science and Cyber-
neticsSSC-4(2):100–107.
Howard, R. 1960. Dynamic Programming and Markov
Processes. Cambridge, Massachusetts: MIT Press.
Kirkland, S. J.; Neumann, M.; and Xu, J. 2001. A di-
vide and conquer approach to computing the mean first
passage matrix for Markov chains via Perron complement
reductions. Journal of Numur linear algebra application
8(5):287–295.
Nilson, N. J. 1980. Principles of Artificial Intelligence.
Palo Alto, Ca.: Tioga Publishing Company.

