
The Academic Advising Planning Domain∗

Joshua T. Guerin, Josiah P. Hanna, Libby Ferland, Nicholas Mattei, and Judy Goldsmith
Department of Computer Science

University of Kentucky
Lexington, KY 40506-0633

jtguer2@uky.edu, jpha226@g.uky.edu, libby.knouse@uky.edu, nick.mattei@uky.edu, goldsmit@cs.uky.edu

Abstract

The International Probabilistic Planning Competition is a
leading showcase for fast stochastic planners. The current do-
mains used in the competition have raised challenges that the
leading deterministic-planner-based MDP solvers have been
able to meet. We argue that in order to continue to raise chal-
lenges and match real world applications, domains must be
generated that exhibit true stochasticity, multi-valued domain
variables, and concurrent actions. In this paper we propose
the academic advising domain as a planning competition do-
main that exhibits these characteristics. We believe that this
domain can build upon the success of previous contests in
pushing the limits of MDP planning research.

Introduction
Generating new problem sets to challenge state-of-the-art
probabilistic planners is often difficult. Planners have
evolved in leaps and bounds in a very short time, opening the
door to whole new classes of problems that can realistically
be solved by computer programs. As a driver in planning
research, the International Probabilistic Planning Competi-
tion (IPPC) has presented a number of domains meant to
continue pushing the field in new and exciting directions.

As the IPPC has continued, domains have become in-
creasingly complex and stochastic. In recent contests, strong
planners that solve deterministic instances of stochastic do-
mains (or “replanners” (Little and Thiébaux 2007)) have
continued to outstrip their inherently probabilistic counter-
parts. This indicates to us that the domains that have been
used are still not stochastic enough to closely model the
complexities of real world planning problems. We suggest
that current real world domains can be modified to present
more difficult problems, and that new domains requiring
different problem solving strategies can help provide more
challenges for planners.

Current competition domains have been designed to rep-
resent real world scenarios for probabilistic planners. In
the Elevator domain, for example, a controller coordinates
a bank of elevators to pick up passengers when requests are
received, and delivers them to the destination floor. This do-
main assumes that each elevator is acting separately and ac-

∗This work is supported by NSF EAGER grant CCF-1049360.
Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

tions are performed sequentially. This makes the state space
less complex, allowing deterministic replanners to produce
strong solutions. In most real world problems, however, the
most comprehensive models are highly stochastic and con-
sider actions taken concurrently. This domain can be mod-
ified by assuming that the controller is directing elevators
in concurrent pairs or groups, instead of individually and se-
quentially. This introduces joint actions that greatly increase
the size and complexity of the state space. As the state space
grows more complex, it becomes more difficult for deter-
ministic planners to produce a good solution, and probabilis-
tic planners using concurrent action planning become better
choices due to a more complete consideration the domain
(Sanner 2008). We believe that many other competition do-
mains could be represented in this fashion, and that continu-
ing to introduce domains requiring different planning meth-
ods provides interesting and valuable challenges to compet-
itive planners.

Our domain, the academic advising domain, represents a
real world model in which concurrent actions must be con-
sidered in order to reach an optimal solution. Academic ad-
vising, when treated as a probabilistic planning domain, is
rich with the qualities used to classify domains as probabilis-
tically interesting (Little and Thiébaux 2007). The presence
of avoidable dead-ends, near-identical trajectories with dis-
tinct outcomes, multiple distinct trajectories, and mutually
exclusive actions, as well as a high degree of unpredictable
outside influences, makes for a challenging environment for
state-of-the-art planners today. Planners in this domain must
consider factors such as past performance history, courses
completed, and above all else the student’s ability to take
multiple courses concurrently — all with the aim of maxi-
mizing the student’s GPA as well as satisfying the require-
ments for graduation with a specific area of study.

This domain presents a large, complex, and easily scal-
able state space, ideal for a challenging competition. Most
importantly, while deterministic planning may eventually
produce a solution, optimal solutions can only be found us-
ing stochastic, concurrent-action planning. We believe that
this quality could make the academic domain a good addi-
tion to the domains already used in competition, and help in-
troduce even more “spice” into an already challenging prob-
lem set (Sanner 2008). Competitive domains have always
been used to test the very best in planners, and it is our hope



that the academic domain might be able to continue in this
tradition.

In the section “The Academic Domain”, we describe the
real-world advising domain, and in the section “The Aca-
demic Domain Model Generator Problem Structure”, we
briefly sketch the proposed domain generator. Note that
others have considered MDP-based advising domains. Both
Khan et al. and Dodson et al. have used hand-constructed
models of advising to motivate work on explanation gen-
eration for MDP policies (Khan, Poupart, and Black 2009;
Dodson, Mattei, and Goldsmith 2011).

The Academic Domain
Good academic advising in the American educational sys-
tem involves many decisions. In most degree programs, stu-
dents choose electives to satisfy multiple, sometimes over-
lapping requirements. Their choice of electives, the order in
which courses are taken, and the choices of which courses
to take together, all have enormous effects on the student’s
success and their enjoyment of their academic career.

We can model advising as a factored MDP. A student’s
course history and grades determine their current state.
Based on this state, a student can select one or more courses
to take during the next semester. More formally, states of
the MDP are student transcripts. Each variable represents a
possible course, with values (let us say) HIGH, LOW, FAIL
and NOT TAKEN. An action specifies a course to take. The
courses available for selection at any stage depend on the
fulfillment of prerequisites. Long prerequisite chains mean
a policy with a time bound on the number of semesters (or a
discounted reward) must begin the long chains early enough
to ensure the later courses can be taken.

Note that students who have taken the same courses can
be in very different states if one has received high grades and
the other has received low or failing grades. Two students
with the same GPA may be in different states because they
took different courses.

The effects of actions are stochastic. Grading scales are
less than precise measures, and small exogenous events
(something seen on the way to an exam, a girlfriend with
tutoring skills, a fight with a friend) can have large effects
on grades.

A policy specifies sets of concurrent actions at each time
step, since students take sets of courses each semester.
While the goal of the policy can vary, almost all academic
domain policies will seek to avoid states that involve failed
classes.

Probabilistic Outcomes
The effects of sets of actions in the academic domain are
uncertain. Adding to the uncertainty, the number of possible
next states is large for even a small number of concurrent ac-
tions. Consider a set of four classes that a student has taken.
There are 34 possible outcomes, ranging from HIGH, HIGH,
HIGH, HIGH to FAIL, FAIL, FAIL, FAIL. Each outcome,
or at least each set of FAILs, requires different responses.
Required courses must be repeated. Prerequisites and pre-
dictors of success should be repeated. In some cases, a LOW

should be repeated, but not always. For instance, if it were
shown that students who had taken first-semester calculus
performed better in discrete mathematics then a policy that
had a student take calculus before discrete math would be
more likely to result in a higher grade for the discrete math
class, and a LOW grade in calculus might skew likely grades
in several later courses toward LOW or FAIL.

As a result of this combinatorial explosion, the underlying
planning problem is not easy to determinize.

University curricula can lead to an enormous state space,
and real-world weakly coupled MDPs. Courses that are re-
quired for Human Ecology majors may have little impact on
Computer Science majors. There is a wealth of potential
challenges in modeling actual curricula, and building plan-
ners that can recognize and leverage the compartmentaliza-
tion of individual programs and majors. However, a realis-
tic model of transition probabilities can be built using data
mining techniques on grade data from students to have taken
courses previously (Guerin and Goldsmith 2011).

Concurrent Actions

Within the academic domain, students take courses in sets
rather than one at a time. The result of this is a much larger
set of choices for each stage of the plan. The number of
courses taken in a semester can vary so that the policy does
not need to have a uniform number of courses each semester.
Constraints can be specified for the domain so that a student
must remain full time (establishing a minimum number of
courses for each semester) and/or to establish a maximum
number of courses. This can be further complicated by hav-
ing the number of courses taken affect the probability of
success in each course. For example, a student taking four
courses is more likely to achieve higher grades than a student
taking the same four as well as three additional courses. It
should be noted that this planning domain does not have to
involve concurrent action planning if the number of courses
to be taken at a time is limited to one.

We can model the transition probabilities for each course,
based on statistical predictors (CS II grades probabilistically
depend, let us say, on the grade in CS I and on grades in prior
attempts on CS II). However, actions taken concurrently can
affect each other’s outcome probabilities, either synergis-
tically or destructively. For instance, taking a compilers
course at the same time as models of computation tends to
improve grades in both, because the compilers course mo-
tivates interest in regular and context-free grammars, while
the theory course reinforces computational techniques. On
the other hand, taking two courses with the same schedule
of assignments, exams, and projects can be detrimental to
grades. This means that optimal planning must consider ac-
tions concurrently rather than sequentially. This holds in a
fully realized model that takes into account concurrency ef-
fects, but it also holds in simpler models. Taking multiple
courses concurrently has a different effect than taking them
in sequence, and thus concurrent actions should not be mod-
eled sequentially.



Goal States
For each school and each program within that school, re-
quirements define a set of goal states. Individual stu-
dents have preferences on the types of electives, professors,
semester schedules, grade point average, time to graduation,
etc. The goal of the academic planner is to optimize the stu-
dent’s total expected utility and keep them moving toward
graduation. For a small scale realistic version of the prob-
lem, the goal can be to earn an academic minor. A larger
scale version is planning for completion of a degree. Be-
sides varying in size, goals also depend on what is valued in
the program.

A policy can be developed with a simple reward based on
time to the goal or on maximizing grades. With the former,
an optimal policy would only be concerned with the student
passing courses, while a GPA-driven policy might recom-
mend more time be taken if it ensured better grades. Other
criteria can be considered for optimization such as enjoy-
ment (different rewards for different courses or for certain
distributions of courses in each semester) or uniformity of
number of courses each semester.

Real-World Features of the Academic Domain
The features of the academic advising domain reflect as-
pects of many real world problems. The three features de-
scribed above allow the academic domain to capture inter-
esting planning problems. These are:

• planning under uncertainty,

• planning with concurrent actions, and

• planning with multiple reward criteria.

First, the stochastic nature of human endeavors, particu-
larly humans of college age, introduces uncertainty into any
plan. For this reason a classical plan does not suffice; rather,
a policy is needed.

Secondly, the academic domain models concurrent action
planning, because most students take multiple courses each
semester. Concurrent action planning has applications from
space exploration to pharmaceuticals (Mausam and Weld
2004). An example application for this research could be
designing drug regimens. For complex medical conditions,
a doctor has a choice of different drug treatments. Differ-
ent drugs may be taken simultaneously and there are uncer-
tainties associated with the effects and side effects of each
drug. For instance, a person might be taking medication for
migraines, rheumatoid arthritis, allergies, and digestive dis-
orders. Side effects may lead to the prescription of more
drugs which will have their own uncertain effects. This sce-
nario can be modeled as a concurrent action MDP. Solving it
could provide huge benefits to doctors prescribing drug reg-
imens and to patients trying to understand the utility of their
medicines. But first we need to develop concurrent-action
MDP solvers.

Finally, the academic domain has different criteria to op-
timize and could, therefore, be used for planning with multi-
criteria optimization (Perny and Weng 2010). This is rele-
vant to many scenarios in which there are multiple values

to optimize, such as balancing risk and reward with invest-
ments or prescribing radiation to kill tumors and not harm
healthy organs (Ehrgott 2000). The academic domain is
structured in a way that allows planners to be built that must
account for any or all of these features.

The Academic Domain Model Generator
Problem Structure

Although the common Bayes net representation of MDPs
uses dynamic Bayes nets, we represent the temporal aspect
of our models implicitly, and draw simple Bayes nets. The
nodes of the network represent courses. The values of each
course are NOT TAKEN, HIGH, LOW, and FAIL. Each node
has a probability table for those values, conditioned on its
parent nodes.

The domain generation module generates the structure
and parameters of the network, a goal state, and additional
constraints. The structure is based on a standard lattice. In
order to create varied instances, we begin with a full lattice
and then remove edges.

One feature of our domain instances, which is more typ-
ical of computer science programs than of many other pro-
grams at our university, is chains of prerequisites. These
can be represented as explicit constraints, if the planners can
handle constraints, or can be handled implicitly, through the
construction of the conditional probability tables (CPTs):
students are able to skip prerequisites or to go forward with
a poor or failing grade in a prerequisite course, but the ex-
pectation of HIGH or LOW grades is significantly depressed.
For now, we use the latter approach, so edges in the lattice
are interpreted both as prerequisites and as parents for CPTs.

The instance generator will choose:
• the size of the lattice;
• where to randomly break the prerequisite chains;
• the conditional probability tables for each node;
• the utility/reward function, and/or goal state.

Prerequisite Hierarchy
Course prerequisites are specified by a prerequisite graph.
The graphs we generate are based on lattices with complete
connectivity between layers, which are then pruned to gener-
ate prerequisite models. A visual representation of the first
three full lattices of this sequence are shown in Figures 1
and 2. Edges of the lattice will be pruned until the following
conditions are met: (1) all courses have at least one prereq-
uisite and (2) few courses have more than one prerequisite.
The resulting graphs will bear strong resemblance to pre-
requisite hierarchies we have surveyed in actual academic
departments.

The models we build, based on these lattices, have several
interesting properties:

1. there is an optimal policy, but even following that policy
doesn’t guarantee success;

2. the final prerequisite hierarchy specifies a partial ordering
over action sequences which must be learned in order to
find an optimal policy;



CS#11#

CS#21# CS#22#

CS#31#

CS#11#

CS#21# CS#22#

CS#31# CS#32# CS#33#

CS#41# CS#42#

CS#51#

Figure 1: Full prerequisite lattices for small domains

CS#11#

CS#21# CS#22#

CS#31# CS#32# CS#33#

CS#41# CS#42# CS#43# CS#44#

CS#51# CS#52# CS#53#

CS#61# CS#62#

CS#71#

Figure 2: Full prerequisite lattice for a larger domain

3. the number of state variables grows quadratically with the
lattice size parameter;

4. the number of states grows exponentially in the number
of state variables.

CS#11#

CS#21# CS#22#

CS#31# CS#32# CS#33#

CS#41# CS#42#

CS#51#

CS#11#

CS#21# CS#22#

CS#31# CS#32# CS#33#

CS#41# CS#42#

CS#51#

Figure 3: Pruned prerequisite lattices

Figure 3 shows how two lattices with the same nodes can
produce two significantly different instances, based on the
different edge prunings. A goal state can be specified by
giving a list of courses that are required. This can be done
either with an explicit set of courses that must be taken plus
a total number, or by specifying the number of courses to be
taken from each set of courses (i.e., “take 2 courses from the
third level of the lattice”).

Generating the Domain
The domains and instances can be generated from the spec-
ifications of the lattices described in the previous section.

The code examples in this paper use the RDDL domain def-
inition language (Sanner 2010). The code describing these
lattices will also contain the conditional probabilities of state
transitions. This will include depressed probabilities when
prerequisites are untaken. The following table shows pos-
sible conditional probabilities for the outcome of taking a
course.

CS 32 CS 42 outcomes
grades H L F
H 0.7 0.2 0.1
L 0.3 0.4 0.3
F 0.1 0.15 0.75
NT 0.05 0.1 0.85

A reward function will be specified in the instance prob-
lem based upon the definition of the goal state. This func-
tion rewards success in required classes and creates penalties
for being further from the goal state. Therefore, reaching
the goal state is the way to maximize reward. For instance,
consider the following reward description for a domain with
four possible courses.

reward = 3 * [(CS11 == @High)
+ (CS21 == @High)
+ (CS22 == @High)
+ (CS31 == @High)]

+ 1 * [(CS11 == @Low)
+ (CS21 == @Low)
+ (CS22 == @Low)
+ (CS31 == @Low)]

+ 0 * [(CS11 == @Fail)
+ (CS21 == @Fail)
+ (CS22 == @Fail)
+ (CS31 == @Fail)]

-5 * [(CS11 == @NotTaken)
+ (CS21 == @NotTaken)
+ (CS22 == @NotTaken)
+ (CS31 ==@NotTaken)].

Concurrency can be enforced as the means of reaching
a solution by specifying a horizon that requires multiple
courses taken at a time to reach the goal. The below ex-
ample specifies a horizon of 8 and allows up to 5 concurrent
actions. If the goal state for this domain required 35 courses
to be taken, then concurrency is required to reach the goal.

instance advising {
domain = advising;
init-state {

CS11 = @NotTaken;
CS21 = @NotTaken;
. . .
};
max-nondef-actions = 5;
horizon = 8;
discount = 0.99;

}



Conclusion
This paper has proposed a novel domain, the academic ad-
vising domain, for probabilistic planning competitions. This
domain is interesting because it involves concurrent actions,
true stochasticity, and multi-valued domain variables. It en-
ables the use of constraints, both in terms of prerequisites
and potential mutual exclusion constraints. In addition, it
opens the possibility of explicitly considering the planning
problem as a multi-criteria optimization problem. Introduc-
ing these elements to planning competitions will raise new
challenges in the IPPC. It is our hope that this domain will
build upon the success of previous competition domains to
push the state of the art in planning research.

References
Dodson, T.; Mattei, N.; and Goldsmith, J. 2011. Natural lan-
guage argumentation interface for explanation generation in
Markov decision processes. In Proc. Algorithmic Decision
Theory. also appeared in the EXaCT workshop at IJCAI
2011.
Ehrgott, M. 2000. Multicriteria Optimization. Berlin:
Springer.
Guerin, J. T., and Goldsmith, J. 2011. Constructing a
dynamic Bayes net model of academic advising. In Proc.
Bayesian Modelling Applications Workshop, UAI.
Khan, O. Z.; Poupart, P.; and Black, J. 2009. Minimal
sufficient explanations for factored Markov decision pro-
cesses. In International Conference on Automated Planning
and Scheduling (ICAPS).
Little, I., and Thiébaux, S. 2007. Probabilistic planning vs.
replanning. In ICAPS Workshop on IPC: Past, Present and
Future.
Mausam, and Weld, D. S. 2004. Solving concurrent Markov
decision processes. In National Conference on Artificial In-
telligence. AAAI.
Perny, P., and Weng, P. 2010. On finding compromise solu-
tions in multiobjective markov decision processes. In Euro-
pean Conference on Artificial Intelligence Multidisciplinary
Workshop on Advances in Preference Handling, 55–60.
Sanner, S. 2008. How to spice up your planning under un-
certainty research life. In Workshop on a Reality Check for
Planning and Scheduling Under Uncertainty (ICAPS-08).
Sanner, S. 2010. Relational dynamic influence
diagram language (rddl): Language description.
http://users.cecs.anu.edu.au/ ssanner/IPPC2011/RDDL.pdf.


