
Planning for Welfare to Work

Liangrong Yi and Raphael Finkel and Judy Goldsmith
Department of Computer Science

University of Kentucky
Lexington, Kentucky 40506-0046

Abstract

We are interested in building decision-support software for
social welfare case managers. Our model in the form of a fac-
tored Markov decision process is so complex that a standard
factored MDP solver was unable to solve it efficiently. We
discuss factors contributing to the complexity of the model,
then present a receding horizon planner that offers a rough
policy quickly. Our planner computes locally, both in the
sense of only offering one action suggestion at a time (rather
than a complete policy) and because it starts from an initial
state and considers only states reachable from there in its cal-
culations.

Introduction
A näıve plan for building a decision support system might
be to first model the decision-making process in a well-
understood, mathematically correct model, and then use that
model and off-the-shelf planning algorithms to suggest op-
timal plans, or evaluate user-suggested plans. However,
this approach often requires replanning due to the changing
world.

This paper presents a decision-support opportunity, a
place where the naı̈ve plan failed, and an approximation de-
veloped in response to that failure. The fact that this approx-
imation actually addresses some of the concerns introduced
with simplifications of the original model is a bonus for this
approach.

The underlying decision-making we study is that of social
welfare case managers in the Welfare to Work program. We
begin with a brief introduction to Welfare to Work.

The “Welfare to Work” Program
The Welfare to Work (WtW) government program aims to
return welfare recipients to the work force. In order to do so,
clients—welfare recipients, most of them single mothers—
are required to participate in activities intended to make
them “work ready”. In addition, a life-time limit of 60
months of benefits is imposed on each individual. Those
60 months are not required to be continuous. The activities
and services include education, from basic life skills to grad-
uate work, including specific job-skills courses and courses

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

on how to hunt for jobs. WtW also provides health benefits,
various forms of counseling, childcare and transportation.

Typically, a client who enters the program has a series of
interviews and takes various tests of interest and ability,and
is assigned to a case manager. The case manager helps the
client plan which activities to complete and which services
to access. The plan should optimize the expected reward
to the client. Given the uncertainties about the client’s cur-
rent situation, her compliance with the plan, and the effects
and durations of her activities, the plan is renegotiated regu-
larly. The plan is also frequently affected by changing laws
and regulations, and availability of services (Dekhtyaret al.,
2005).

Case managers usually have a heavy case load. It is hard
for them to quickly follow the client’s status and keep up
with changing regulations and availability of services. A
decision support system could help them greatly.

Planning for WtW
In this section, we discuss the mathematical structure of our
model and show a common method to plan optimally over
such a model.

Modeling WtW as a Factored MDP
An MDP is a four-tuple〈S,A, Pr,R〉. S is a finite state
space. A states ∈ S is a description of the client at a particu-
lar time.A is a finite action space. The state transition func-
tion Pr(j|i, a) defines the probability that the client moves
from statei to statej by taking the actiona. The reward
functionR assigns a value to a states, giving the utility for
that state. As we understand from the anthropologists who
have interviewed the case managers, case managers do not
calculate the cost of services to clients. The only cost they
deal with is that they strive to keep a certain percentage of
the clients “in compliance” with strict regulations about per-
centage of time spent in volunteer or paid work. Therefore
we assume that actions have no cost. A policy is a map-
ping from states to actions, specifying which action to take
in each state. To solve an MDP is to find a policy that opti-
mizes the long-term expected reward of each state, or of the
start state.

States can be described explicitly or in a factored rep-
resentation. The explicit representation enumerates all the
states directly. The factored representation defines a set of



attributes that are sufficient to describe the states (Boutilier,
Dean, & Hanks, 1999). Factored representations are usually
more convenient and compact. Because of the large domain
of WtW, we pick factored MDPs to model it.

A client’s situation is modeled by a state, services are
modeled as actions, and client preferences as reward func-
tions (Dekhtyaret al., 2008). Regulations and limitations
of clients are constraints. The attributes are client charac-
teristics, such as the client’s age, education level, number of
children, literacy level, confidence, commitment level, and
so on. An action reflects client participation in one of the
activities or services. A list of actions is shown in Table
1. Taking an action may affect some of the client’s char-
acteristics. For example, ATTENDING COMMUNITY COL-
LEGE can improve the client’s confidence. Each client has
her own expectation for joining the program. One wants to
improve her literacy level, while another wants to gain vo-
cational skills. Those preferences are represented as reward
functions in our model.

Table 1: The List of Action
ActionName ActionName
Job and Post-Sec. EducationESL
Short Term Training Volunteer Placement
Vocational Rehabilitation Job Readiness Class
On Job Training Literacy Training
College Community Service
Adult Basic Education Community College
High School Vocational School
Group Job Search

There is uncertainty in the client’s current situation. It is
very reasonable to model the domain as a partially observ-
able MDP (POMDP). But that would make the computation
more complicated. Thus we assume the model is fully ob-
servable.

A General Method to Solve Factored MDPs
Two general methods to solve MDPs are value iteration and
policy iteration. They are both dynamic programming tech-
niques. In value iteration, a policy is considered to be op-
timal when the following formula reaches its fixed point
(Bellman, 1957).

V ∗(s) = R(s) + max
a

[γ
∑

s′∈S

Pr(s′|s, a))V ∗(s′)],

whereV ∗(s) is the optimal total expected value function and
γ is the discount (a real number between 0 and 1).

In a factored domain, states may be described by the val-
ues of the attributes. State transition probabilities are repre-
sented by dynamic Bayesian networks (DBN) (Pearl, 1988).
A DBN describes an action. From the DBN, we can clearly
know how the current state affects the next state when the
action is executed. For each affected attribute, a condi-
tional probability table (CPT) stores the transition probabil-
ities. CPTs can be represented by algebraic decision dia-
grams (ADD) (R.I. Baharet al., 1993). ADDs can also de-
scribe value functions and policy. Jesse Hoeyet al. propose

stochastic planning using decision diagrams(SPUDD)
(Hoeyet al., 1999). SPUDD is an algorithm for finding op-
timal or near-optimal policies for factored MDPs. The al-
gorithm is an extension of value iteration that uses decision
diagrams.

We have built a planner based on SPUDD, with minor
modifications to match the specific features of WtW. Unfor-
tunately, the planner failed to generate a policy in an accept-
able amount of space (gigabytes) and time (hours).

Why It’s So Difficult
Why does SPUDD fail in the WtW domain? We analyze the
reasons in this section.

Large Domain
The WtW domain is large. It requires 50 attributes to rep-
resent a state. Many attributes have more than three possi-
ble values. The attribute LENGTH OF EMPLOYMENT can
be MORETHANTWOYEARS, SIX MONTHS, ONEYEAR,
ONEYEARSIX MONTHS and TWOYEARS.

A full policy assigns an action to each state. Therefore the
large number of attributes also results in a large policy anda
value function defined over a large domain.

The number of actions also affects the performance of
MDP planning. The more actions, the more choices we need
to consider. The WtW model has 15 actions, enough to make
the computation very slow.

Action Complexity
To specify an action for SPUDD input, we must give a CPT
for each attribute. Those information comes from the case
managers’ experiences based on interviews the anthropolo-
gists conducted with the case managers and on the case man-
agers’ input via elicitation software designed for this project
(Mathias, Goldsmith, & Dekhtyar, 2008). The CPTs are rep-
resented in ADDs. Larger CPTs can lead to larger ADDs,
and therefore to slower planning.

The execution of an action affects a set of attributes; let’s
call them informally the “output attributes” of that action.
Those output effects depend on the current values of a set
of attributes; let’s call those the “input attributes” of the
action. For example ATTENDING COLLEGE can improve
the client’s educational level, so educational level is an out-
put attribute of this action. Similarly, the client’s employ-
ability is an output attribute of ATTENDING SHORT TERM
TRAINING. VOLUNTEER PLACEMENT affects many output
attributes, including APTITUDE, GOAL, and INCOME. IN-
COME is very seldom an input attribute, but it is often an out-
put attribute. By way of contrast, CONFIDENCEand SKILLS
are often input attributes, but are seldom output attributes of
actions.

Our full WtW model involves about 50 attributes. Actions
seldom have many output attributes. For example, LITER-
ACY TRAINING can improve a client’s LITERACY LEVEL
but won’t change her CRIMINAL RECORD. Since any ac-
tion affects only a few attributes, it leaves many attributes
unchanged. The values of those attributes are deterministic
and not dependent on the action. As a result, most parts of



the descriptions of actions are the same. Redundancy is part
of the explanation for the large size of our action ADDs.

We implemented SPUDD on Pascal Poupart’s ADD pack-
age (Poupart, 2007). The SPUDD input parser of that pack-
age requires mention of every attribute for each action, even
those that are not output attributes for the action.

In fact, very few attributes are output attributes for any
action. A few are output attributes for almost every ac-
tion: CONFIDENCE, DEPRESSION, L ITERACY LEVEL, and
WORK READINESS. Let’s consider the situation that the
preference involves only on a single attribute. If it is not an
output attribute of only a few actions, the planner converges
quickly. If it is an output attribute for most actions, compu-
tation converges much more slowly.

Large Value Functions
We consider clients’ preferences as reward functions. Pref-
erences describe the client’s desires about the attributes. If a
client’s main purpose is to get a job, she might have an opin-
ion about HIGH L IKELIHOOD THE CLIENT WILL STAY
EMPLOYED. She can specify her desire for this attribute
as one of five degrees: MUST HAVE, PREFER, INDIFFER-
ENT, OPPOSEand CAN ’ T HAVE. If the state indicates that
there is a high likelihood that she will stay employed, she
accrues a reward of1, 0.5, 0, −0.5, or −1, depending on
which degree she chooses.

A preference can be simple or combinational. A simple
preference contains only one attribute; a combinational pref-
erence consists of at least two attributes.

Let’s look at a simple example. A client enters the pro-
gram. She is pessimistic and lacks interest. The first step
to help her might be to lift her confidence and interest. We
represent this situation by two independent preferences:the
client must have a high level of confidenceand the client’s
interest is preferred to be true. Each preference is repre-
sented by an ADD, as shown in Figures 1 and 2. The pref-
erences are used to define the MDP reward functions. Sum-
ming up the two ADDs, the final version of the initial reward
function is shown in Figure 3.

Figure 1: A Reward Function with Preference on the At-
tribute CONFIDENCE

Although the reward function might be very simple, the
planning process can lead to a monstrously large value func-
tion. SPUDD performs classical value iteration on values
stored as ADDs. At each step of the value iteration, it needs
to multiply each action ADD (usually withn original vari-

Figure 2: A Reward Function with Preference on the At-
tribute INTEREST

Figure 3: The Sum of the Two Reward Functions

ables and 1 primed variable, wheren is the number of at-
tributes) with the most recent value function ADD (up ton
primed variables). At some intermediate steps, this calcu-
lation might generate an ADD with2n variables. The state
space of the WtW domain is huge, due to the large num-
ber of attributes. The transition probabilities in CPTs can
vary a lot. Those two facts result in a dramatically growing
value function ADD. Since many states have different val-
ues, the ADD is not significantly smaller than a full decision
tree; it has a tremendous number of leaves. The advantage
of compact ADDs disappears completely. After a few steps
of value iteration, the value function ADD reaches a size be-
yond our memory capacity. We are building our own ADD
package and hope it will be more efficient. However, simpli-
fying the SPUDD input won’t reduce the size of the reward
function. We observe that benchmark models used by the
community have extremely simple utility functions that do
not adequately represent the complex preferences of WtW
clients.

To combine leaves with slightly different values, we limit
the digits of precision on intermediate results. The probabili-
ties in CPTs and the other parameters have one digit after the
decimal point. Truncation is applied at all ADD operations
so that the intermediate and the final values have up to two
digits after the decimal point. The size of the value function
ADD shrinks. But after each iteration the number of possi-



ble numerical values still goes up. The value function ADD
is still problematic even after the truncation operation.

The Receding Horizon Planner
In this section we introduce the basic idea of a receding hori-
zon planner and its design.

Analysis of WtW Domain

Given that SPUDD fails to generate a full policy for all pos-
sible states, we have to find a compromise. We may either
reduce the model or relax the requirements of planning.

MDP planning computes the values of all the states and
finds optimal actions for them. Is such global scrutiny re-
ally needed in WtW? When a client consults a case man-
ager, she is in a particular state. For example, a 30-year-old
woman with a 4-year old son has completed high school.
Her YEARS OF SCHOOLING attribute won’t be changed to
REMEDIAL or POST-SECONDARY. And the AGE attribute
won’t take the value of TEENAGE in her case. For one client,
it is impossible to reach all the states in the state space.
The unreachable states won’t affect our decisions at all. We
should only focus on the possibly reachable states.

Do we need a 60-month plan when the client enters the
program? Such a plan is impractical and unrealistic. The
regulations change, the availability of services changes,and
the client’s preferences change. It’s not wise to spend a lot
to compute a long-term plan which will suffer many modifi-
cations in the future. When a client comes to the case man-
ager, what she cares about is what to do next. What happens
in three years is not immedeately important to her. Further,
predicting the future is inaccurate. A client might be ineligi-
ble to access a service because she has only one child. But
she might be able to take the service 20 months later if the
rule changes or she has a new baby.

In WtW, the clients meet with the case managers reg-
ularly. They discuss the client’s preferences, analyze the
client’s progress in the program, and decide on services to
take next. A planner that can give suggestions for the next
step or the next several steps, based on the client’s current
situation, will meet most of their requirements.

Overview of the Receding Horizon Planner

The fact that a single client won’t explore the whole state
space lets us take advantage of reachability. Reachability
can be used to reduce the size of the MDP and make plan-
ning easier (Boutilier, Brafman, & Geib, 1998). We focus on
the client’s current state and extend to the possible succes-
sive states step by step. Reachability can help us to excludea
large number of states and make the problem much simpler.

We consider two strategies for updating the values: syn-
chronous and asynchronous. Classical value iteration is syn-
chronous; it evaluates the values of all the states at the same
time. Asynchronous methods update states one at a time
(Smith & Simmons, 2006) (Dai & Goldsmith, 2007). Since
we expand the state space step by step, we choose to update
the values in an order. The 0-step-to-go (newly expanded)
states are updated first, then the 1-step-to-go, and so on.

The notion of receding horizon planning is not new. It
is also calledmodel predictive control(MPC). MPC has
been widely implemented in industry (Morari & Lee, 1999).
The basic idea is iterative on-line (also called real-time)op-
timization. It includes a process model and process mea-
surements (Nikolaou, 1998). An on-line calculation is used
to find a t-step optimal strategy for the current state. The
first step is implemented and feedback is collected from pro-
cess measurements. Then the optimization calculation is re-
peated on the new current state. We bring this idea to WtW
planning. The planner computes at-step optimal policy for
the current state. The client takes the first action in the pol-
icy. The client then enters a new state, and her expectations
about the effects of the WtW program may have changed.
Based on the new information, the next round of planning is
executed on the client’s new state.

Due to the complicated model, it is impractical to com-
pute a big policy (whent is large) at each step. Horizon
control is used to reduce the policy size. The upper bound
for the planning time can be set according to the case man-
ager’s requirement. When computation overruns the time
limit, it stops and releases a partial policy. We let feasibility
dictate the planning horizon. Our limited horizon can ob-
scure long-term effects, but long-term planning in WtW is a
dicey business. Horizon control guarantees the progress of
planning in an acceptable time.

We have built a receding horizon planner. It starts from
an initial state representing the client’s current situation and
expands the state space to states that aret-step reachable
from the initial one. The output is a partial policy for the
initial state and the expanded states.

More about the Planner
The receding horizon planner executes a number of itera-
tions. Each iteration includes two phases: expanding the
state space and updating the value functions. The algorithm
is shown as follows. The notations → s′ means thats′ is a
possible next state afters when the action under considera-
tion is taken.

Receding-Horizon-Planner()
S[0]← s0, V [0]← R[s0]
i← 0
repeat

S[i + 1]← State-Space-Expansion(S[i])
i = i + 1
Update (S, V , i)

until time of Update(S, V , i) ≥ limit
End Receding-Horizon-Planner

State-Space-Expansion(S)
for eachs ∈ S do

for each actiona ∈ A do
applya ons
if s→ s′ ands′ 6∈ S then

adds′ to S
end if

end for



end for
returnS
End State-Space-Expansion

Update (S, V , i)
for eachs ∈ S[i] do

V [i](s)← R(s)
end for
while i > 0 do

for eachs ∈ S[i− 1] do

V [i− 1](s)← R(s) + maxa∈A{
∑

s′

Pr(s
′
|a, s)V [i](s

′
)}

end for
i = i− 1

end while
End Update

The state space expansion subroutine enlarges the state
space a little bit at each step. The value function update
subroutine computes the values for the states included in the
state space. The calculation is similar to finite horizon plan-
ning. The newly expanded states have0 step to go, and their
values are their immediate rewards. The values of states
from the previous step are updated, using the values of the
new states that they can reach.

Let’s go through the first iteration. The initial state space
has only one state: the current state of the client,s0. We
call that state spaceS[0]. The state space expansion subrou-
tine expands the state space by applying all applicable ac-
tionsa to the initial state. The expanded state space isS[1].
S[1] contains the initial state and the states that are one-step
reachable. The newly added states form the fringe of the
state space. The next phase is to update the value functions.
We useV [0] to represent the value functions for the states
in S[0]. At each iteration, the value functions on the fringe
are assigned according to the reward functionR. Now the
value functionsV [1](s) for statess in S[1] are equal toR(s).
GivenV [1], we can updateV [0]:

V [0](s) = R(s) + maxa∈A{
∑

s′

Pr(s′|a, s)V [1](s′)}

At this point, V [0] represents a horizon-one value func-
tion for S[0], from which we can extract a one-step policy.
If we can computeV [0] quickly enough, we carry out an-
other iteration. We expand the state space one step further.
S[2] is the set of states reachable fromS[1], from which we
update the value functions forS[1] and thenS[0]. We can
now extract a two-step policy. The planner stops when it
spends too much time computing the value functions. Then
we get the policy for the initial state and the states that area
few steps reachable from the initial one.

This process of two iterations of state expansion and value
update is also shown in Figure 4. In the figure, the solid ar-
rows represent the first iteration and the dashed arrows rep-
resent the second iteration.

We can control the time required for planning by limiting
updating time. Therefore, we can get a partial policy fairly
promptly, so case managers and clients need not wait long.

Figure 4: State Space Expansion and Value Update

Experiments and Results
We plugged the planner into our WtW software package. In-
formation about the clients and services is already stored in
the database. The client’s preferences can be input to the
database through an interface called PlanIt. PlanIt parses
the input and calls the planner. The receding horizon plan-
ner computes at-step policy and returns a suggested action
based on the client situation and the preferences.

The planner can computeS[10] and the relatedV values
in about 10 seconds, so we can suggest an action that is op-
timal considering only the possible situations 10 steps in the
future.

To evaluate the planner, we built a simulator. Given a
client’s state and her preferences, the planner suggests the
best action to take. The simulator simulates the execution of
that action: The simulated client reaches a randomly chosen
new state based on the state-transition probabilities of the
previous state and the suggested action. Once the simulator
enters a new state, the planner is run afresh on that state. In
this manner, a trial yields a trajectory of 10 states. We com-
pute the expected total rewards for that trajectory, using a
discount of0.9, which treats later rewards as less important.
We ran 100 such trials for each of 3{starting state, client
preference} pairs to compute the average expected total re-
wards. We also varied the farthest horizont in planning. The
result is shown in Table 2.

Table 2: Average Expected Total Rewards
CaseNo. t = 3 t = 5 t = 7 t = 10
1 14.4515 14.5239 14.6004 14.3189
2 6.0753 6.1993 6.1532 6.2043
3 8.6112 8.6314 8.6557 8.6100

From the table, we can see that the resultant values from
different planning horizons are very close. For each client
state, only a very small number of iterations (probably 3)
is required to get a good policy. Thus the receding horizon
planning is very efficient in the WtW domain.

We didn’t compare recommendations under different
horizons. We note that the “best” action is not unique. Dif-



ferent actions may have the same effect. For example, “Col-
lege Study” and “Community College” can raise a client’s
confidence with the same probabilities. Even if plans recom-
mend different actions, they might have the same expected
effects; instead, we compare the expected total reward.

Conclusions
Due to the complexity of the WtW domain, the general
method of MDP solving is not efficient. But after a clear
analysis of the requirements and some simplifications, we
have a working planner that satisfies the basic requirements
of the domain. The two characteristics of the new planner
are consideration of reachability and online optimization. A
client won’t get to all the states in the state space, so the
planner only concentrates on the states that are reachable
from the client’s current state. The planner does not execute
classical value iteration on the reachable states. Instead, it
only computes at-step optimal policy. The client takes the
first suggested action and then we plan for her again.

When a client consults the case manager, she is in a partic-
ular state (the initial state in the receding horizon planner).
What she and the case manager care about is what she should
do next. Our planner can generate a suggestion of what ac-
tion she needs to take. We think that is exactly what one
expects a planner to provide. The regulations of the welfare
programs and the available services change frequently, but
the receding horizon planner, with its online optimization,
is untroubled by changing environments. We believe that
the receding horizon planner can satisfy the basic require-
ments of the Welfare to Work program and could be used
to supplement or reinforce the case managers’ hard-earned
experience.

References
Bellman, R. 1957.Dynamic Programming. Princeton Uni-

versity Press.

Boutilier, C.; Brafman, R.; and Geib, C. 1998. Structured
reachability analysis for Markov decision processes. In
the 14th Annual Conference on Uncertainty in Artificial
Intelligence (UAI-98), 24–32.

Boutilier, C.; Dean, T.; and Hanks, S. 1999. Decision-
theoretic planning: structural assumptions and computa-
tional leverage.Journal of AI Research11:1–94.

Dai, P., and Goldsmith, J. 2007. Topological value iteration
algorithm for markov decision processes. Inthe Twentieth
International Joint Conference on Artificial Intelligence
(IJCAI-07), 1860–1865.

Dekhtyar, A.; Finkel, R.; Goldsmith, J.; Goldstein, B.; and
Mazur, J. 2005. Adaptive decision support for planning
under hard and soft constraints. InAAAI Spring Sympo-
sium on Decision Support in a Changing World, 17–22.

Dekhtyar, A.; Goldsmith, J.; Goldstein, B.; Mathias, K. K.;
and Isenhour, C. 2008. Planning for success: The inter-
disciplinary approach to building bayesian models.Inter-
national Journal of Approximate Reasoning, to appear.

Hoey, J.; St-Aubin, R.; Hu, A.; and Boutilier, C. 1999.
SPUDD: Stochastic planning using decision diagrams. In
the Fifteenth Conference on Uncertainty in Articial Intel-
ligence (UAI-99), 279–288.

Mathias, K. K.; Goldsmith, J.; and Dekhtyar, A. 2008.
Bayesian construction: from qualitative to quantitative
nets.

Morari, M., and Lee, J. 1999. Model predictive control:
Past, present and future.Computers and Chemical Engi-
neering23:667–682.

Nikolaou, M. 1998.Model Predictive Controllers: A Crit-
ical Synthesis of Theory and Industrial Needs. Advances
in Chemical Engineering Series. Academic Press.

Pearl, J. 1988.Probabilistic Reasoning in Intelligent Sys-
tems: Networks of Plausible Inference. Morgan Kauf-
mann, San Mateo.

Poupart, P. 2007. personal communication.

R.I. Bahar; E.A. Frohm; C.M. Gaona; G.D. Hachtel; E.
Macii; A. Pardo; and F. Somenzi. 1993. Algebraic de-
cision diagrams and their applications. InIEEE /ACM
International Conference on CAD, 188–191.

Smith, T., and Simmons, R. 2006. Focused real-time dy-
namic programming for MDPs: Squeezing more out of a
heuristic. Inthe Twenty-First AAAI Conference on Artifi-
cial Intelligence (AAAI-06), 1227–1232.


