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Abstract

A theory, in this context, is a Boolean formula; it is used to classify
instances, or truth assignments. Theories can model real-world phe-
nomena, and can do so more or less correctly. The theory revision,
or concept revision, problem is to correct a given, roughly correct
concept. This problem is considered here in the model of learning
with equivalence and membership queries. A revision algorithm is
considered efficient if the number of queries it makes is polynomial in
the revision distance between the initial theory and the target theory,
and polylogarithmic in the number of variables and the size of the
initial theory. The revision distance is the minimal number of syn-
tactic revision operations, such as the deletion or addition of literals,
needed to obtain the target theory from the initial theory. Efficient
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revision algorithms are given for Horn formulas and read-once formu-
las, where revision operators are restricted to deletions of variables
or clauses, and for parity formulas, where revision operators include
both deletions and additions of variables. We also show that the query
complexity of the read-once revision algorithm is near-optimal.

1 Introduction

Sometimes our model isn’t quite right. As computer scientists, we build
models of real-world phenomena, based on limited data or on the opinions of
sometimes-fallible experts. We verify or begin to use the models and discover
that they are not quite correct. Rather than beginning the model-building
phase again, we would prefer to quickly and simply revise the current model,
and continue our project. If the initial model is nearly correct, this should
be more efficient.

The revision of an initial theory, represented by a formula, consists of
applying syntactic revision operators, such as the deletion or the addition of a
literal. For instance, the CUP theory1, presented in Figure 1, might be revised
to become more accurate by deleting the literal white. The revision distance
of the target theory from the initial theory is defined to be the minimal
number of revision operations from a specified fixed set needed to produce
a theory equivalent to the target, starting from the initial theory. As in our
previous work [30] we consider two sets of revision operators: deletions-only
operators, which allow the deletion of literals and of clauses and/or terms,
and general operators, which also allow the addition of literals. Others have
also implicitly or explicitly considered both of those models [32, 40].

If the target theory is close to the initial theory, then an efficient revision
algorithm should find it quickly. Thus, revision distance is one of the relevant
parameters for defining the efficiency of theory revision.

One way of formalizing the problem of theory revision as a concept learn-
ing problem is: learn the class of concepts that are within a given revision
distance of the initial theory. A novel feature of this definition is that it
associates a concept class with each concept, and thus, in a sense, assigns
a learning complexity to every individual concept (more precisely, to every

1Cups are for theory revision what elephants are for computational learning theory
and perhaps for AI in general, and what penguins are for nonmonotonic reasoning: the
canonical toy example.
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CUP ≡ has-concavity ∧ white ∧ upward-pointing-concavity ∧ has-bottom

∧ flat-bottom ∧ lightweight ∧ (has-handle ∨ (width-small ∧ styrofoam))

Figure 1: Cup theory/concept, inspired by Winston et al. [57]. Note that
there may be many additional variables that are not used in the current cup
theory.

concept representation, and every revision distance bound). This may per-
haps help formalize the intuitive, yet elusive, notion that in general, there are
hard and easy target concepts in learning theory. For instance, intuitively,
there are hard and easy DNFs, but it does not make sense to talk about the
difficulty of learning a particular DNF. On the other hand, it does make sense
to talk about the difficulty of revising a particular DNF. So theory revision
gives a way to quantify the learning complexity of each DNF.

This article and its companion article [30] consider revision in query-
based learning models, in particular, in the standard model of learning with
membership and equivalence queries, denoted by MQ and EQ [5]. This
is a very well-studied model (e.g., [2, 4–8, 11, 13–15]), nearly as much so as
PAC learning. In an equivalence query, the learning algorithm proposes a
hypothesis, that is, a theory h, and the answer depends on whether h = c,
where c is the target theory. If so, the answer is “correct”, and the learning
algorithm has succeeded in its goal of exact identification of the target theory.
Otherwise, the answer is a counterexample: any instance x such that c(x) 6=
h(x). In a membership query, the learning algorithm gives an instance x,
and the answer is either 1 or 0, depending on c(x).

The query complexity of a learning algorithm is the number of queries
it asks. Note that the query complexity is a lower bound on the running
time. For running time, we do not count the time required to answer the
queries. From a formal, theoretical point of view, we assume that there
are two oracles, one each to answer membership and equivalence queries. In
practice, membership queries would need to be answered by a domain expert,
and equivalence queries could either be answered by a domain expert, or by
using the hypothesis and waiting for evidence of an error in classification.

It is typical in practical applications that one starts with an initial the-
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ory and a set of (counter)examples, for which the initial theory gives an
incorrect classification. The goal then is to find a small modification of the
initial theory that is consistent with the examples. (In fact, many theory
revision methods, including the algorithms presented here, would work even
if a large number of changes were needed, but in that case it might be more
efficient to learn from scratch rather than revising.) In this setup, one can
simulate an equivalence query by running through the examples. If we find
a counterexample to the current hypothesis, then we continue the simulation
of the algorithm. Otherwise, we terminate the learning process with the cur-
rent hypothesis serving as our final revised theory. In this way, an efficient
equivalence and membership query algorithm can be turned into an efficient
practical revision algorithm.

Besides this motivation, there are other reasons, specific to theory revi-
sion, that justify the use of equivalence and membership queries. In practical
applications, it is often the case that the goal of theory revision is to fix an
initial theory that is provided by an expert. It is reasonable to hope that
the expert is able to answer further queries about the classification of new
instances. For instance, natural language applications make this possibility
apparent, as here everybody can serve as an expert, answering queries about
the correctness of sentences. This means that in all these cases learning
algorithms may be assumed to use membership queries.

Another important reason to study the query model is that it turns out
to be the “right” model for many important learning problems. That is, for
several basic problems, such as learning finite automata and Horn formulas,
there are nontrivial efficient learning algorithms in this model, while in weaker
models one can prove superpolynomial lower bounds.

In this paper we study two very important tractable classes of formulas:
conjunctions of Horn clauses and read-once formulas.

Horn sentences are the tractable heart of several branches of computer
science. The satisfiability of Horn sentences can be decided in polynomial—
indeed linear—time (e.g., [23]). There is a combinatorial characterization of
functions that can be expressed by Horn sentences [21, 34, 44, 54].

Horn sentences have many applications. For instance, Horn sentences
occur as special cases in logic, logic programming, and databases. Real-world
reasoning and causality can be described by Horn theories: If the world is like
so, then these are the consequences, separately and jointly. Horn sentences
model safe queries in relational database theory [43].

Given the plethora of Horn sentences out there, it is imperative that we
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be able to mend those that are broken. The work presented in this paper is
a first step in that direction.

Similarly to Horn formulas, read-once formulas form a nontrivial class
that is tractable from several different aspects, but slight extensions are al-
ready intractable. Boolean functions represented by read-once formulas have
a combinatorial characterization [33, 35, 46], and certain read restrictions
make CNF satisfiability easily decidable in polynomial time (see, e.g., [38]).
It is interesting that the tractable cases for fault testing [39] and Horn theory
revision [24, 40] are also related to read-once formulas.

The main results that we present in this paper are revision algorithms for
Horn and read-once formulas in the deletions-only model of revisions, and
a revision algorithm for parity functions in the general model of revisions.
Some lower bounds are also provided.

The ultimate goal of this work is to revise real expert-system style the-
ories, such as full Horn theories, using the types of queries we have already
argued are feasible with real, human experts: membership and equivalence
queries. In the course of pursuit of this as yet elusive goal, we have achieved
some partial results, both for more restricted classes of theories and for more
constrained revisions. Our work on parity formulas and on read-once for-
mulas adds to a body of theoretical work on learning such formulas with
queries (e.g., [8]), and showcases techniques and lower-bound proofs that we
hope will be helpful in later work. They are included here as much for their
mathematical elegance as for their eventual applicability.

We also include algorithms for revision constrained to deletions. We note
that there is a long history of studying this special case, presumably because
of its greater tractability, in, and even before, the AI literature. What we
call “deletions only” corresponds to the “stuck-at” faults usually studied in
diagnosing faulty circuits in the 1960s and 1970s (e.g., [39]) and, for instance,
to the case where Koppel et al. proved the convergence of their empirical
system for theory revision in the 1990s [40].

We note that there are scenarios where deletions-only would be quite
useful for the intended application. Say, for example, that the more mature
expert-system builder has designed a Horn-formula-based theory and sent
her apprentice out to populate the theory. The apprentice interviews experts
and enthusiastically writes down almost everything that each expert says,
ignoring the experts’ self-corrections.

It turns out that the model is imperfect, although the experts are sound.
Thus, the expert-system builder is faced with the task of revising the
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theory. From a review of the apprentice’s methodology, it is clear that the
revisions require only deletions.

As in the full revision model, the expert-system builder has access to the
experts and may ask them the same types of queries. She could use the
same algorithm to revise her theory, but she realizes that there is a more
efficient algorithm available for the deletions-only case. This is precisely the
algorithm that we present in Section 5.

In the next section we will discuss previous work on theory revision,
and especially computational learning theory approaches to theory revision.
Then, in Section 3, we discuss just what is meant by either the learning of
or the revision of “propositional Horn formulas.” We formally define basic
concepts in learning with queries and in Boolean formulas in Section 4. In
Section 5, we give our revision algorithm for propositional Horn formulas.
We present our revision algorithm for read-once formulas in Section 6, and
for parity formulas in Section 7.

2 Previous Work

There is an extensive discussion of related work on theory revision in both
the computational learning theory literature and the actual AI systems liter-
ature in our companion paper [30]. In this section, we briefly mention a few
important, but somewhat arbitrarily selected, articles. In addition to our
companion paper, we refer the reader to Wrobel’s overviews of theory revi-
sion [58, 59] for more detail. In the next section, we will discuss in more depth
some papers that have each given results on something that they called “the-
ory revision of propositional Horn formulas,” although different researchers
have actually considered quite different problems under that name.

Mooney [45] initiated the study of theory revision in computational learn-
ing theory using an approach based on syntactic distances. Mooney proposed
considering the PAC-learnability of the class of concepts having a bounded
syntactic distance from a given concept representation, and gave an initial
positive result for sample complexity, but left computational efficiency as an
open problem.

Numerous software systems have been built for theory revision. A few
representative examples are EITHER [47], KBANN [52], PTR [40], and
STALKER [18]. Many systems, such as STALKER, are designed for what
Carbonara and Sleeman [18] have called the tweaking assumption: that the
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initial theory is fairly close to the correct theory. This would presumably be
the case, for instance, when a deployed expert system is found to make some
errors. On the other hand, KBANN can be viewed as solving essentially the
usual general concept learning problem (using back-propagation for neural
nets, and then sometimes translating back into propositional Horn sentences
if possible), but starting the learning from some “in the ballpark” concept,
instead of from some default “null concept.” It is unclear whether KBANN’s
successes actually required initial theories that were “only a tweak” away
from being correct.

Mooney implicitly assumes the tweaking case of theory revision. Here
it is appropriate for the learning resources used (e.g., number of queries or
sample size) to depend polynomially on the revision distance, but only sub-
polynomially on the size of the initial theory and the number of variables in
the domain under consideration. For instance, we might want a dependence
that is O(log(initial theory size +n)), where n is the number of variables
in the domain. The reason this is desirable is that the tweaking assump-
tion should mean that the revision distance e << max(initial theory size, n),
and we wish to revise using significantly fewer resources than learning from
scratch.

These considerations also suggest a relationship between theory revision
and attribute-efficient learning (see, e.g., [12, 15, 19, 22]). Attribute-efficient
learning is concerned with learning a concept from scratch, while using re-
sources that depend polynomially on the number of variables in the target
(called the number of relevant variables) and only logarithmically or poly-
logarithmically on the total number of variables in the universe. Roughly
speaking, attribute-efficient learning is the special case of theory revision
where the initial theory is the default, empty concept.

Angluin et al. [7] give a query-learning algorithm for Horn sentences.
Our revision algorithm given in Section 5 is modeled on their algorithm.
The primary difference between learning and revising Horn formulas, or any
formulas, is the more stringent query complexity bounds required for revision,
as opposed to learning from scratch. For instance, Angluin et al.’s algorithm
to learn a Horn formula of n variables must ask Ω(n) queries, whereas we are
limited to o(n) queries.

Read-once formulas are efficiently learnable using equivalence and mem-
bership queries [8]. While read-twice DNF formulas are still efficiently learn-
able [48], for read-thrice DNF formulas there are negative results [1]. The
query complexity of the learning algorithm for read-once formulas is O(n3),
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where n is the number of variables, or, equivalently, the length of the formula.
In contrast, our revision algorithm for read-once formulas uses O(e log n)
queries, where e is the revision distance between the initial and target for-
mulas.

There has been a limited amount of work on theory revision for predicate
logic. Greiner gives some results on theory revision in predicate logic in a
paper that is primarily about revising propositional Horn formulas, which we
discuss in the next section [32]. In another paper, Greiner [31] gives results
about revision operators that change the order of the rules in a logic program.
These, together with some results of Argamon-Engelson and Koppel [10] and
Wrobel [58], are among the very few theoretical results on theory revision for
predicate logic.

3 The Dilemma of Horns

In the literature, “learning propositional Horn sentences” in fact refers to
four distinct definitions of learning problems. Although there has been some
discussion of this issue [3, 20, 25], we think that some more clarification is
possible, both for its own sake, and because it will clarify our discussion of
the related work, especially Greiner’s related work [31, 32].

1. “Monotone circuit model.” Propositional Horn sentences where only
some of the variables are observable, and the problem is to classify an
instance given only the values of those observable variables. The classi-
fication of instances over those observable variables depends on whether
the sentence and the setting of the observable variables together imply
a special output variable that occurs only as the head of clauses. This
meaning is used in the EITHER theory revision system [47], and also in
Mooney’s theoretical PAC analysis of theory revision [45]. This model
is equivalent to the model that complexity theorists call monotone cir-
cuits.

2. “Assignments model.” Propositional Horn sentences where the classi-
fication of the instance depends on whether the assignment to (all) the
variables agrees with or contradicts the Horn sentence. This meaning
is used by Angluin et al. [7] and in this article, in our algorithm in
Section 5.
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CUP ← Upright ∧ Liftable ∧Open ∧Graspable ∧ white

Upright ← has-bottom ∧ upward-pointing-concavity

Liftable ← lightweight ∧ has-handle

Liftable ← width-small ∧ styrofoam

Open ← upward-pointing-concavity

Graspable ← width-small

Graspable ← has-handle

Figure 2: A monotone-circuit style Horn sentence for CUP. It does not define
exactly the same set as the definition in Figure 1.

3. “Entailment.” Propositional Horn sentences where the instances them-
selves are Horn clauses, and a clause’s classification depends on whether
it is entailed by the target Horn sentence. This meaning is used by Fra-
zier and Pitt in their work on learning by entailment [25, 26], and also
by Greiner [32].

4. “Atomic entailment.” The same entailment setting as 3, but now only
atoms can be instances. Greiner also considers this case.

Consider Definition 1. An example of a Definition 1 style Horn formula for
CUP (the example in Figure 1 is of a read-once formula) is given in Figure 2.
The classification variable is CUP, and the hidden variables are Upright,
Liftable, Open, and Graspable. One can describe such a sentence by a
monotone circuit, with the classification variable corresponding to the output
gate, the observables to inputs, and the hidden variables to interior gates. In
fact, any monotone circuit is equivalent to such a Horn sentence.

Monotone circuits are a fairly rich class, and one that has been well stud-
ied in complexity theory. Monotone circuits are not learnable from equiva-
lence queries alone, because the smaller class of monotone Boolean formulas
is not learnable from equivalence queries alone [37].2 To the best of our

2One could also show the hardness of learning monotone circuits from equivalence
queries by applying a standard variable substitution trick [36] to the cryptography result
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knowledge, it is an open question whether monotone circuits are learnable
from membership and equivalence queries together.

Definition 2 is the one that we use for our revision result in Section 5.
The cup example in Figure 2 follows Definition 2 if all the variables including
Open, Graspable, etc., are visible. In general, in the Assignments model,
training data for learning (or revising) from examples show the assignments
to all the variables.

In Definition 3, entailment, there are again no hidden variables, but what
is being learned is different. We might ask, in the cup example of Figure 2,
whether either of the following two clauses is entailed.

CUP ← Liftable ∧ upward-pointing-concavity

Liftable ← lightweight

(Note that neither example is entailed by the Horn sentence in Figure 2.)
The main point of Model 4, entailment of atoms, is to use it to get strong

negative results. Positive learning results would not be so useful, because
Horn sentences over n propositional variables are an unreasonably large set
of theories if all one wants to know is which of the n variables are positive
and which are negative.

Angluin [3] provides some discussion on the comparison among the last
three cases, as does Frazier [25]. In particular, Frazier shows how to convert a
query learning algorithm for the assignment model into one for the entailment
model. However, Frazier’s conversions in general involve a multiplicative
blowup in query complexity of the number of variables in the domain (i.e., of
n), so the conversions cannot automatically transfer theory revision results
for the assignments model into the entailment model. Further comparisons
of the different approaches are given by De Raedt [20].

Greiner [32] considers Models 3 and 4, entailment of clauses and of atoms.
Loosely speaking, Greiner shows that the non-tweaking cases of theory re-
vision in Models 3 and 4 are NP-complete in the absence of membership
queries, in both the general and deletions-only model. More precisely, he
considers the PAC model, and so is interested in the decision problem of,
given a sample of Horn clauses with each labeled either “entailed” or “not
entailed,” deciding whether there is a Horn sentence within a stated revision
distance d that would so classify the clauses. Greiner shows that even for the

of Goldreich et al. that among other things says that the class of all polynomial-size circuits
is not learnable from equivalence queries [27].
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entailment of atoms model, for d = Ω
(√
|ϕ|
)
, where |ϕ| is the size of the ini-

tial theory ϕ, the problem is NP-complete. It is also nonapproximable, in the
sense that one cannot find a Horn sentence that, say, agrees with 90% of the
classifications of the sample, given usual complexity theory assumptions [32].

Note that Greiner’s hardness results do not contradict our results. First,
we allow membership queries in addition to sampling/equivalence queries.
Some classes that have exponential query/sample complexity when only sam-
pling/equivalence queries are used have polynomial query complexity when
both membership and equivalence queries are used. Read-once Boolean for-
mulas are an example of such a class [8, 37]. On the other hand, arbitrary
Boolean formulas are difficult to learn even with both membership and equiv-
alence queries [9]. Another distinction between Greiner’s negative results and
ours is that we are primarily interested in smaller values of the revision dis-

tance than d = Ω
(√
|ϕ|
)
.

4 Preliminaries

We use the standard model of membership and equivalence queries (with
counterexamples), denoted by MQ and EQ [5]. In an equivalence query,
the learning algorithm proposes a hypothesis, a concept h and the answer
depends on whether h = c, where c is the target concept. If so, the answer
is “correct”, and the learning algorithm has succeeded in its goal of exact
identification of the target concept. Otherwise, the answer is a counterex-
ample, any instance x such that c(x) 6= h(x). For read-once formulas and
parity functions, our equivalence queries will be proper ; that is, the hypoth-
esis will always be a revision of the initial formula. For Horn sentences, our
equivalence queries will be “almost proper,” meaning that the hypothesis
will always be a conjunction of Horn clauses, with each Horn clause being a
revision of a Horn clause in the initial formula, but there may be more than
one revision of a single initial theory Horn clause in the hypothesis.3 In a
membership query, the learning algorithm gives an instance x and the answer
is either 1 or 0, depending on c(x), that is, MQ(x) = c(x), where again c is
the target concept.

We also use standard notions from propositional logic such as variable,
term, monotone, etc. We will assume throughout that the everywhere true

3Our lower bound for Horn sentence revision will therefore also permit almost proper
equivalence queries.
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and everywhere false formulas have some representation in each class of for-
mulas that we study in this paper. The all-0 vector will be denoted 0; the
all-1 vector 1. We occasionally use the standard partial order on vectors
with x ≤ y if every component of x is less than or equal to the corresponding
component of y.

The symbol ⊂ always denotes proper subset.
A Horn clause is a disjunction with at most one unnegated variable; we

will usually think of it as an implication and call the clause’s unnegated
variable its head, and its negated variables its body. We write body(C) and
head(C) for the body and head of C, respectively. A clause with no un-
negated variables will be considered to have head F, and will sometimes be
written as (body → F). A Horn sentence is a conjunction of Horn clauses.

For monotone terms s and t we use s∩ t for the term that is the product
of those variables in both s and t. As an example, x1x2 ∩ x1x3 = x1. (Thus
s ∩ t is different from s ∧ t, which is the product of variables occurring in
either s or t.)

When convenient, we treat Horn clause bodies as either monotone terms
or as vectors in {0, 1}n, and treat vectors sometimes as subsets of [n]. If for
x ∈ {0, 1}n and Horn clause C we have body(C) ⊆ x, we say x covers C.
Notice that x falsifies C if and only if x covers C and head(C) 6∈ x. (By
definition, F 6∈ x.)

Our Horn sentence revision algorithm makes frequent use of the fact that
if x and y both cover clause C, and at least one of x and y falsifies C, then
x ∩ y falsifies C.

A Boolean formula ϕ is a read-once formula, sometimes also called a µ-
formula or a Boolean tree, if every variable has at most one occurrence in ϕ,
and the operations used are ∧, ∨, and ¬. Such a formula can be represented
as a binary tree where the internal nodes are labeled with ∧, ∨, and ¬ and
the leaves are labeled with distinct variables or the constants 0 or 1. (For
technical reasons, we extend the standard notion, which does not allow for
constants in the leaves.) The internal nodes correspond to the subformulas.
We call a subformula of ϕ constant if it computes a constant function. A
constant subformula is maximal if it is not the subformula of any constant
subformula.

By the de Morgan rules, we may assume that negations are applied only
to variables. As we consider read-once formulas only in the deletions-only
model, and thus know the sign of each variable—we can replace the negated
variables with new variables (keeping in mind that every truth assignment
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should be handled accordingly). Thus without loss of generality we can
assume each variable is unnegated (i.e., we use only ∧ and ∨ in our read-once
formulas). A Boolean function is read once if it has an equivalent read-once
formula.

A substitution is a partial function σ : {x1, . . . , xn} ↪→ {0, 1}. Given a
substitution σ, let ϕσ be the formula obtained by replacing each variable
xi of ϕ that is in the domain of σ by σ(xi). Substitutions σ1 and σ2 are
equivalent (with respect to ϕ) if ϕσ1 and ϕσ2 compute the same function.

For the lower bound on revising read-once formulas we shall use a well
known notion, the Vapnik-Chervonenkis dimension [55] for Boolean func-
tions. Let C be a set of Boolean functions on some domain X. We say that
Y ⊆ X is shattered by C if for any Z ⊆ Y there is a cZ ∈ C such that

cZ(x) =

{
1 if x ∈ Z
0 if x ∈ Y \ Z.

Then VC-dim(C) := max {|Y | : Y ⊆ X and Y is shattered by C} is the VC-
dimension of C.

4.1 Theory Revision Definitions

Let ϕ be a Boolean formula using the variables x1, . . . , xn. The concept
represented by ϕ is the set of satisfying truth assignments for ϕ. For instance,
if ϕ = (x1 ∧ x2) ∨ (x1 ∧ x3), then that concept would be {110, 101, 111}.

With the exception of Section 7, our revision operator is fixing an oc-
currence of a variable in a formula to a constant (i.e., to either 0 or 1). For
instance, if we fix x2 in ϕ to 1, we obtain the revised formula (x1∧1)∨(x1∧x3),
which can be simplified to x1 ∨ (x1 ∧ x3), and is equivalent to x1. If in-
stead we fix the second occurrence of x1 to 0, we obtain the revised formula
(x1 ∧ x2) ∨ (0 ∧ x3), which can be simplified to x1 ∧ x2. Because the effect
of fixing a literal to a constant for DNF and CNF formulas is to delete that
literal, a clause, or a term, we also refer to this fixing of an occurrence of a
variable to a constant as a deletion. Note that for read-once formulas, this
instead corresponds to the “stuck-at” faults of fault detection.

For read-once formulas, where there is only one occurrence of the vari-
able(s) being fixed, we write a revision using substitution notation, σ =
(xi → ci), where ci is a constant. For example, applying the substitution
σ = (x2 → 1, x3 → 1) to the formula ϕ2 = (x1 ∧ x2) ∨ ¬x3 gives the revised
formula ϕ2σ = (x1 ∧ 1) ∨ ¬1, which simplifies to x1.
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In Section 7, we also allow the addition of a variable as a revision opera-
tor. Handling this operator is more difficult, and the consideration of parity
formulas provides an example of a tractable class.

We denote by Rϕ the set of formulas obtained from ϕ by fixing some
occurrences of some variables to constants. The corresponding concept class
is denoted by Cϕ.

The revision distance between a formula ϕ and some concept c ∈ Cϕ
is defined to be the minimum number of applications of a specified set of
revision operators to ϕ needed to obtain a formula for c. Thus, for example,
we showed earlier that the revision distance between ϕ = (x1∧x2)∨ (x1∧x3)
and the concept represented by x1 is 1.

A revision algorithm for a formula ϕ has access to membership and equiv-
alence oracles for an unknown target concept c ∈ Cϕ and must return some
representation in Rϕ of the target concept. Our goal is to find revision
algorithms whose query complexity is polynomial in the revision distance
between ϕ and the target, but at most polylogarithmic in the size of ϕ and
the size of the variable set. The total running time of all our algorithms
is always polynomial in the size of ϕ, the revision distance, and the num-
ber of attributes (since of course instances must be read and written). We
do not explicitly calculate exact asymptotic running times because they are
typically not drastically worse than the query complexity (e.g., number of
attributes times query complexity) and because we expect the query com-
plexity, or more generally, training data, to be the constraining factor in
practical applications.

In fact, our results provide something stronger than a revision algorithm.
The algorithms we give in this paper all revise some class of concept classes.
That is, our algorithms are meta-algorithms, as they take any formula ϕ from
a specified class of formulas (e.g., read-once formulas) and then function as a
revision algorithm for the concept class Cϕ. Notice that the choice of revision
operator(s) plays a double role. First, it defines the concept class: all things
reachable from the specified formula with the revision operator(s). Second,
it determines the revision distance, and that gives us a performance metric.

5 Revising Propositional Horn Sentences

In this section, we give an algorithm for revising Horn sentences in the
deletions-only model. Angluin et al. [5] gave an algorithm for learning Horn
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sentences with queries. Their algorithm has query complexity O(nm2), where
n is the number of variables and m is the number of clauses. This complex-
ity is unacceptable for the revision task when the revision distance e is much
smaller than the number of variables n. We give an algorithm, Revise-
Horn, displayed as Algorithm 1, that has query complexity O(em3 + m4)
(independent of n).

In the following subsection we give more details about the algorithm;
then, in Section 5.2, we give a lengthy example of a run of the algorithm.
The reader may find it helpful to switch back and forth between the two
subsections. The analysis of the query complexity and proof of correctness
is in Section 5.3. In Section 5.4, we provide a lower bound.

5.1 Overview of algorithm

The highest-level structure of Algorithm ReviseHorn is similar to the struc-
ture of Angluin et al.’s algorithm for learning Horn sentences [5] and also to
our DNF revision algorithm [30] (after making appropriate changes for the
duality between the CNF form of Horn sentences and DNF form). The pre-
sentation in this section is self-contained; we do not assume familiarity with
either of those papers.

We start with the hypothesis being the empty conjunction (i.e., every-
thing is classified as true) and repeatedly, in an outer loop (Lines 2–22), make
equivalence queries until the correct Horn sentence has been found.4 Each
negative counterexample is used, with the help of membership queries made
in subroutine ShrinkExample, to make the hypothesis more restrictive;
each positive counterexample is used to make the hypothesis more general.

We observe the following fact about negative instances, which we make
implicit use of throughout.

Proposition 1 Every negative instance of a CNF formula falsifies some
clause of that CNF formula.

Each negative counterexample is first processed by a subroutine called
ShrinkExample, Algorithm 2, which we will discuss in detail shortly. In
general, that subroutine may change certain 1’s to 0’s while still leaving

4It is somewhat surprising that we start with the empty conjunction rather than the
initial theory, but we have been unable to find a revision algorithm with good query
complexity that starts with the initial theory.
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Algorithm 1 ReviseHorn. Revises Horn sentence ϕ.

1: h = empty hypothesis (everywhere true)
2: while (x = EQ(h)) 6= “Correct” do
3: if h(x) == 1 then {x is a negative counterexample}
4: x = ShrinkExample(x, ϕ, h)
5: for each clause-group C ∈ h in order do
6: if body(C) ∩ x ⊂ body(C) and then MQ(body(C) ∩ x) == 0

then
7: body(C) = x ∩ body(C)
8: if head(C) 6= F then
9: Add to head(C) any variable just deleted from body(C) that

is the head of some clause of ϕ
10: end if
11: break the for loop
12: end if
13: end for
14: if x wasn’t used to shrink any clause-group in h then
15: h = h ∧ (x→ F)
16: end if
17: else {x is a positive counterexample}
18: for each clause C of h such that C(x) = 0 do
19: if head(C) 6= F then
20: Delete C from h
21: else
22: Change C to clause-group with heads every head of a clause in

ϕ that is in x \ body(C)
23: end if
24: end for
25: end if
26: end while
27: return h
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the negative counterexample as a negative counterexample to the current
hypothesis.

Following Angluin et al., we sometimes find it convenient to organize our
hypothesis by distinct clause bodies. We call the collection of all clauses in one
Horn sentence that have the same body a clause-group. (Angluin et al. called
a clause-group a meta-clause.) We will use the notation (body → x1, x4, x5)
to denote the clause-group with body body and heads x1, x4, and x5, which is
shorthand for the conjunction of clauses (body → x1)∧(body → x4)∧(body →
x5).

Algorithm ReviseHorn attempts to use the negative counterexample x
returned from ShrinkExample to make deletions from the body of an ex-
isting hypothesis clause-group C. This can be done when first body(C)∩x ⊂
body(C), so that there are some deletions to body(C) to make. We also need
that body(C)∩x is still a negative instance. If so, then we update body(C) to
body(C)∩x, and, if any of the variables we are deleting from body(C) are pos-
sible heads, then we also add those variables as heads of C. For instance, if we
have negative counterexample x = 11000011 and the hypothesis has clause-
group (x1x2x3x4 → x7, x8) then, if MQ(x∩ x1x2x3x4) = MQ(11000000) = 0
and if x3 and x4 are both heads of some initial theory clauses, then this
hypothesis clause-group is updated to (x1x2 → x3, x4, x7, x8).

If there is no hypothesis clause-group body that can be edited in that
way, then we make the hypothesis more restrictive by adding a new clause
to it, specifically (x → F). Notice that the very first counterexample will
always add a new hypothesis clause.

Positive counterexamples are always used to make the hypothesis more
general. We must somehow edit every hypothesis clause that is falsified by a
positive counterexample. If a positive counterexample falsifies any hypothesis
clause that has a head other than F, then that clause is simply deleted. In
practice, this will have the effect of deleting some but not all the heads of
a clause-group with multiple heads. (That fact follows from several lemmas
that we prove in Section 5.3.)

If instead a positive counterexample x falsifies a clause-group C with head
F, then this means that x covers C. In this case, C has some some head(s)
added to it, making it more general. In fact, we add all possible heads.
Specifically, at Line 22, ReviseHorn adds as heads of the clause-group C
all heads of clauses of ϕ that correspond to 1’s in x and are not in body(C).
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5.1.1 Shrinking negative examples

The point of Algorithm ShrinkExample is to take a negative counterex-
ample x to the current hypothesis, and to decrease the Hamming weight of
x. Ideally, x should contain only 1’s in the positions corresponding to the
body of the initial theory clause C0 from which the target clause C∗ that x
falsifies is derived. Then if we use x to introduce a new hypothesis clause,

Algorithm 2 ShrinkExample(x, ϕ, h).

1: repeat
2: done = true
3: for each clause C0 ∈ ϕ do

4: if x
•
∩ body(C0) 6= x and then MQ(x

•
∩ body(C0)) == 0 then

5: x = x
•
∩ body(C0)

6: done = false
7: end if
8: end for
9: until done

10: return x

that new hypothesis clause will not have too many extraneous variables in it.
If instead we use x to make deletions from a hypothesis clause-group body,
then a smaller counterexample is helpful because it produces more deletions.

We make the following observation, which we will use to help explain
Algorithm ShrinkExample.

Proposition 2 If target formula clause C∗ is a revision of initial theory
clause C0, then body(C∗) ⊆ body(C0).

Proof. This follows because the only revision operator that we allow is
deletion.

Now notice that if negative counterexample x falsifies target clause C∗
that is a revision of some initial theory clause C0, then x ∩ body(C0) also
falsifies C∗ because by Proposition 2, body(C∗) ⊆ body(C0). Thus, we would
like to say that for each clause C0 of the initial theory, if MQ(x∩body(C0)) =
0, then set x to x∩ body(C0). However, there is one issue to which we must
pay careful attention.

We need to make sure that we do not, in the process of intersecting x
with initial theory clause bodies, change x from an example that the current
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hypothesis classifies as positive to one the current hypothesis classifies as

negative. This is why we use the funny notation x
•
∩ C0 instead of x ∩C0 in

Lines 4 and 5 of ShrinkExample, which we now explain.

Let h be a collection of Horn clauses. The
•
∩ operation with respect to h

(which will usually be understood to be the current constructed hypothesis)
is formally defined to be the result of the pseudocode given as Algorithm 3.

Algorithm 3 x
•
∩ y with respect to Horn sentence h

1: answer = x ∩ y
2: repeat
3: for each clause C in h do
4: if x both covers and satisfies C and answer falsifies C then
5: Change head(C) to 1 in answer
6: end if
7: end for
8: until answer is not changed

The idea is that the result of x
•
∩ y is the same as the result of x ∩ y

except when there are one or more hypothesis clauses C such that x ∩ y
covers body(C) and x has a 1 in the position head(C), in which case that 1
stays on regardless of y, for each such hypothesis clause.

Example: Imagine that the current hypothesis is h = (x1x2 → x5) ∧
(x1x2 → x6)∧(x5x6 → x7). (Notice, by the way, that this hypothesis contains
three clauses but only two clause-groups.) Now 1111111∩x1x2x3 = 1110000,

but 111111
•
∩ x1x2x3 = 1110111. The first loop of the

•
∩ operation will set

answer to 1110110, and the second to 1110111.

We make an easy observation about the
•
∩ operation, and then next we

prove that the
•
∩ operation has the property we want in terms of making sure

that its output satisfies the hypothesis.

Proposition 3 For any x and y,

x ∩ y ⊆ x
•
∩ y ⊆ x .

Lemma 4 If x satisfies hypothesis h, then for any y, the instance x
•
∩ y with

respect to h also satisfies h.
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Proof. There are two different ways an instance can satisfy a Horn clause:
either by not covering the clause, or by covering the clause and having the
clause’s head set to 1. We know that x satisfies every clause ch of h. If x

does not cover ch, then neither can x
•
∩ y, because x

•
∩ y ⊆ x.

If x does cover ch, then x has head(ch) set to 1 because x satisfies ch.

Now the procedure for
•
∩ guarantees that if x

•
∩ y covers ch, then x

•
∩ y will

satisfy ch by having head(ch) set to 1.

The other interesting thing about Algorithm ShrinkExample is that it
repeatedly loops through all the initial theory clauses, continuing to look for
deletions from x until we make a full pass through all the initial theory clauses
without changing x at all. We need this repeated looping to guarantee a
property of the output of ShrinkExample that is proved later in Lemma 8.

5.2 An example run of ReviseHorn

We now give an example run of ReviseHorn. Suppose the variable set is
{x1, x2, x3, x4, x5}, and the target formula ϕ and the target formula ψ are
given by

ϕ ≡ (x1x2x3 → x4) ∧ (x2x4 → x1) ∧ (x2x4 → x5)

ψ ≡ (x1x2x3 → x4) ∧ (x2x4 → x1) ∧ (x2 → x5)

Algorithm ReviseHorn always initializes the hypothesis h to the every-
where true empty conjunction. Say EQ(h) = 11101, a negative counterex-
ample.

So now we call ShrinkExample(11101, ϕ, h). It first determines that

11101
•
∩ x1x2x3 = 11100 6= 11101, so it asks the query MQ(11100) and

learns that 11100 is also a negative instance, so x is reset to be 11100. Next

11100
•
∩ x2x4 = 01000 6= 11100, so the query MQ(01000) = 0 is made, and

x is reset to 01000. Since the third initial formula clause has the same body

as the second, 01000
•
∩ x2x4 = 010000. Now ShrinkExample begins the

second iteration of its main loop. This time 01000
•
∩ x1x2x3 = 01000 and

01000
•
∩ x2x4 = 01000, so x is not altered, and the value 01000 is returned.

Accordingly, the hypothesis is updated by ReviseHorn to be

h = (x2 → F) .
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The next main loop of ReviseHorn makes the equivalence query EQ(h),
and this time say EQ(h) = 11111, a positive counterexample. Since the
hypothesis clause has head F, at Line 22 ReviseHorn puts in all possible
heads, updating the hypothesis to:

h = (x2 → x1, x4, x5) .

Now suppose that EQ(h) = 11001. This positive counterexample causes
the hypothesis clause (x2 → x4), which it falsifies, to be deleted. The hy-
pothesis is updated to:

h = (x2 → x1, x5) .

This time say EQ(h) = 11101. Now in ShrinkExample, 11101
•
∩

x1x2x3 = 11101 (and not 11100 because 11101 would falsify the hypothe-

sis clause (x2 → x5)). Next 11101
•
∩ x2x4 = 11001, and so the membership

query MQ(11001) = 1 is made. Since that membership query returns 1,
ShrinkExample does not modify its input at all, and returns 11101, and
the hypothesis now becomes

(x2 → x1, x5) ∧ (x1x2x3x5 → F) .

Now say EQ(h) = 11111, a positive counterexample. We change the
heads of the second hypothesis clause-group so the hypothesis is now:

(x2 → x1, x5) ∧ (x1x2x3x5 → x4) .

Now say EQ(h) = 01111, another positive counterexample. Revise-
Horn removes x1 as a head of the first hypothesis clause-group, updating
the hypothesis to

(x2 → x5) ∧ (x1x2x3x5 → x4) .

Say this time EQ(h) = 01111. When ShrinkExample is called, it first

determines that 01111
•
∩ x1x2x3 = 01101 and MQ(01101) = 1, so that does

not change x. Next, 01111
•
∩ x2x4 = 01011, and MQ(01011) = 0, so x is

changed to 01011. No further changes to x are made in ShrinkExample,
so 01011 is returned by ShrinkExample. Now back in ReviseHorn, x2 ∩
01011 = x2, so editing the first hypothesis clause-group is not considered.
Next x1x2x3x5 ∩ 01011 = x2x5, so the membership query MQ(01001) = 1 is
tried, but since it returns 1, the second hypothesis clause-group is also not
edited. Instead, a new clause-group is added, giving the hypothesis
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(x2 → x5) ∧ (x1x2x3x5 → x4) ∧ (x2x4x5 → F) .

Now say EQ(h) = 11011. Then ReviseHorn will use this positive
counterexample to change the third clause-group, and we will arrive at

(x2 → x5) ∧ (x1x2x3x5 → x4) ∧ (x2x4x5 → x1) .

Finally, EQ(h) = “Correct”. Notice, by the way, that the final correct
hypothesis does not have exactly the same form as we stated, but is equivalent
to it via resolution.

5.3 Horn Revision Algorithm Correctness

Once we have established that Algorithm ReviseHorn halts, its correctness
follows from its form. We prove a bound on its query complexity using a series
of lemmas.

Several of these lemmas involve proving that some property of the hypoth-
esis is invariant. We point out here that there are only four places where the
hypothesis is ever changed: one place where hypothesis clause-group bodies
are created, one where they can be altered, and two places where the set of
heads of a clause-group can be altered. One is using a positive counterex-
ample to edit the hypothesis in Lines 18–24 of ReviseHorn. The other is
moving a clause-group body variable into the head of the clause-group at
Line 9 of ReviseHorn.

We begin with an observation about the heads of the hypothesis clauses.
We then prove several facts about ShrinkExample, which is at the heart
of making the query complexity independent of the number of variables n.

Proposition 5 Every head of a hypothesis clause-group other than F is a
head of some initial theory clause.

We record in the following lemma the fact that x remains a negative
counterexample to the current hypothesis after it is modified in ShrinkEx-
ample.

Lemma 6 If x is a negative instance satisfying Horn sentence h, then the
instance returned by ShrinkExample(x, ϕ, h) is also a negative instance
satisfying h.
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Proof. As the algorithm proceeds, x is modified to be x
•
∩ body(C0) only

immediately after a membership query guarantees that x
•
∩ body(C0) is a

negative instance. Thus the returned instance will be negative.

Lemma 4 says that if x satisfies h, then so does x
•
∩ y for any y.

Next, before proceeding to bound the query complexity of the entire Re-
viseHorn algorithm, we bound the query complexity of the ShrinkExam-
ple algorithm.

Lemma 7 Algorithm ShrinkExample makes at most O(m2) membership
queries, where m is the number of clauses in the initial theory ϕ.

Proof. Each iteration of the outer repeat until loop makes at most one
query for each clause in ϕ. To prove the lemma, we will prove that there are
at most 2m+ 1 iterations of the outer repeat until loop.

Each time there is an iteration of the outer loop, x must be altered. The
only way that x is ever altered is by changing 1’s to 0’s. For a given initial

formula clause C0 ∈ ϕ, once we set x = x
•
∩ body(C0), we know that we

have set to 0 every position of x that is not either in body(C0) or the head
of some hypothesis clause.

Thus, x can be altered at most once for each head of a hypothesis clause,
plus once for each initial theory clause. The heads of the hypothesis clauses
are a subset of the heads of the initial theory clauses, so there are at most m
of them, as there are m initial theory clauses. Thus x can be altered at most
2m times, so the outer loop can execute at most 2m+ 1 times, as desired.

Now we show how the output of ShrinkExample is connected to the
notion of revision of the initial formula.

Lemma 8 Let x be the output from ShrinkExample. For every target
clause C∗ that x falsifies, for each initial theory clause C0 such that C∗ is a
revision of C0, any position that is a 1 in x either corresponds to a variable
in body(C0) or corresponds to a head of some initial theory clause.

Proof. Assume for contradiction that for some such C0 and C∗ that x
contains a 1 in a position that is neither in body(C0) nor a head of an initial
theory clause. Consider the final iteration of the outer repeat until loop of
Algorithm ShrinkExample. Note that x is unchanged in the final iteration
of the algorithm. We will derive a contradiction by showing that this x would
be changed.
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By our assumption about x, we know that x
•
∩ body(C0) 6= x. If we can

show that x
•
∩ body(C0) is a negative instance of the target, we have our

contradiction, because then this x would be modified at Line 5 of ShrinkEx-
ample, forcing another iteration of the outer repeat until loop.

Now x falsifies C∗, so x already has head(C∗) set to 0. Therefore, x
•
∩

body(C0) also has head(C∗) set to 0. If we now show that x
•
∩ body(C0)

covers C∗, then we have shown that x
•
∩ body(C0) is a negative instance,

and we are done. Because x falsifies C∗, we have that x covers C∗. Since
C∗ is a revision of C0, we have body(C∗) ⊆ body(C0). By Proposition 3,

x ∩ body(C0) ⊆ x
•
∩ body(C0), so x

•
∩ body(C0) covers C∗.

Now we move on to show that every clause-group body falsifies at least
one clause of the target Horn sentence, and that no target clause is falsified
by more than one clause-group body. We first prove the first of these two
facts, and then prove some lemmas we will need to prove the second.

Lemma 9 Each clause-group body in the hypothesis always falsifies some
clause of the target concept.

Proof. The body of the clause-group is always a negative instance of
the target. This is true when the clause-group is first added at Line 15
of ShrinkExample by Lemma 6, and this is maintained as an invariant be-
cause it is guaranteed by a membership query immediately before changing
a clause-group body at Line 7 of ReviseHorn.

Lemma 10 For every hypothesis clause-group C with head other than F, for
every target clause C∗ that body(C) falsifies, head(C∗) is always one of the
heads of C.

Proof. When created, every hypothesis clause-group has head F.
When we first change the clause-group C’s head from F, we know by

Lemma 9 that body(C) falsifies at least one target clause. Also, we know
from the existence of a counterexample that covers body(C) and is classified
by the target as positive that the target clauses that are falsified by body(C)
must have a head other than F. At this point we put in all possible heads.
When we delete a variable from a clause-group body, if it is a possible head,
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we add it. We remove a head only when a positive counterexample guarantees
that it must be removed.

From this lemma we can show that no clause-group in the hypothesis is
ever altogether deleted from the hypothesis, although it may be revised in
various ways.

Corollary 11 No hypothesis clause-group, once introduced, is ever deleted.

Proof. The only way that this could potentially happen would be if at
Line 20 of ReviseHorn we removed the last clause (i.e., head) of a particular
hypothesis clause-group C.

Consider hypothesis clause-group C. If head(C) = F, then it has the one
head F, and there is no operation to remove it.

If C has head(s) other than F, then by Lemma 9, body(C) falsifies some
target clause C∗. Now, by Lemma 10, one of the heads of clause-group C
is head(C∗). There cannot be any positive counterexample falsifying the
hypothesis clause whose body is body(C) and whose head is head(C∗), so
that head of clause-group C is never deleted.

Lemma 12 For a given hypothesis clause-group C, no variable is ever added
as head more than once.

Proof. Heads are initially added once when a clause-group head is first
changed from F at Line 22 of ReviseHorn. After that happens, the clause-
group will never have head F again. Thereafter, heads are added when they
are deleted from the body. Because there are no additions made to hypothesis
bodies, these heads could not previously have been heads of that hypothesis
clause; they were always in the body. Once deleted from the body, they are
never restored.

Lemma 13 No two hypothesis clause-group bodies ever falsify the same tar-
get clause.

Proof. We follow the proof in Angluin et al. [5] of an analogous statement
about their algorithm for learning Horn sentences from scratch.

We first show that the following claim implies the lemma, and then prove
the claim.
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Claim: Consider the clause-group bodies b1, b2, . . . , bh of hypothesis h in
the order added. For any j, if bj falsifies target clause C∗, then no bi with
i < j covers C∗.

Assume that the claim is true, but nevertheless the bodies of hypothesis
clause-groups Ck and C` both falsify the target clause C∗, and WLOG, k < `.
This contradicts the claim, since body(Ck) falsifies C∗.

Now we prove that the claim is true by induction on the number of changes
made to the hypothesis. It is certainly vacuously true of the initial empty
hypothesis. We must show that this property remains invariant whenever
we alter the hypothesis. Positive counterexamples do not change the set of
clause-group bodies, so we need consider only negative counterexamples.

Consider first the case of modifying a clause-group body bj at Line 7 of
Algorithm ReviseHorn by setting bj = x ∩ bj, where bj = body(Cj). After
this modification, bj cannot cover more clauses of the target formula than
before, so we need worry only about clause-groups bi with i < j. Suppose for
contradiction that bj now falsifies some new target clause C∗, and bi covers
C∗, with i < j. It must be that before this change that bj covered C∗ and
so x falsified C∗. Now we have that bi ∩ x falsifies C∗, because bi covers C∗
and x falsifies C∗. Therefore x would have been used to edit bi in the for
loop at Lines 5–13 of ReviseHorn, as long as bi ∩ x ⊂ bi. What happens
if bi ∩ x = bi? Since bi ∩ x = bi falsifies C∗, we have that bi falsifies C∗.
By Lemma 10, bi’s clause-group either has head F or has head(C∗) among
its heads. Therefore x does not satisfy bi’s clause-group, because x covers bi
and x falsifies C∗. Lemma 6 says that x must satisfy (every clause of) the
hypothesis.

Next, consider the case of adding a new clause-group with body b =
x at Line 15 of Algorithm ReviseHorn, where again x was returned by
Algorithm ShrinkExample. Suppose for contradiction that b falsifies C∗,
and that hypothesis clause-group body bi covers C∗. Since b = x falsifies C∗
and bi covers C∗, we have that bi∩x falsifies C∗, so the if statement at Line 6
should have directed the algorithm to use x to edit bi as long as bi ∩ x ⊂ bi.
If instead bi∩x = bi, then bi falsifies C∗, and again by Lemma 10, it must be
that b does not satisfy bi’s clause-group, contradicting the assumption that
x satisfies the hypothesis.

Theorem 14 Algorithm ReviseHorn uses at most O (m3e+m4) queries
to revise a Horn sentence containing m clauses and needing e revisions.
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Proof. First, remember that, by Corollary 11, once a particular clause-
group is added, it is never deleted. By Lemmas 9 and 13, the number of
clause-groups is at most the number of clauses in the target formula. Thus
in the worst case one clause-group C is introduced into the hypothesis for
each target clause C∗.

Let us consider how many queries that one clause-group C can generate
over the lifetime of the algorithm. Its creation required O(m2) queries for
the call to ShrinkExample for the negative counterexample, plus O(m) in
the main code of ReviseHorn.

Next, consider the manipulation of heads in the clause-group. There can
be at most m heads introduced to a clause (plus F). By Lemma 12, each
of them can be removed or moved exactly once. Each such edit uses O(1)
queries.

Finally, consider the use of negative counterexamples to edit the body of
the clause-group C. By Lemma 7, each such negative counterexample may
cost O(m2) queries. We will get our overall query bound by showing that
the number of edits to the body of C is at most O(m+ e).

At any point in the run of the algorithm, body(C) falsifies (at least one)
target clause C∗, by Lemma 9. By Lemma 8, the variables in body(C) fall
into three categories:

1. Those in body(C∗) (which should not be deleted).

2. Variables that are heads of some initial theory clause.

3. Variables that are in the initial theory clause C0 from which C∗ is
derived, but are not in C∗. That is, the variables that need the revision.

Now there are at most m heads of initial theory clauses, and there are at
most e variables that need to be deleted.

This is not quite the whole proof, however. Lemma 9 says that body(C)
must always falsify the body of some target clause, but it does not say that
it must always be the same target clause.

A negative counterexample may cause body(C) to change which target
clause body it falsifies. We now argue that this can happen only m−1 times,
because once body(C) ceases to falsify a particular target clause, it can never
again in its life falsify that target clause. This is so because the only way
that the clause-group body could stop falsifying target clause C∗ would be by
having some variable in body(C∗) deleted from the clause-group, and once a
variable is deleted from a clause-group body it is never put back in.
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Moreover, the m + e edits of body(C) accounted for in Items 2 and 3
above are the total for the entire life of clause-group C, not just for the
period while clause-group C is associated with one particular target clause.
This is so because m is the total number of heads of initial theory clauses
that might ever have to be deleted from C in its lifetime, and again, once one
of those heads is deleted it is never replaced. Similarly, e is an upper bound
on the total number of deletions to be made from all initial theory clauses,
and once one of those variables is deleted, it is never replaced.

Since there are up to m hypothesis clause-groups, the total algorithm
requires O(em3 +m4) queries.

5.4 A lower bound on revising Horn sentences

In this subsection, we give a lower bound on the query complexity of revising
Horn sentences. The argument shows that in general we cannot escape some
dependence on the number of clauses in the initial formula. We give a Horn
sentence where Ω(m) queries are required to make a single deletion revision.
Note that we will not have to specify the target function in advance, because,
as is usual with adversary arguments, we need only make sure that all our
adversary’s responses are consistent with some target function.

The technical argument is very similar to our lower bound on revising
DNF [30], here transformed for the CNF form of Horn sentences.

Consider the variables x1, . . . , xn, y1, . . . , yn and let ϕn = c1 ∧ · · · ∧ cn,
where, for i = 1, . . . , n,

ci = (x1 · · ·xi−1xi+1 · · ·xn ∧ yi → F) .

Theorem 15 The formula ϕn requires at least n− 1 membership and equiv-
alence queries to be revised, if each equivalence query must be a conjunction
of Horn clauses, with each Horn clause body the revision of some body of a
clause in ϕn, even if it is known that exactly one literal yi is deleted.

Proof. We describe how an adversary can answer the queries of any possible
revision algorithm in a way that forces the revision algorithm to make the
claimed number of queries. Let ψi be the formula obtained from ϕn by
deleting the single occurrence of variable yi. Initially any concept in Ψ =
{ψ1, . . . , ψn} is a possible target concept, and the adversary strategy that we
describe will eliminate at most one concept from Ψ per query made by the
revision algorithm. This implies the claimed lower bound.

28



Let us use ordered pairs (x, y) to denote truth assignments to the 2n
variables, where the first component x will be the truth assignment to the
xi’s and the second component the truth assignment to yi’s.

A membership query (x, y) is answered as follows. If x has at most
n − 2 bits that are 1, then MQ(x, y) = 1. This does not eliminate any
concepts from Ψ. If x has n − 1 bits that are 1 with position xi = 0, then
MQ((x, y)) = ȳi. If yi = 1 then this does not eliminate any concept from Ψ.
If yi = 0 then ψi is eliminated from Ψ. If x = 1 then MQ((x, y)) = 0. This
does not eliminate any concept from Ψ.

Now consider an equivalence query EQ(θ), where θ is a conjunction of
Horn clauses, and for each clause C of θ, we have that body(C) is a revised
version of the body of some clause of ϕn.

If θ contains any clause C with at most n−2 of the xi’s in it, then return
the positive counterexample that has a 1 for every position of body(C), and
0’s elsewhere. This does not eliminate any concept from Ψ.

If θ has no clause with at most n− 2 of the x’s, but contains at least one
clause Ci with body(Ci) being all the x’s except xi (and no y), then return
the positive counterexample that has a 1 for every position of body(C), and
0’s elsewhere. This eliminates only concept ψi from Ψ.

The final possibility is that every clause in θ has exactly n− 1 of the x’s
in it together with the corresponding y. (This case includes the case where
θ = ϕn.) In this case, return the negative counterexample 1n0n. This does
not eliminate any concept from Ψ.

6 Revising read-once formulas

In this section we present a revision algorithm for the class of read-once
formulas, and lower bounds showing that the algorithm is close to optimal.
In the first subsection we give some preliminaries for the revision algorithm.
This is followed by the description of the algorithm, its analysis and a detailed
example. The final subsection gives the lower bounds.

6.1 Sensitization, subformulas

Our revision algorithm uses the technique of path sensitization from fault
analysis in switching theory (see, e.g., Kohavi [39]). Assume that we would
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like to revise the monotone read-once formula

ϕ = (ϕ1 ∨ ϕ2) ∧ ϕ3 ,

and let the target formula be

ψ = (ψ1 ∨ ψ2) ∧ ψ3 ,

where ψ is obtained from ϕ by replacing certain variables by constants. Con-
sider the partial truth assignment α that fixes all the variables in ϕ2 to 0, and
all the variables in ϕ3 to 1. This fixing of the variables is called sensitizing
ϕ1 , and α is called the sensitizing partial truth assignment for ϕ1. Form two
vectors x0 and x1 by fixing the remaining variables to 0, resp., to 1, and ask
the membership queries MQ(x0) and MQ(x1).

There are three possibilities.

1. If MQ(x1) = 0, then it must be the case that either ψ1(1) = 0, in
which case ψ1 is identically 0, or ψ3(1) = 0, in which case the whole
target formula is identically 0.

2. If MQ(x0) = 1, then it must be the case that either ψ1(0) = 1, in which
case ψ1 is identically 1, or ψ2(0) = 1, in which case ψ2 is identically 1.

3. For the revision algorithm it is important to notice that we can also
gain information in the third case, when MQ(x0) = 0 and MQ(x1) = 1.
In this case we do not observe any “abnormality,” but we can conclude
that for every truth assignment y to the variables of ψ1 it holds that
ψ1(y) = MQ(y, α). Thus we can simulate membership queries to the
subformula ψ1 by membership queries to the target concept, and this
enables the revision algorithm to proceed by recursion. Also note that
in this case it is still possible that ψ2(1) = 0 and/or ψ3(0) = 1.

Now we give the general definition of a sensitizing partial truth assign-
ment. Let ϕ′ be a subformula of ϕ. Consider the binary tree representing ϕ,
and let P be the path leading from the root of ϕ to the root of ϕ′. Then ϕ
can be written as

ϕ = (· · · (ϕ′ ◦r ϕr) ◦r−1 · · · ◦3 ϕ3) ◦2 ϕ2) ◦1 ϕ1, (1)

where ϕ1, . . . , ϕr are the subformulas corresponding to the siblings of the
nodes of P , and ◦1, . . . , ◦r are either ∧ or ∨. In this representation we used
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the commutativity of ∧ and ∨; in general ϕ′ need not be a leftmost subformula
of ϕ. Let ψ be obtained from ϕ by replacing certain variables by constants.
Then, as in (1), we can write ψ as

ψ = (· · · (ψ′ ◦r ψr) ◦r−1 · · · ◦3 ψ3) ◦2 ψ2) ◦1 ψ1. (2)

Definition 16 Let ϕ be a read-once formula with subformula ϕ′. Write ϕ
as in Equation 1. Let the sets of variables occurring in ϕi be Xi, and the
set of variables occurring in ϕ′ be Y . Since ϕ is read-once, these sets form
a partition of {x1, . . . , xn}. Now let α be the partial truth assignment that
assigns 1 (resp., 0) to every variable in Xi if ◦i is ∧ (resp., ∨), for every
i = 1, . . . , r. Then α is called the partial truth assignment sensitizing
ϕ′.

Generalizing the remarks above, let α be the partial truth assignment
sensitizing ϕ′. Form the truth assignments x0 = (0, α) (resp. x1 = (1, α))
that extend α by assigning 0 (resp. 1) to the variables occurring in ϕ′. Now,
if MQ(x1) = 0, then it follows by the monotonicity of ψ that either ψ′ or
a subformula ψi such that ◦i = ∧ is constant 0. In this case, the whole
subformula corresponding to (· · · (ψ′ ◦r ψr) ◦r−1 · · · ◦i−1 ψi−1) ◦i ψi in the
target must be constant 0; thus this whole subformula can be deleted and
replaced by 0. The case is similar when MQ(x0) = 1. On the other hand,
when MQ(x1) = 1 and MQ(x0) = 0, we can be sure that for any partial
truth assignment y of the variables in ψ′, we have ψ′(y) = MQ((y, α)).
This means that ψ′ is not part of a constant subformula. These remarks
are summarized in the following lemma, which is used several times later on
without mentioning it explicitly.

Lemma 17 a) Let ϕ be the initial formula, ϕ′ be a subformula of ϕ, let
ψ, ψ′ be the target formula, resp., its subformula corresponding to ϕ′, and
let α be the partial truth assignment sensitizing ϕ′. Then ψ′ is part of a
constant subformula if and only if MQ(0, α) = 1 or MQ(1, α) = 0. Otherwise
ψ′(y) = MQ(y, α) for every truth assignment y of the variables in ϕ′.

b) If ψ′ is a maximal constant subformula and ◦i is ∧ (resp. ∨), then
ϕi(1) = 1 (resp. ϕi(0) = 0) for every i = 1, . . . , r. 2

In the rest of this subsection we formulate some useful properties of sub-
formulas. Two subformulas are siblings if the corresponding nodes in the
tree representation are siblings. The next lemma follows directly from the
definitions.
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Lemma 18 Two maximal constant subformulas cannot be siblings. 2

The revision algorithm proceeds by finding maximal constant subformu-
las, thus it is important to know that identifying these is sufficient for learn-
ing.

Lemma 19 Substitutions σ1 and σ2 are equivalent for formula ϕ if and only
if the maximal constant subformulas of ϕσ1 and ϕσ2 are identical.

Proof. If the maximal constant subformulas are identical, then after replac-
ing them with the corresponding constants, one obtains the same formula.
Thus the if direction of the lemma holds. For the only if direction, assume
that σ1 and σ2 are equivalent for ϕ, but the maximal constant subformulas
are not identical. There are two cases. The first case is when there is a sub-
formula ϕ′ of ϕ that turns into a maximal constant subformula in both ϕσ1

and ϕσ2, but ϕ′σ1 ≡ 0 and ϕ′σ2 ≡ 1. Let α be the partial truth assignment
sensitizing ϕ′. Then (ϕσ1)(1, α) = 0, while (ϕσ2)(1, α) = 1, contradicting
the assumption that σ1 and σ2 are equivalent. In the second case there is a
subformula which is maximal constant for one substitution, but not for the
other. Let ϕ′ be a largest such subformula. We may assume w.l.o.g that ϕ′σ1

is a maximal constant subformula, which computes the constant 0, and ϕ′σ2

is not part of a constant subformula. Then ϕσ1(1, α) = 0 and ϕσ2(1, α) = 1,
again contradicting the assumption that σ1 and σ2 are equivalent.

Corollary 20 By finding a revision of the formula ϕ that has maximal con-
stant subformulas identical to those of the target formula, we get a formula
equivalent to the target formula. 2

The following lemma can be proved by a simple algorithm that uses re-
cursion on the structure of the formula ϕ.

Lemma 21 Given a read-once formula ϕ and a constant c, one can find a
substitution σ such that ϕσ = c and σ fixes a minimal number of variables,
in polynomial time. 2

Let ϕ be a read-once formula with subformula ϕ′. We say that ϕ′ is
an approximately half-size subformula of ϕ if it contains at least one-third
and at most two-thirds of the variables in ϕ. It is a standard fact that
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such a subformula exists (see, e.g., Wegener [56]). For example, any minimal
subformula that contains at least one-third of the variables has this property.

If ϕ is a read-once formula with subformula ϕ′, then the ϕ′-partition of a
truth assignment x is (x1, x2), where x1 contains the values in x for all the
variables in ϕ′, and x2 contains the values in x for all the variables in ϕ that
are not in ϕ′.

6.2 The revision algorithm

Now we formulate the main result of this section, for Algorithm Revise-
ReadOnce (Algorithm 4), which revises read-once formulas in the deletions-
only model of revisions.

Theorem 22 Algorithm ReviseReadOnce uses at most O(e log n) queries
to revise a read-once formula containing n variables and needing e revisions.

Proof. Algorithm ReviseReadOnce consists of a loop that checks whether
the target has been found and if not calls FindConstant. In each call of
FindConstant by ReviseReadOnce, we identify a maximal constant
subformula of the target formula ψ, and we find a substitution that fixes
this subformula to the appropriate constant value. The maximal constant
subformula is then eliminated, thus the updated formula contains fewer vari-
ables. As the membership queries always refer to truth assignments to the
original set of variables, the new membership queries have to assign some val-
ues to the eliminated variables as well. The construction implies that these
variables are irrelevant, therefore their values can be arbitrary.

Algorithm 4 Algorithm ReviseReadOnce(ϕ)

1: while (x = EQ(ϕ)) 6= “correct” do
2: σ = FindConstant(ϕ, x)
3: ϕ = ϕσ
4: end while

FindConstant, displayed as Algorithm 5, is a recursive procedure,
which takes a formula ϕ and a counterexample x, and returns a substitu-
tion σ. The substitution fixes a subformula to a constant c. It always holds
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Algorithm 5 The procedure FindConstant(ϕ, x).

1: if ϕ has one variable then
2: return substitution σ fixing it to constant ¬ϕ(x)
3: end if
4: if MQ(0) == 1 or MQ(1) == 0 then
5: return substitution σ fixing ϕ to the appropriate constant
6: end if
7: ϕ′ = an approximately half-size subformula of ϕ
8: α = the partial truth assignment sensitizing ϕ′

9: if (MQ(0, α) == MQ(1, α) == c) then
10: return GrowFormula(ϕ, ϕ′, c)
11: else
12: (x1, x2) = the ϕ′-partition of x and x2 = (x2,1, . . . , x2,r) corresponding

to subformulas
13: if MQ(x1, α) 6= ϕ′(x1) then
14: FindConstant(ϕ′, x1) // look in ϕ′

15: else
16: i = FindFormula(ϕ, ϕ′, x)
17: FindConstant(ϕi, x2,i)
18: end if
19: end if
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that the subformula is a maximal constant subformula computing the con-
stant c in any representation of the target concept.5 FindConstant works
recursively, always focusing on a faulty subformula (i.e., a subformula which
contains some variable(s) replaced by a constant) of the previous level’s for-
mula. This subformula may never be a proper subformula of a constant
subformula—that is, it is part of a constant subformula if and only if it itself
is a maximal constant subformula. We assume this property holds at the
beginning of every recursion level, and we maintain it as we go deeper in
the recursion. This guarantees that we eventually find a maximal constant
subformula. Once such a subformula is found, we use Lemma 21 to return
an appropriate substitution.

As we go deeper in the recursion, we will need the ability to ask mem-
bership queries concerning only a subformula of the target. Therefore, when
we go to a lower recursion level with a subformula ϕ′ of ϕ, we determine
α, the partial truth assignment sensitizing ϕ′. This way, whenever a need
for a membership query arises on the lower level for a truth assignment y,
we need only ask MQ(y, α). Recursion only occurs when MQ(0, α) = 0 and
MQ(1, α) = 1, thus we can be sure that MQ(y, α) is equal to the value of
ψ′(y), where ψ′ is the subformula of the target formula corresponding to ϕ′.
From now on, when talking about membership queries, we always assume
that this technique is used. We write MQ(y) instead of MQ(y, α), where α
is the partial truth assignment sensitizing the current subformula.

Now we give a detailed description of FindConstant, by explaining
what it does on one level of the recursion: how it finds an appropriate faulty
subformula, and how it maintains the counterexample x so it can be carried
down into the next level as a counterexample. The correctness of the algo-
rithm follows from this discussion directly. The complexity analysis requires
only one point to be considered in detail. This is done in Lemma 23 at the
end of the proof.

Lines 1–3: We check whether the current subformula ϕ consists of a
single variable. If it does (say ϕ = vi), then—since we know that ϕ is not a
proper part of any constant subformula, but ϕ is faulty—we can be sure that
ϕ is a maximal constant subformula; thus the substitution vi → c, where

5In several places in the proof we will say that a property holds for any representation
of the target concept. Notice that this must be true, as all the information used by
the algorithm comes from membership and equivalence queries about the target, and the
responses to such queries are independent of the particular representation.
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c := ¬ϕ(x), will give the appropriate maximal constant subformula.

From now on we can assume that the input formula has more than one
variable.

Lines 4–6: FindConstant examines whether MQ(0) = 0 and MQ(1) =
1. If not, then the whole subformula is identically true or false. Since ϕ has
the property that it is not properly contained in a constant subformula, ϕ
itself must be a maximal constant subformula.

Lines 7–8: We now know that ϕ is not part of a constant subformula. We
determine an approximately half-size subformula ϕ′ of ϕ, and its sensitizing
partial truth assignment α.

Lines 9–10: We check if MQ(0, α) = MQ(1, α) = c. If that is the case,
then MQ(y, α) = c for any partial truth assignment y to the variables in ϕ′.
Thus ψ′ is a constant subformula, and so it is in a maximal constant subfor-
mula that is properly contained in ψ. At this point we do not perform any
further recursive calls. The only task left is to find the node on the path P
from the root of ψ to the root of ψ′ that is the root of that maximal constant
subformula. Procedure GrowFormula does this. As GrowFormula im-
plements a simple binary search, we give only a brief description, without
displaying its pseudocode. The procedure gets as input a read-once formula
ϕ, a subformula ϕ′, and a constant c such that MQ(0, α) = MQ(1, α) = c.
Using O(log n) membership queries it outputs a maximal subformula contain-
ing ϕ′ such that the corresponding subformula is identical to the constant c
in any representation of the target.

We now assume that c = 1; the case c = 0 is dual. Using the notation of
Definition 16, let αi for i = 0, . . . , r be the partial truth assignment that is
identical to α forX1, . . . , Xi, leaves the variables in Y unassigned, and assigns
0 to all the other variables. Then (0,0) = (0, α0) ≤ (0, α1) ≤ (0, α2) ≤ · · · ≤
(0, αr) = (0, α), and it holds that MQ(0, α0) = 0 and MQ(0, αr) = 1.

Asking membership queries MQ(0, αj), we can use binary search to find
an i (1 ≤ i ≤ r) such that MQ(0, αi−1) = 0 and MQ(0, αi) = 1. The
only difference between the truth assignments (0, αi−1) and (0, αi) is that
the variables in Xi are off in (0, αi−1) and they may be on in (0, αi). In fact,
they must be on, as otherwise (0, αi−1) = (0, αi). It also follows that ◦i is
∧. Thus, on one hand, it must be the case that ψi(0) = 0 and ψi(1) = 1
in any representation of the target concept. On the other hand, it must
be the case that the input to ◦i from its child on the path P is equal to
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1 in both cases. As the variables in this subformula are all set to 0, this
subformula must compute the constant 1 function. The inputs (0, αi−1) and
(0, αi) demonstrate that no larger subformula computes a constant function.
Thus the subformula rooted at ◦i−1 is a maximal constant subformula. This
completes the discussion of the procedure GrowFormula.

Lines 11–12: If we get to Line 11 then we know that ψ′ is not part of a
constant subformula, so we must continue the recursion to find one within
ψ′. Using counterexample x, we form the ϕ′-partition of x in Line 12. In
the remainder of the procedure we find a faulty subformula that has at most
two-thirds of the variables in ϕ.

Lines 13–14: Since α is the partial truth assignment sensitizing ϕ′, we
have ϕ(x1, α) = ϕ′(x1). Furthermore MQ(x1, α) = ψ′(x1), because ψ′ is not
part of a constant subformula. If MQ(x1, α) 6= ϕ(x1, α) then ϕ′(x1) 6= ψ′(x1),
thus ϕ′ contains a maximal constant subformula. Thus we can carry on
finding some faulty parts that contribute to the faulty evaluation on x by the
recursive call FindConstant(ϕ′, x1).

Lines 15–17: The only way we could get to this point is if MQ(x1, α) =
ψ′(x1) = ϕ′(x1) = d, and there are some faults in a subformula ϕi of ϕ for
some i ∈ {1, 2, . . . , r}. Let x2 = (x2,1, x2,2, . . . , x2,r), where x2,i is the part of
x2 containing the the variables in Xi. Let yi (resp. zi) be the value computed
at ◦i in ϕ (resp. ψ) on the input vector x, for i = 1, . . . , r. Furthermore let
yr+1 = d = zr+1. Then

yi = yi+1 ◦i ϕi(x2,i), and zi = zi+1 ◦i ψi(x2,i)

for i = 1, . . . , r. Since x was a counterexample to EQ(ϕ), it holds that
y1 = ϕ(x) 6= ψ(x) = z1.

Since yr+1 = zr+1 and y1 6= z1, there must be an i (1 ≤ i ≤ r) for
which yi+1 = zi+1 but yi 6= zi. Now let us assume that we know this special
i (the next paragraph describes the procedure FindFormula for finding
it). Then it follows that ϕi is faulty, and that x2,i is a counterexample to
the equivalence of ϕi and ψi. This means that we can carry on with the
search for the faulty subformula in ϕi. This can be done by a recursive
call for FindConstant, using x2,i as the counterexample. As before, in
the recursion we can simulate any assignment y to the variables in ψi by
MQ(y, α̃), where α̃ is the partial truth assignment sensitizing ϕi in ϕ (since
ϕ′ is not part of a constant subformula, neither is ϕi, thus the answer for this
query will indeed give us the value ψi(y)).
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The search for the appropriate index i is done by procedure FindFor-
mula using a weighted binary search as follows. The yi values can be com-
puted using ϕ without any queries. For the computation of the zi, let βi
be the partial truth assignment that assigns x2,j to the variables in Xj for
j = i, . . . , r and otherwise is identical to α. Then zi = MQ(x1, βi), since,
as ϕ′ is not contained in any constant subformula, there are no constant
subformulas on the path ◦1, . . . , ◦r.

Let nj denote the number of variables in ϕj, and define the weight of this
subformula to be wj = nj−1 + nj (j = 2, . . . , r). In the binary search we use
an interval I = [a, b]. Initially a = 2 and b = r, as we already know y1, z1,
yr+1 and zr+1. For a given I let s =

∑
j∈I wj. In each step we have to find

an index ` for which
∑`−1
j=awj < s/2 ≤ ∑`

j=awj (for this we don’t need to ask
any queries). We determine y` and z` (this can be done using one query). If
y` 6= z`, then let I = [` + 1, b], otherwise let I = [a, `− 1]. If I is nonempty,
we compute s again, and continue the search. Otherwise the search is over,
and if y` 6= z`, then ` is the i index we were looking for, otherwise it is `− 1.
This completes the description and the analysis of the revision algorithm.

Since in each iteration we find a maximal constant subformula, and then
we find a minimal substitution to fix the value computed by this subformula
to the appropriate constant, it follows that FindConstant is called at most
e times. The claimed complexity bound then follows from the following
lemma.

Lemma 23 When called by LearnReadOnce, Procedure FindConstant
uses at most a total of O(log n) membership queries.

Proof. The general idea of the proof is that the more queries consumed by
FindFormula, the smaller will be the recursive call to FindConstant.

Let us examine how procedure FindFormula works. Let u be the num-
ber of variables in subformula ϕ on a level of the recursion. Since ϕ′ is an
approximately half-size subformula of ϕ,

∑r
j=1 uj ≤ u · (2/3); thus initially

s =
∑
j∈I wj = (

∑r
j=2 2 · uj) − w1 − wr < 2 · u · (2/3) = u · (4/3). The value

of s will reduce to less than its half in each iteration of the search, so after k
queries s will be less than 1/2k times its initial value. Thus it will be at most
u·(4/3)·(1/2k). We also know that if it is the index i that should be returned,
then until the last query, the weight of ϕi or the weight of ϕi−1 appears in
s. But they both contain ui, thus before the last query we have s ≥ ui. In
summary, if we get the index i in t iterations, then we used t queries, and the
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number of variables in ϕi is ui ≤ u · (4/3) · (1/2t−1) = u/(3 ·2t−3). Thus using
t ≤ log(u/ui) + 3− log 3 < log(u/ui) + 2 queries we managed to restrict the
location of the faulty subformula to ϕi containing ui variables. Thus on this
recursion level we had to use fewer than K + 2 + log(u/ui) queries, where K
is the number of queries needed in Lines 4, 9 and 13.

The other way to enter the next recursion level is through line 14, which
does not need any additional queries above K. Furthermore at the bottom
of recursion we need at most O(log u) queries (Lines 1–10).

Note that on every level of the recursion the size of the subformula is at
most two-thirds of the size at the previous level. Thus, denoting the size of
the formula on the ith level of recursion by mi, we have at most q = log2/3m0

levels of recursion, and on each level (excluding the final one) we use at most
K + 2 + log(mi/mi+1) queries. Adding them up, we get that in one run of
FindConstant we use(
K + 2 + log

m0

m1

)
+ · · ·+

(
K + 2 + log

mq−1

mq

)
+O(logmq) = O(logm0)

queries.

The proof of Lemma 23 concludes the proof of the theorem.

6.3 Example Run of Revision Algorithm for Read-Once
Formulas

Here is a detailed example showing how the read-once revision algorithm
works. Let the formula to be revised be

ϕ = ((y1 ∧ y2) ∨ (y3 ∧ y4)) ∧ ((((y5 ∧ y6) ∨ y7) ∧ y8) ∨ y9)

and the substitution giving the target formula be

σ = (y3 → 1, y5, y6, y8 → 0). (3)

Thus the target concept is represented by the formula

ψ = ((y1 ∧ y2) ∨ (1 ∧ y4)) ∧ ((((0 ∧ 0) ∨ y7) ∧ 0) ∨ y9).

We start by asking the equivalence query EQ(ϕ). Let us assume that we
receive the negative counterexample x = 110011110. In Procedure Find-
Constant, the membership queries MQ(0) = 0 and MQ(1) = 1 bring us
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to Line 7. At this point we find an approximately half-size subformula , for
example

ϕ′ = (y1 ∧ y2) ∨ (y3 ∧ y4).

The corresponding subformula of the target is ψ′ = (y1 ∧ y2) ∨ (1 ∧ y4).
Now we form the sensitizing truth assignment α for ϕ′, which in this case

simply sets all variables not in ϕ′ to 1, and we ask membership queries for
(0, α) and for (1, α). The answer is MQ(0, α) = 0 and MQ(1, α) = 1, and
thus we continue on Line 12. We have x1 = 1100 and x2 = 11110. By
asking the membership query MQ(x1, α) we find that ψ′(x1) = 1. Knowing
ϕ, we can determine without asking any queries that ϕ′(x1) = 1. As ψ′(x1) =
ϕ′(x1), it follows that the x2 part of the counterexample is responsible for the
disagreement between ϕ(x) and ψ(x). In this particular case, the variables
in x2 happen to induce a subformula of ϕ, and so FindFormula does not
need to do anything. We substitute 1 for ϕ′. Then x2 = 11110 is a negative
counterexample for the new target, which is the subformula ψ′′ of the target
corresponding to

ϕ′′ = ((((y5 ∧ y6) ∨ y7) ∧ y8) ∨ y9).

It is important to note that as ψ′′(y) = ψ(x1, y), we can simulate membership
queries to the new target by membership queries to the original target; thus
we can continue the same procedure recursively.

As the subsequent iterations illustrate additional cases, we give fur-
ther steps of the algorithm on the example. In the next call, which is
FindConstant(ϕ′′, x2), we again get to Line 7. The next half size sub-
formula can be y5 ∧ y6. The sensitizing truth assignment for this subformula
is 010. Now, the membership queries to (00, 010) and (11, 010) both return 0,
indicating that either y5 ∧ y6 or some subformula containing it is turned into
the constant 0. Thus we call GrowFormula, which asks the additional
membership queries MQ(11, 110) = 0 and MQ(11, 111) = 1. This shows
that

(((y5 ∧ y6) ∨ y7) ∧ y8)

is a maximal constant 0 subformula in ϕ′′. No further recursive calls are
needed, we only need to compute the minimal number of variables that,
when turned to 0, make the subformula identically 0. This can be achieved
by the single substitution y8 → 0. Now we have completed one call of the
procedure FindConstant by the main program.
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The next call of FindConstant start with an equivalence query for the
formula obtained by the substitution just found, that is,

ϕ′′′ = ((y1 ∧ y2) ∨ (y3 ∧ y4)) ∧ y9.

Let us assume that we receive the positive counterexample 000111111, which,
restricted to the five variables in ϕ′′′, is 00011. We continue with the half
size subformula y1 ∧ y2, which divides the counterexample into 00 and 011.
The sensitizing partial truth assignment to the first half is 001. We find that
MQ(00, 001) = 0 and MQ(11, 001) = 1, thus y1 ∧ y2 is not turned into a
constant subformula. (Notice that our only membership oracle needs inputs
from {0, 1}9; fortunately, we may give any values to the “missing” variables.)
The membership query MQ(00, 001) = 0 tells us that the first half of the
counterexample gives the same output in y1 ∧ y2 and in the corresponding
subformula of the target. To recurse, we must find a subformula of ϕ′′′

that contains some constant subformula, but the three variables y3, y4, and
y9 do not induce a subformula of ϕ′′′. This is achieved by the procedure
FindFormula.

In this case we need consider only the two subformulas y3 ∧ y4 and y9,
though in general there could be Ω(n) such subformulas, necessitating the
binary search performed by FindFormula. By definition, ϕ′′′ disagrees
with the target on the counterexample, and we have just concluded that
y1∧ y2 agrees with the counterexample. So, if subformula (y1∧ y2)∨ (y3∧ y4)
of ϕ′′′ disagrees with the corresponding subformula of the target, then the
subformula containing a constant subformula must be y3∧y4. Otherwise it is
y9. To test whether the subformula (y1∧y2)∨ (y3∧y4) agrees with the target
on the counterexample, we ask a membership query on an instance formed
by setting y1, y2, y3, and y4 to the values they have in the counterexample,
and setting the remaining variable (y9) to the value it had in the sensitizing
assignment for y1 ∧ y2. That, is we make the query MQ(00011) = 1. Since
ϕ′′′(00011) = 0, which disagrees with the target, there must be a constant
subformula in y3 ∧ y4, which is the input subformula for the next call to
FindConstant.

That call will identify the substitution y3 → 1, and the next equivalence
query to the formula

((y1 ∧ y2) ∨ y4) ∧ y9

will finally identify the target concept. Notice that we have actually revised
fewer variables than given in Equation 3. The number of variables revised
is as small as possible for obtaining the target concept.
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6.4 Lower bounds on revising read-once formulas

We prove a lower bound to the query complexity of revising read-once for-
mulas by giving an example of an n-variable read-once formula, for which
Ω(e log(n/e)) equivalence and membership queries are required to find a dis-
tance e revision. If e = O(n1−ε) for some fixed ε > 0, then this lower bound
is of the same order of magnitude, as the upper bound provided by Revis-
eReadOnce. It is also shown that both types of queries are needed for
efficient revision. There are n-variable read-once formulas for which at least
n/2 equivalence queries are required in order to find a single revision. For
membership queries we present an even stronger lower bound, which shows
that at least n − e membership queries may be necessary, if (instead of not
using equivalence queries at all) one is allowed to use fewer than e equivalence
queries. As ReviseReadOnce uses exactly e equivalence queries to find a
distance e revision, this means that just by allowing one fewer equivalence
query, the number of membership queries required becomes linear. Bshouty
and Cleve and Bshouty et al. [16, 17] give somewhat related constructions
and tradeoff results for different query types.

Our first two lower bounds are based on read-once formulas of the form∨
(xi ∧ yi), using a V C-dimension, resp. an adversary argument, and the

third lower bound uses an adversary argument for the n-variable disjunction.

Theorem 24 The complexity of revising read-once formulas in the deletion-
only model is Ω(e log n

e
), where n is the number of variables in the initial

formula and e is the revision distance between the initial formula and the
target formula.

Proof. Let us assume that

n = 2me, where m = 2t .

We use variables xi,j and yi,j, where 1 ≤ i ≤ e and 0 ≤ j ≤ m − 1. The
initial formula is

ϕn =
e∨
i=1

m−1∨
j=0

(xi,j ∧ yi,j) .

Assume the x and y variables be arranged in respective e×m matrices called
X and Y , respectively. We look at the class of revisions of ϕn where in each
row of the matrix X exactly one variable is fixed to 1. Let the corresponding
concept class be Cn.
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Lemma 25 VC-dim(Cn) ≥ e · t.

Proof. For 1 ≤ k ≤ e and 1 ≤ ` ≤ t let

(Xk,`, Yk,`)

be a truth assignment that consists of all 0’s, with the exception of some
positions in the k’th row of the Y matrix: namely, those positions (k, j),
where the `’th bit of the binary representation of j is 1. Let the set of these
assignments be S. We claim that S is shattered by Cn.

Consider a subset A ⊆ S. For every k (1 ≤ k ≤ e) let ak be the t-bit
number describing which truth assignments (Xk,`, Yk,`) belong to A. (That
is, the `’th bit of ak is 1 iff (Xk,`, Yk,`) ∈ A.) We look at the revision ϕA for
which it is the ak’th variable which is fixed to 1 in row k of the matrix X.

It remains to show that this revision classifies S in the required manner.
If (Xk,`, Yk,`) ∈ A, then bit ` of ak is 1. By definition, Yk,` has a 1 at position
(k, ak). In ϕA, the variable xk,ak

is fixed to 1. These observations imply that

ϕA(Xk,`, Yk,`) = 1.

On the other hand, if (Xk,`, Yk,`) 6∈ A, then bit ` of ak is 0. The only
1 components of (Xk,`, Yk,`) are in row k of the Y matrix: these are those
positions (k, j), where the `’th bit of the binary representation of j is 1.
Position (k, ak) is not one of those. Thus the corresponding x-variables are
not fixed to 1 in ϕA, and as their value is 0, we get

ϕA(Xk,`, Yk,`) = 0.

By introducing dummy variables if n is not of the right form, we get

VC-dim(Cn) ≥ e blog
n

2e
c.

The theorem now follows from the general result that the VC-dim(Cn) pro-
vides a lower bound to the number of equivalence and membership queries
required to learn Cn up to a constant factor, even if the equivalence queries
are not required to be proper [11, 42].

The number of formulas within revision distance e of a given read-once
formula is at most 2e ·

(
n
e

)
. Thus if we allow equivalence queries which are
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not necessarily proper, then by using the standard halving algorithm [41]

one can learn a revision using log
(
2e ·

(
n
e

))
= O(e log n) many equivalence

queries. We now show that such a result is not possible if the queries are
required to be proper.

Theorem 26 The complexity of revising read-once formulas in the deletion-
only model with proper equivalence queries is at least

⌊
n
2

⌋
, where n is the

number of variables in the initial formula, even if we assume that a single
revision occurs.

Proof. We use the initial formula

ϕn =

bn
2 c∨
i=1

(x2i−1 ∧ x2i). (4)

Variables in the same conjunction are called partners. The revisions consid-
ered fix exactly one variable to 1. Let the formula obtained from ϕn by fixing
xj to 1 be ϕjn, and let the class C ′n consist of the formulas ϕjn. We describe an

adversary strategy that forces every learner to use at least
⌊
n
2

⌋
equivalence

queries.
It may be assumed that the hypotheses are consistent with the previ-

ous counterexamples, otherwise one of the previous counterexamples can be
returned again. Let us assume that the learner asks an equivalence query
EQ(ψ).

If both a variable and its partner is fixed to 1 in ψ (i.e., ψ ≡ 1), then
return 0 as a negative counterexample. This does not rule out any concept
from C ′n

Otherwise, if some variable xj is fixed to 0 in ψ then return the positive
counterexample which is all 0’s, except that xj and its partner have value 1.
Again, this does not rule out any concept from C ′n.

Otherwise, if a variable xj is fixed to 1 in ψ but its partner is not, then
return the negative counterexample which is all 0’s except that the partner
of xj has value 1. This rules out the formula ϕjn.

Finally, there remains the case when ψ is the initial formula (ψ does not
have to be the first query). In this case the adversary looks at the set of
formulas ϕjn which are not ruled out yet. If there are more formulas with
j even (resp., odd), then it returns the positive counterexample 101010 . . .
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(resp., 010101 . . .). This rules out all the formulas ϕjn with j odd (resp.,
even), but it does not rule out any with j even (resp., odd).

The last query eliminates at most
⌊
n
2

⌋
concepts from C ′n, and all the other

queries eliminate at most one concept. As long as there is more than one
concept which is not ruled out, the learning process cannot terminate, and
thus the lower bound follows.

Now we present a lower bound for the case when only membership queries
are allowed. Actually, we consider a more general scenario, where the learner
is allowed to ask a limited number of equivalence queries. In particular,
we assume that the learner is told in advance that the target is at revision
distance e from the initial theory, and the number of equivalence queries
allowed is at most e− 1.

Theorem 27 The number of membership queries required for revising read-
once formulas in the deletion-only model is at least n − e, where n is the
number of variables in the initial formula, e is the revision distance between
the initial formula and the target formula, assuming that the number of equiv-
alence queries is fewer than e.

Proof. We start from the initial formula x1 ∨ . . . ∨ xn, and we consider
the class C ′′n of revisions which fix exactly e variables to 0. The adversary
maintains a partition (D,U,Q) of the variables, where D stands for deleted,
U stands for undeleted and Q stands for ?. In the beginning D = U = ∅
and Q = {x1, . . . , xn}. In the course of the learning process it always holds
that every concept from C ′′n for which every variable in D is deleted, and no
variable in U is deleted, is consistent with the previous answers. This implies
that the learner cannot identify the target as long as |D| < e and |D∪Q| > e.

For a membership query MQ(x) we consider three cases. If xi = 1 for
some i ∈ U , then MQ(x) = 1 and the sets are not changed. Otherwise, if
xi = 1 for some i ∈ Q, then MQ(x) = 1, and the variable xi is moved from
Q to U . Otherwise, MQ(x) = 0 and the sets are not changed.

For an equivalence query EQ(ψ), we consider the following cases. If ψ is
identically 1 (resp., 0) then the all 0 (resp., all 1) vector is given as a negative
(resp., positive) counterexample, and the sets are not changed. If there is a
variable xi ∈ Q in ψ, then the vector which is all 0’s except for xi is given
as a negative counterexample, and xi is moved from Q to D. Otherwise, the
characteristic vector of Q is returned as a positive counterexample, and the
sets are not changed.
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Initially |D| = 0, and |D| is increased only by an equivalence query. As
there can be fewer than e equivalence queries, |D| is always less than e.
Thus the learning process can only terminate by achieving |D ∪Q| = e. But
initially |D ∪Q| = n, and its size is decreased only by a membership query.
Therefore at least n− e membership queries are needed.

7 Revising parity in the general revision model

So far we considered only errors corresponding to the deletion of literals and
terms. In practical theory revision algorithms one also has to deal with other
types of errors such as the replacement of a variable with another one, or the
addition of a variable or a term. Some of these error types are hard to define
in general, and one has to be careful with their definition in particular cases
(see, e.g. [10, 40]). Replacements and additions appear to be harder to handle
than deletions.

Let the variables x1, . . . , xn be given. A parity function is the exclusive-or
of a subset of the variables, or the complement of such a function. Thus a
parity function can be specified by giving a u ∈ {0, 1}n, and an a ∈ {0, 1},
and writing the parity function ϕ as ϕ(x) = u · x ⊕ a, where · denotes the
mod 2 inner product of two vectors. Thus u · x = (

∑n
i=1 uixi) mod 2.

Given a parity function, we now allow the deletion of a variable, the
replacement of a variable by a constant or another variable, the addition
of a variable, and for parity, also the addition of the constant 1. Given a
parity function ϕ, we denote by Rϕ the class of parity functions that can be
obtained from ϕ using the enlarged set of revision operators, and we denote
by Cϕ the corresponding concept classes. Thus, Cϕ is the class of all parity
functions over the variables x1, . . . , xn. In these cases, unlike the rest of the
paper, the concept classes do not depend on the initial formula. The only
role played by the revision operator is to determine the performance metric:
if the target concept can be obtained with a few revisions then we have to
identify it with few queries.

Theorem 28 There is a revision algorithm for parity functions in the gen-
eral model of revisions, using O(e log n) queries, where e is the revision dis-
tance between the initial and the target concept.

Proof. Let ϕ(x) = uϕ · x ⊕ a be the parity function to be revised, and let
ψ(x) = uψ · x⊕ b be the target concept.
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Since ψ(0) = b, the value of b can be determined with the single equiva-
lence query MQ(0). If a 6= b then we change ϕ to its complement to achieve
a = b, and if a = b = 1 then we reverse labels. Thus it may be assumed that
a = b = 0.

The vectors uϕ and uψ differ in at most 2d bits.
The revision algorithm starts with the equivalence query ϕ. Let x be the

counterexample received for this query. As a = b = 0, it holds that x 6= 0.
Our goal now is to find a counterexample containing exactly one 1. Let x1

and x2, be obtained from x by switching off respectively the first or second
half of the 1 components in x. Notice that x = x1 ⊕ x2, and so

ϕ(x1)⊕ ϕ(x2) = ϕ(x1 ⊕ x2) = ϕ(x)

6= ψ(x) = ψ(x1 ⊕ x2)

= ψ(x1)⊕ ψ(x2),

so exactly one of ϕ(x1) 6= ψ(x1) and ϕ(x2) 6= ψ(x2) hold. Thus exactly one
of x1 and x2 is a counterexample, and one membership query will tell us
which one is the counterexample. Continuing this process, a counterexample
with a single 1 component can be found with O(log n) membership queries.
The variable corresponding to the 1 component must be one of the variables
where ϕ and ψ differ. Hence ψ can be found by repeating this procedure
O(e) times.

8 Concluding Remarks

Theory revision is important because when we already know a theory close
to the desired theory, learning from scratch is wasteful, that is, needlessly
expensive. This whole area has received relatively little theoretical study.
We have presented here efficient algorithms for Horn and read-once formulas
under the deletions-only revision model. We have given tight bounds on such
revisions of read-once formulas. In addition, we have given an algorithm
and tight bounds for the general revision of parity formulas. These results
prove that in at least one formal model, there are efficient theory revision
algorithms.

Additional results on revising various forms of DNF formulas may be
found in our companion paper [30]. Work on revising Valiant’s class of pro-
jective DNF functions [53] may be found in Sloan et al. [49].
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The work presented here by no means exhausts the area of theory revision
from the learning theory point of view. There are numerous open problems;
for instance, the revision of threshold formulas, and the revision of Horn
formulas in the general model of revision.
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