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Data Mining and Clinical Decision
Support Systems

J. Michael Hardin and David C. Chhieng

Introduction
Data mining is a process of pattern and relationship discovery within large
sets of data. The context encompasses several fields, including pattern
recognition, statistics, computer science, and database management. Thus
the definition of data mining largely depends on the point of view of the
writer giving the definitions. For example, from the perspective of pattern
recognition, data mining is defined as the process of identifying valid, novel,
and easily understood patterns within the data set.1

In still broader terms, the main goal of data mining is to convert data into
meaningful information. More specifically, one major primary goal of data
mining is to discover new patterns for the users. The discovery of new 
patterns can serve two purposes: description and prediction. The former
focuses on finding patterns and presenting them to users in an interpretable
and understandable form. Prediction involves identifying variables or fields
in the database and using them to predict future values or behavior of some
entities.

Data mining is well suited to provide decision support in the healthcare
setting. Healthcare organizations face increasing pressures to improve the
quality of care while reducing costs. Because of the large volume of data
generated in healthcare settings, it is not surprising that healthcare organi-
zations have been interested in data mining to enhance physician practices,
disease management, and resource utilization.

Example 3.1

One early application of data mining to health care was done in the early
1990s by United HealthCare Corporation. United HealthCare Corporation
was a managed-care company, and developed its first data mining system,
Quality Screening and Management (QSM), to analyze treatment records
from its members.2 QSM examined 15 measures for studying patients with
chronic illness and compared the care received by its members to that rec-
ommended by national standards and guidelines. Results of the analyses
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were then used to identify appropriate quality management improvement
strategies, and to monitor the effectiveness of such actions. Although not
providing direct support for decision making at the point of care, these data
could be used to improve the way clinical guidelines are used.

Data Mining and Statistical Pattern Recognition

Pattern recognition is a field within the area of data mining. It is the science
that seeks analytical models with the ability to describe or classify
data/measurements. The objective is to infer from a collection of data/
measurements mechanisms to facilitate decision-making processes.3,4 With
time, pattern recognition methodologies have evolved into an interdiscipli-
nary field that covers multiple areas, including statistics, engineering, com-
puter science, and artificial intelligence. Because of cross-disciplinary
interest and participation, it is not surprising that pattern recognition is
comprised of a variety of approaches. One approach to pattern recognition
is called statistical pattern recognition.

Statistical pattern recognition implies the use of a statistical approach to
the modeling of measurements or data.5 Briefly, each pattern is represented
by a set of features or variables related to an object. The goal is to select
features that enable the objects to be classified into one or more groups or
classes.

Data Mining and Clinical Decision Support Systems

With the advent of computing power and medical technology, large data
sets as well as diverse and elaborate methods for data classification have
been developed and studied. As a result, data mining has attracted consid-
erable attention during the past several decades, and has found its way into
a large number of applications that have included both data mining and
clinical decision support systems. Decision support systems refer to a class
of computer-based systems that aids the process of decision making.6 Table
3.1 lists some examples of decision support systems that utilize data mining
tools in healthcare settings.

A typical decision support system consists of five components: the data
management, the model management, the knowledge engine, the user inter-
face, and the user(s).7 One of the major differences between decision
support systems employing data mining tools and those that employ rule-
based expert systems rests in the knowledge engine. In the decision support
systems that utilize rule-based expert systems, the inference engine must be
supplied with the facts and the rules associated with them that, as 
described in Chapter 2, are often expressed in sets of “if–then” rules. In this
sense, the decision support system requires a vast amount of a priori 
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Table 3.1. Examples of clinical decision support systems and data mining tools that
utilize statistical pattern recognition.
System (reference) Description

Medical imaging recognition and interpretation system
Computer-aided diagnosis of Analysis of digitized images of skin lesions to diagnose 

melanoma23 melanoma
Computer-aided diagnosis of Differentiation between benign and malignant breast 

breast cancer21 nodules, based on multiple ultrasonographic features
Monitoring tumor response to Computer-assisted texture analysis of ultrasound images 

chemotherapy30 aids monitoring of tumor response to chemotherapy
Diagnosis of neuromuscular Classification of electromyographic (EMG) signals,

disorder31 based on the shapes and firing rates of motor unit 
action potentials (MUAPs)

Discrimination of neoplastic and Predicting the presence of brain neoplasm with 
non-neoplastic brain lesions27 magnetic resonance spectroscopy

Gene and protein expression analysis
Molecular profiling of breast Identification of breast cancer subtypes distinguished by 

cancer25 pervasive differences in their gene expression 
patterns

Screening for prostate cancer32 Early detection of prostate cancer based on serum 
protein patterns detected by surface enhanced laser
description ionization time-of-flight mass spectometry 
(SELDI-TOF MS)

Educational system
Mining biomedical literature33 Automated system to mine MEDLINE for references 

to genes and proteins and to assess the relevance of 
each reference assignment

Laboratory system
ISPAHAN34 Classification of immature and mature white blood cells

(neutrophils series) using morphometrical parameters
Histologic diagnosis of Analysis of digital images of tissue sections to identify 

Alzheimer’s disease35 and quantify senile plagues for diagnosing and 
evaluating the severity of Alzheimer’s disease

Diagnosis of inherited metabolic Identification of novel patterns in high-dimensional 
diseases in newborns36 metabolic data for the construction of classification 

system to aid the diagnosis of inherited metabolic 
diseases

Acute care system
Identification of hospitals with Using logistic regression models to compare hospital 

potential quality problems37 profiles based on risk-adjusted death with 30 days of 
noncardiac surgery

Prediction of disposition for Neural network system to predict the disposition in 
children with bronchiolitis22 children presenting to the emergency room with 

bronchiolitis
Estimating the outcome of Predicting the risk of in-hospital mortality in cancer 

hospitalized cancer patients28 patients with nonterminal disease

Miscellaneous
Flat foot functional evaluation38 Gait analysis to diagnosis “flat foot” and to monitor 

recovery after surgical treatment



knowledge on the part of the decision maker in order to provide the right
answers to well formed questions. On the contrary, the decision support
systems employing data mining tools do not require a priori knowledge on
the part of the decision maker. Instead, the system is designed to find new
and unsuspected patterns and relationships in a given set of data; the system
then applies this newly discovered knowledge to a new set of data. This is
most useful when a priori knowledge is limited or nonexistent.

Many successful clinical decision support systems using rule-based expert
systems have been developed for very specialized areas in health care.8–14

One early example of a rule-based expert system is MYCIN, which used its
rules to identify micro-organisms that caused bacteremia and meningitis.14

However, such systems can be challenging to maintain due to the fact that
they often contain several thousand rules or more. In addition, these
“if–then” rule systems have difficulty dealing with uncertainty. Bayesian
systems (see Chapter 2) are one way of addressing uncertainty. Statistical
pattern recognition approaches are another.

Supervised Versus Unsupervised Learning

Data mining and predictive modeling can be understood as learning from
data. In this context, data mining comes in two categories: supervised learn-
ing and unsupervised learning.

Supervised Learning
Supervised learning, also called directed data mining, assumes that the user
knows ahead of time what the classes are and that there are examples of
each class available. (Figure 3.1A) This knowledge is transferred to the
system through a process called training. The data set used in this process
is called the training sample.The training sample is composed of dependent
or target variables, and independent variables or input. The system is
adjusted based on the training sample and the error signal (the difference
between the desired response and the actual response of the system). In
other words, a supervised learning system can be viewed as an operation
that attempts to reduce the discrepancy between the expected and observed
values as the training process progresses. With enough examples in the
training data, the discrepancy will be minimized and the pattern recogni-
tion will be more accurate.

The goal of this approach is to establish a relationship or predictive
model between the dependent and independent variables. Predictive mod-
eling falls into the category of supervised learning because one variable is
designated at the target that will be explained as a function of other vari-
ables. Predictive models are often built to predict the future values or
behavior of an object or entity. The nature of the target/dependent variable
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determines the type of model: a model is called a classification model if the
target variable is discrete; and a regression model if the target variable is
continuous.

Example 3.2

Goldman et al. described the construction of a clinical decision support
system to predict the presence of myocardial infraction in a cohort of 4,770
patients presenting with acute chest pain at two university hospitals and
four community hospitals.15 Based on the patient’s symptoms and signs, the
clinical decision support system had similar sensitivity (88.0% versus
87.8%) but a significantly higher specificity (74% versus 71%) in predict-
ing the absence of myocardial infarction when compared to physicians’
decisions if the patients were required to be admitted to the coronary care
unit. If the decision to admit was based solely on the decision support
system, the admission of patients without infarction to the coronary care
unit would have been reduced by 11.5% without adversely affecting patient
outcomes or quality of care.

A Priori Probability
In supervised learning, the frequency distribution, or a priori probability, of
the classes of a certain training set (or a sample taken from the general pop-
ulation) may be quite different from that of the general population to which
the classifier is intended to be applied. In other words, the training
set/sample may not represent the general population. For example, a par-
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ticular training set may consist of 50% of the subjects with disease and 50%
without the disease. In this case, a priori probabilities of the two classes in
the training set are 0.5 for each class. However, the actual a priori proba-
bility or the actual prevalence of disease may be very different (less than
or greater than 0.5) from that of the training set. In some instances, the
actual a priori probability of the general population may be unknown to
the researchers. This may have a negative effect on the performance of the
classifier when applied to a real world data set. Therefore, it is necessary to
adjust the output of a classifier with respect to the new condition to ensure
the optimal performance of the classifier.16

Unsupervised Learning
In unsupervised or undirected learning, the system is presented with a set
of data but no information is available as to how to group the data into
more meaningful classes (Figure 3.1B). Based on perceived similarities that
the learning system detects within the data set, the system develops classes
or clusters until a set of definable patterns begins to emerge. There are no
target variables; all variables are treated the same way without the distinc-
tion between dependent and independent variables.

Example 3.3

Avanzolini et al. analyzed 13 commonly monitored physiological variables
in a group of 200 patients in the six-hour period immediately following
cardiac surgery in an attempt to identify patients who were at risk for devel-
oping postoperative complications.17 Using an unsupervised learning (clus-
tering) method, the investigators showed the existence of two well defined
categories of patients: those with low risk of developing postoperative com-
plications and those with high risk.

Classifiers for Supervised Learning

In supervised learning, classification refers to the mapping of data items
into one of the predefined classes. In the development of data mining tools
and clinical decision support systems that use statistical approaches like
those described here, one of the critical tasks is to create a classification
model, known as a classifier, which will predict the class of some entities or
patterns based on the values of the input attributes. Choosing the right clas-
sifier is a critical step in the pattern recognition process. A variety of tech-
niques have been used to obtain good classifiers. Some of the more widely
used and well known techniques that are used in data mining include 
decision trees, logistic regression, neural networks, and nearest neighbor
approach.
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Decision Trees
The use of decision trees is perhaps the easiest to understand and the most
widely used method that falls into the category of supervised learning.
Figure 3.2 is the graphical representation of a simple decision tree using
two attributes. A typical decision tree system adopts a top-down strategy in
searching for a solution. It consists of nodes where predictor attributes are
tested. At each node, the algorithm examines all attributes and all values of
each attribute with respect to determining the attribute and a value of the
attribute that will “best” separate the data into more homogeneous sub-
groups with respect to the target variable. In other words, each node is a
classification question and the branches of the tree are partitions of the data
set into different classes. This process repeats itself in a recursive, iterative
manner until no further separation of the data is feasible or a single classi-
fication can be applied to each member of the derived subgroups. There-
fore, the terminal nodes at the end of the branches of the decision tree
represent the different classes.

Example 3.4

An example of a clinical decision support system using decision trees can
be found in a study by Gerald et al.18 The authors developed a decision tree
that assisted health workers in predicting which contacts of tuberculosis
patients were most likely to have positive tuberculin skin tests. The model
was developed based on 292 consecutive cases and close to 3,000 contacts
and subsequently tested prospectively on 366 new cases and 3,162 contacts.
Testing showed that the decision tree model had a sensitivity of 94%, a
specificity of 28%, and a false negative rate of 7%. The authors concluded
that the use of decision trees would decrease the number of contacts inves-
tigated by 25% while maintaining a false negative rate that was close to
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that of the presumed background rate of latent tuberculosis infection in the
region.

Logistic Regression
Logistic regression is used to model data in which the target or dependent
variable is binary, i.e., the dependent variable can take the value 1 with a
probability of success p, or the value 0 with the probability of failure 1 − p.
The main objective is to develop a regression type model relating the binary
variable to the independent variables. As such it is a form of supervised
learning. It can also be used to examine the variation in the dependent vari-
able that can be explained by the independent variables, to rank the inde-
pendent variables based on their relative importance in predicting the
target variable, and to determine the interaction effects among independent
variables. Rather than predicting the values of the dependent variable,
logistic regression estimates the probability that a dependent variable will
have a given value. For example, instead of predicting whether a patient is
suffering from a certain disease, logistic regression tries to estimate the
probability of the patient having the disease. If the estimated probability is
greater than 0.5, then there is a higher probability of the patient having the
disease than not having the disease. The function relating the probabilities
to the independent variables is not a linear function and is represented by
the following equation:

p(y) = 1/{1 + e(−a−bx)}

where p(y) is the probability that y, the dependent variable, occurs based on
x, the value of an attribute/independent variable, a is the constant, and b is
the coefficient of the independent variable. Figure 3.3 shows a graphical rep-
resentation of the logistic regression model which fits the relationship
between the value of the independent variable, x and the probability of
dependent variable, y occurring with a special S-shaped curve that is math-
ematically constrained to remain within the range of 0.0 to 1.0 on the Y axis.
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Example 3.5

The following is an example that applies logistic regression to decision
making. In the earliest stage of the epidemic of severe acute respiratory
syndrome (SARS) when reliable rapid confirmatory tests were lacking, a
group of researchers from Taiwan attempted to establish a scoring system
to improve the diagnostic accuracy of SARS.19 The scoring system was
developed based on the clinical and laboratory findings of 175 suspected
cases using a multivariate, stepwise logistic regression model. The authors
then applied the scoring system to 232 patients and were able to achieve a
sensitivity and specificity of 100% and 93%, respectively, in diagnosing
SARS.

Example 3.6

In another study, the authors applied texture analysis to images of breast
tissue generated by magnetic resonance imaging (MRI) for differentiating
between benign and malignant lesions.20 Using logistic regression analysis,
a diagnostic accuracy of 0.8 +/− 0.07 was obtained with a model requiring
only three parameters.

Neural Networks
The original development of the neural network programs was inspired by
the way the brain recognizes patterns. A neural network is composed of a
large number of processors known as neurons (after the brain cells that
perform a similar function) that have a small amount of local memory and
are connected unidirectionally (Figure 3.4). Each neuron can have more
than one input and operates only on the inputs it receives via the connec-
tions. Like some of the data mining tools, neural networks can be super-
vised or unsupervised. In supervised neural networks, examples in the form
of the training data are provided to the network one at a time. For each
example, the network generates an output that is compared with the actual
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value as a form of feedback. Once the output of the neural network is the
same as the actual value, no further training is required. If the output differs
from the actual value, the network adjusts those parameters that con-
tributed to the incorrect output. Once adjustment is made, another example
is presented to the network and the whole process is repeated. The process
terminates when all parameters are stabilized. The size and representative-
ness of the training data is obviously very important, since a neural network
could work fine on the training set, but not generalize to a broader sample.

Example 3.7

One example of a neural network is the computer-aided diagnosis of solid
breast nodules. In one study, ultrasonographic features were extracted from
300 benign and 284 malignant biopsy-confirmed breast nodules.21 The
neural network was trained with a randomly selected data set consisting of
half of the breast nodule ultrasonographic images. Using the trained neural
network, surgery could be avoided in over half of the patients with benign
nodules with a sensitivity of 99%.

Example 3.8

In another example, a neural network was used to detect the disposition in
children presenting to the emergency room with bronchiolitis (inflamma-
tion of small airways).22 The neural network correctly predicted the dispo-
sition in 81% of test cases.

Nearest Neighbor Classifier
When a system uses the nearest neighbor (NN) classification, each attribute
is assigned a dimension to form a multidimensional space. A training set of
objects, whose classes are known, are analyzed for each attribute; each
object is then plotted within the multidimensional space based on the values
of all attributes. New objects, whose classes are yet to be determined, are
then classified according to a simple rule; each new object is analyzed for
the same set of attributes and is then plotted within the multidimensional
space based on the value of each attribute. The new object is assigned to
the same class of its closest neighbor based on appropriate metric/mea-
surements. In other words, the NN rule assumes that observations which
are the closest together (based on some form of measurement) belong to
the same category (Figure 3.5). The NN rule is often used in situations
where the user has no knowledge of the distribution of the categories.

One extension of this approach is the k-nearest neighbor approach (k-
NN). Instead of comparing to a single nearest prototype, one can take into
account k-neighboring points when classifying a data point, if the number
of preclassified points is large. For each new pattern, the class is assigned
by finding the most prominent class among the k-nearest data points in the
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training set. (Figure 3.5) This approach works very well in cases where a
class does not form a single coherent group but is a collection of more than
one separate group.

Example 3.9

By applying the k-NN classifier, Burroni et al. developed a decision support
system to assist clinicians with distinguishing early melanoma from benign
skin lesions, based on the analysis of digitized images obtained by epilumi-
nescence microscopy.23 Digital images of 201 melanomas and 449 benign
nevi were included in the study and were separated into two groups, a learn-
ing set and a test set. A k-NN pattern recognition classifier was constructed
using all available image features and trained for a sensitivity of 98% with
the learning set. Using an independent test set of images, a mean specificity
of 79% was achieved with a sensitivity of 98%. The authors concluded that
this approach might improve early diagnosis of melanoma and reduce
unnecessary surgery.

Evaluation of Classifiers

ROC Graphs
In statistical pattern recognition, the goal is to map entities to classes.There-
fore, the ultimate question is: which classifiers are more accurate in per-
forming this classification task? Suppose one wanted to identify which
classifiers would be best to determine whether a patient has cancer or not,
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Figure 3.5. Nearest neighbor (NN) classifier. There are two classes: A (triangles)
and B (diamonds). The circle represents the unknown sample, X. For the NN rule,
the nearest neighbor of X comes from class A, so it would be labeled class A. Using
the k-NN rule with k = 4, three of the nearest neighbors of sample X come from
class B, so it would be labeled as B.



based on the results of certain laboratory tests. Given a classifier and an
instance, there are four possible outcomes. If the patient has cancer and is
diagnosed with cancer, based on the classifier, it is considered a true posi-
tive; if the patient is declared healthy by the classifier, but really has cancer,
it is considered a false negative. If the patient has no cancer and is declared
healthy, it is considered a true negative; if he is diagnosed as having cancer
when he is really healthy, it is considered a false positive.

We can plot the true positive rate on the Y axis and the false positive rate
on the X axis; a receiver operating characteristic (ROC) graph results
(Figure 3.6). The true positive rate (also known as sensitivity) is obtained
by dividing the number of true positives by the sum of true positives and
false negatives. The false positive rate is obtained by dividing the number
of false positives divided by the sum of true negatives and false positives;
the false positive rate can also be expressed as “1 minus specificity,” where
specificity is equal to true negatives divided by the sum of true negatives
and false positives. The ROC graph is a two-dimensional graph that depicts
the trade-offs between benefits (detecting cancer correctly, or true positive)
and costs (false alarm or false positive). Each classifier generates a pair of
true positive and false positive rates, which corresponds to a point on the
ROC graph.The point (0, 1) represents perfect classification, i.e., 100% true
positive rate and 0% false positive rate. One classifier is considered supe-
rior to another if it has a higher true positive rate and a lower false posi-
tive rate, corresponding to a more “northwest” location relative to the other
on the ROC graph. In general, the false alarm rates go up as one attempts
to increase the true positive rate. Classifiers with points on the southwest
corner of an ROC graph are more “conservative” since they make positive
predictions only with strong evidence; therefore there is a low true positive
rate, but also few false positive errors. On the other hand, classifiers on the
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northeast corner of an ROC graph are more “liberal” since they make pos-
itive prediction with weak evidence; therefore they have high true positive
rates, but also high false positive rates.

Some classifiers, such as neural networks, yield a numeric value which can
be in the form of a numeric score or probability that represents the likeli-
hood an object belongs to a certain class. These classifiers can be converted
into discrete, binary (yes versus no) classifiers by setting a threshold, i.e., if
the output score is above the threshold, the classifier produces a “Yes, else
a No”. By choosing a different threshold, a different point in the ROC graph
is produced. As a result, varying the thresholds will produce a curve in the
ROC graph for a particular classifier. Given an ROC curve, one can select
the threshold corresponding to a particular point on the ROC that produces
the desired binary classifier with the best true positive rate (correctly diag-
nosed cancer) within the constraints of an acceptable false positive rate
(false alarm). This is chosen based on the relative costs of the two types of
errors: missing a diagnosis of cancer (type I error) versus creating a false
alarm (type II error).

The area under the ROC curve (AUC) provides a single statistic (the C-
Statistic) for comparing classifiers. It measures the accuracy of the classi-
fiers. Consider the situation in which a classifier attempts to separate
patients into two groups; those with disease and those without. One can
randomly pick a patient from the disease group and one from the non-
disease group and apply the classifier on both. The area under the curve
represents the percentage of randomly drawn pairs where the classifier 
correctly classifies the two patients in the random pair. The value of 
AUC ranges from 0.5 to 1. A classifier with an AUC of 0.5 would be a 
poor classifier, roughly equivalent to flipping a coin to decide the class mem-
bership. A classifier with an AUC close to 1 results in better classification
of entities to classes. For example, in Example 3.6, the resulting trained
neural network model yielded a normalized area under the ROC curve of
0.95.

Computing the AUC is complex and beyond the scope of this chapter.
Briefly, there are two commonly used methods. One method is based on the
construction of trapezoids under the curve as an approximation of the area.
The other method employs a maximum likelihood estimator to fit a smooth
curve to the data points. Both methods are available as computer programs
and give an estimate of area and standard error that can be used to compare
different classifiers.

Kolmogorov-Smirnov Test
While the AUC provides a way of distinguishing groups overall, there are
other statistical tests used to provide a more refined comparison of groups
or subgroups. The Kolmogorov-Smirnov test, or KS test, is used to deter-
mine whether the distributions of two samples differ from each other or
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whether the distribution of a sample differs from that of the general pop-
ulation. The KS test provides what is called the D-statistic for comparison
of classifiers.24

Unsupervised Learning

Cluster Analysis
Unsupervised classification refers to situations where the goal is to classify
a diverse collection of unlabeled data into different groups based on dif-
ferent features in a data set. Unsupervised classification, also known as
cluster analysis or clustering, is a general term to describe methodologies
that are designed to find natural groupings or clusters based on measured
or perceived similarities among the items in the clusters using a multidi-
mensional data set (Figure 3.7). There is no need to identify the groupings
desired or the features that should be used to classify the data set. In addi-
tion, clustering offers a generalized description of each cluster, resulting in
better understanding of the data set’s characteristics and providing a start-
ing point for exploring further relationships.

Clustering techniques are very useful in data mining because of the
speed, reliability, and consistency with which they can organize a large
amount of data into distinct groupings. Despite the availability of a vast col-
lection of clustering algorithms in the literature, they are based on two
popular approaches: hierarchical clustering and nonhierarchical clustering.
The former, which is the most frequently used technique, organizes data in
a nested sequence of groups that can be displayed in a tree-like structure,
or dendrogram.

There are several problems that are associated with clustering. One
problem is that data can be grouped into clusters with different shapes and
sizes. Another problem is the resolution or granularity, i.e., fine versus
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Figure 3.7. Cluster analysis. Two clusters of data (left); three clusters (right) using
the same set of data.



coarse, with which the data are viewed. This problem is most obvious when
one tries to delineate a region containing a high density of patterns com-
pared to the background. Therefore, some authors define a cluster as one
that consists of a relatively high density of points separated from other clus-
ters by a relatively low density of points, whereas some define clusters con-
taining samples that share more similarities to each other than to samples
of different clusters. As a result, the selection of an appropriate measure of
similarity to define clusters is a major challenge in cluster analysis.

Gene Expression Data Analysis
One of the applications of cluster analysis in medicine is the analysis of 
gene expression. With the completion of the human genome project, which
identified more than 30,000 gene sequences, researchers are now able to
examine the expression of several thousand genes from blood, body fluids,
and tissue samples at the same time, in an attempt to identify gene subsets
that are associated with various disease statistics. Since information is
obtained from hundreds and thousands of gene sequences, an astronomi-
cal body of data is generated. Common research questions often fall under
the following categories: class discovery, class prediction, and gene identifi-
cation. Class prediction refers to the classification of samples based on
certain behaviors or properties such as response to therapy, whereas gene
identification involves the discovery of genes that are differentially
expressed among different disease groups.

Class discovery refers to the discovery of previously unknown cate-
gories or subtypes based on some similarity measure calculated from the
gene expression data. Cluster analysis is often the method of choice in
accomplishing this task, because samples are clustered into groups based
on the similarity of their gene expressions without utilizing any knowledge
of any predefined classification schemes such as known histological tumor
classification.

Example 3.10

In the future, it is likely that genomic data will be incorporated into clini-
cal decision support systems to refine both diagnosis and therapy. The 
following is an example that used clustering to explore breast cancer 
classification using genomic data. In this study, Perou et al. evaluated the
pattern of gene expression of 8,102 human genes in 65 breast cancers
obtained from 42 patients.25 Using hierarchical cluster analysis, the authors
were able to classify 65 breast cancer samples into three distinct subtypes.
One subtype was cancers that overexpressed the oncogene erbB-2. The
remaining two subtypes were unknown prior to this study; they were estro-
gen receptor-positive luminal-like cancers and basaloid cancers. Subsequent
survival analyses on a group of patients with locally advanced breast cancer
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showed significantly different outcomes for the patients belonging to dif-
ferent subtypes; patients with basaloid cancers had a poor survival rate.26

In the same study by Perou et al, the samples contained 20 primary tumors
that were biopsied twice, before and after the completion of chemotherapy.
Using clustering, the authors demonstrated that gene expression patterns
were similar among samples from the same patients taken at different time
points but not between samples taken from different patients.

Other Techniques

The goal of any tool that is used for pattern recognition is to arrive at an
optimal solution within a given set of complex constraints.The development
of sophisticated computer-based computation techniques has enabled ana-
lysts to attain better solutions than previous techniques. As improved tech-
niques are developed to handle increasingly complex problems, there is a
corresponding need for more innovative methods for arriving at optimal
solutions. Genetic algorithms and biologic computing are two examples of
innovative techniques that have gained increasing acceptance and applica-
tion in the field of pattern recognition and data mining.

Genetic Algorithms
The fundamental concept of genetic algorithms has its roots in Darwin’s
evolutionary theories of natural selection and adaptation. According to
Darwin, organisms that come up with successful solutions to best support
them and protect themselves from harm survive, whereas those organisms
that fail to adapt to their environment become extinct. Based on the same
idea of “survival of the fittest,” a genetic algorithm initially tries to solve a
given problem with random solutions. These solutions are often referred 
to as the genomes, or a collection of genes. The gene represents the 
smallest unit of information for the construction of possible solutions.
The next step is to evaluate or quantify the fitness of all the available
genomes or solutions based on a fitness function. The latter returns a value
of goodness or fitness so that a particular genome or solution may be ranked
against all other genomes or solutions. Those solutions with better fit are
ranked higher among others and are allowed to “breed.” Once the initial
evaluation is completed, the genetic algorithms examine new solutions by
letting all the current solutions “evolve” through mutual exchange of
“genetic materials” among solutions to improve the genomes and/or muta-
tion (i.e., randomly changing the genetic materials) to “create” new solu-
tions. The new solutions are then evaluated using the same fitness functions
to determine which solutions are good and which are not and need to be
eliminated. Thus the process repeats itself until an “optimal” solution is
attained.
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There are many benefits of genetic algorithms. One major advantage is
that a genetic algorithm almost always guarantees finding some reasonable
solution to problems, particularly those that we have no idea how to solve.
Further, the final solution is often superior to the initial collection of pos-
sible solutions. Another benefit is that genetic algorithms tend to arrive 
at a solution much faster than other optimization techniques. Also, the
strength of the genetic algorithm does not depend upon complex algorithms
but rather on relatively simple concepts. Despite the power of genetic algo-
rithms, however, some parameters, such as the size of the solution popula-
tion, the rate of mutation and crossover, and the selection methods and
criteria, can significantly affect their performance. For example, if the solu-
tion population size is too small, the genetic algorithm may have exhausted
all the available solutions before the process can identify an optimal solu-
tion. If the rate of genetic mutation is too high, the process may be chang-
ing too fast for the selection to ever bring about convergence, resulting in
the failure of generating an optimal solution.

Example 3.11

Genetic algorithms have been used to construct clinical decision support
systems. In a study by Zellner et al., the authors evaluated the performance
of a logistic regression model in diagnosing brain tumors with magnetic res-
onance spectroscopy using the genetic algorithms approach.27 The genetic
algorithm approach was superior to the conventional approach in 14 out of
18 trials, and the genetic algorithm had fewer false negatives and false pos-
itives. In addition, the authors also pointed out that the genetic algorithm
approach was less costly.

Example 3.12

Genetic algorithms have also been used as a data mining technique in
healthcare operations. One study investigated whether genetic algorithms
could be used to predict the risk of in-hospital mortality of cancer patients.28

A total of 201 cancer patients, over a two-year period of time, was retro-
spectively evaluated. Compared to other methods, such as multivariate
logistic regression, neural networks, and recursive partitioning analysis,
genetic algorithms selected the least number of explanatory variables with
a comparable proportion of the cases explained (79%). The authors con-
cluded that genetic algorithms reliably predicted in-hospital mortality of
cancer patients and were as efficient as the other data mining techniques
examined.

Biological Computing
Biological computing is another new discipline that has found its way into
data mining applications. It cuts across two well established fields: computer
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science and biology. While the genetic algorithm approach uses the analogy
of natural selection to develop computer algorithms, the idea of biological
computing actually involves the use of living organisms or their compo-
nents, e.g., DNA strands, to perform computing operations. The benefits
include the ability to hold enormous amounts of information, the capabil-
ity of massive parallel processing, self-assembly, self-healing, self-
adaptation, and energy efficiency.As of now, a biological computer can only
perform rudimentary functions and it has no practical applications, but its
potential continues to emerge. For example, some scientists have been
working on the development of tiny DNA computers that circulate in a
person’s body to monitor his/her well-being and release the right drugs to
repair damaged tissue or fight off infections and cancers.29

Conclusions

Data mining refers to the process of pattern and relationship discovery
within large data sets. It holds promise in many areas of health care and
medical research, with applications ranging from medical diagnosis to
quality assurance. The power of data mining lies in its ability to allow users
to consider data from a variety of perspectives in order to discover apparent
or hidden patterns.There are two main divisions of classification: supervised
learning or training, and unsupervised learning. Supervised training requires
training samples to be labeled with a known category or outcome to be
applied to the classifier. There are many classifiers available and their per-
formance can be assessed using an ROC curve. Unsupervised learning, also
known as clustering, refers to methodologies that are designed to find
natural groupings or clusters without the benefit of a training set. The goal
is to discover hidden or new relationships within the data set. One applica-
tion of clustering is the analysis of gene expression data. Genetic algorithms
and biological computing are two newer disciplines that have found their
way into data mining applications and clinical decision support systems.
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