- 1. How would you show that a language L is in P?
 - How would you show that a language L is in NP?
 - How would you show that a language L is NP-complete?
 - How would you show that a language L is undecidable?
 - How might you show that a language L is *not* NP-complete?
- 2. Are the following problems in P, NP-complete, decidable, semi-decidable and not decidable, or none of the above? Prove your answers.
 - (a) $\{\langle M \rangle$: for some $x, M(x) \downarrow$ and $M(x+1) \downarrow\}$
 - (b) $4SAT = \{\varphi; \varphi \text{ is in 4CNF and is satisfiable}\}$
 - (c) $\{(\langle M \rangle, x) : M(x) \downarrow \text{ in } \leq 2^{2^{|x|}} \text{ steps}\}$
- 3. True or False? (Prove or give counterexamples.)
 - (a) If L_1 and L_2 are both semi-decidable, then $L_1 \cap L_2$ is semi-decidable.
 - (b) If L is NP-complete then L is semi-decidable.
 - (c) If $L_1 \subset L_2$ and L_1 is NP-complete, then L_2 is NP-complete.
- 4. Show that Hamiltonian Path \leq_m^P Hamiltonian Cycle.