University of Kentucky
Department of Computer Science
CS 441G Compilers for Algorithmic Languages

1. Course Number/Name: CS 441G, Compilers for Algorithmic Languages

2. Credits and Contact Hours: 3 credits, 3 contact hours

[bookmark: _GoBack]3. Instructor: Assigned by the department

4. Textbook: Implementing Programming Languages. an Introduction to Compilers and Interpreters (Texts in Computing Volume 16)by Aarne Ranta.
 (recommended) Basics of Compiler Design, Torben Mogensen; available in http://www.diku.dk/hjemmesider/ansatte/torbenm/Basics/basics_lulu2.pdf

5. a. Catalog Description: The techniques of processing, specifying, and translating high-level computer languages are studied. Topics include finite state machines and lexical analysis, context-free grammars for language specification, attributed translation grammars, language parsing, and automatic generation of compilers by SLR, LALR, and other methods of analyzing context-free grammars. Other topics may include code optimization, semantics of programming languages, and top-down parsing.

b. Prerequisites: Prereq: CS 315 and engineering standing.

c. Required course: elective for CS, required for ECE

6. a. Outcomes of Instruction:

Students will learn how a compiler for an algorithmic language is organized, designed, and constructed. Specifically, students will be able to demonstrate knowledge of and skills in how to:
1. specify lexicographical constructs describing elements of algorithmic languages;
2. specify parsing elements for algorithmic languages;
3. use regular expressions to simplify compiler generation;
4. design and implement a complete algorithmic language compiler;
5. use compiler generator tools such as lex (flex) and yacc (bison);
6. organize memory for both static and dynamic data types;
7. generate a parse tree that can be optimized before code generation;
8. generate translated code from the parse tree;
9. document a complex programming project, including documenting what works and what does not or is not yet implemented.

b. Contributions to Student Outcomes from Criterion 3 (Computer Science)
	
	Outcome
	a
	b
	c
	d
	e
	f
	g
	h
	i
	j
	k

	CS 441G
	2
	3
	2
	
	
	
	
	
	3
	3
	

3- Strongly supported 2 – Supported 1 – Minimally supported

 7. List of Topics Covered:

1. Organization and stages of the compilation process
2. Lexical analysis and regular expressions
3. Syntax-analysis, Context-Free Grammars, Parsing
4. Semantic Analysis and Type Systems
5. Intermediate Code Generation
6. Run-Time Memory Management
7. Code Generation and Optimization
8. Compiler-Compiler Tools

5 e ety e

ot s s i o
ol e s, g, et

5. ot Do T it i iy, s o
T e i o ik e

[S—
PP ——

s il o o o i b oot

T T R T
g ottt dee f s b
e iy ol e
e
ot s s o e o st ks

