
CS Dept, UK1

12.2 Plants
- modeling and animation of plants represents an

interesting and challenging area

- exhibit arbitrary complexity while possessing a

constrained branching structure

- grow from a single source point, developing a

branching structure over time while the individual

structural elements elongate

- the topology of a plant is characterized by a

recursive branching structure

- have been modeled using particle systems,

fractals, and L-systems

- focus on the growth process of plants

CS Dept, UK2

Fractals – a never ending pattern

- a mathematical set that typically displays self-

similar patterns, which means it is "the same from

near as from far"

http://en.wikipedia.org/wiki/Set_(mathematics)
http://en.wikipedia.org/wiki/Self-similar

CS Dept, UK3

L-Systems – rewriting

- defining complex objects by successively

replacing parts of a simple initial object using a

set of rewriting rules or productions

Basic branching structures

Structures resulting from repeated application of a single branching scheme

CS Dept, UK4

L-Systems – rewriting

- defining complex objects by successively

replacing parts of a simple initial object using a

set of rewriting rules or productions
Johan Knutzen

CS Dept, UK5

A Little Bit of Botany

- We are only interested in the visual

characteristics of the plant

- Structural components of plants:

stems, roots, buds, leaves, flowers

- Plants with a definite branching

structure: herbaceous, woody

- Woody plants: larger, heavier

branches, more structurally

independent, branches tend to

interfere and compete with one

another, more subject to effects

of wind, gravity and sunlight.

CS Dept, UK6

A Little Bit of Botany
- Herbaceous plants: smaller, lighter, such as ferns

and mosses, more regular branching patterns, less

subject to environmental effects

- Stems: above ground, grow upward, bear leaves.

Leaves are attached at nodes.

Portions between nodes are called

internodes. Branching is the

production of subordinate stems

from a main stem. Branching can

be formed in several ways (see

slide 3)

- Buds: embryonic state of stems,

leaves, and flowers; classified as

vegetative, and flower buds, or

terminal bud, or lateral bud.

CS Dept, UK7

A Little Bit of Botany
- Leaves: grow from buds. Arranged on a stem in three

ways: alternate, opposite, whorled

- Cell growth has four main influences

lineage: growth controlled by the age of the cell

cellular descent: passing of

nutrients and hormones from

adjacent cells

tropisms: phototropism – bending’

of a stem toward light

geotropism – response of a stem

or root to gravity

obstacles: collision detection and

response can be calculated for

temporary changes in shape; per-

manent changes can occur with

longer obstacle existence

CS Dept, UK8

L-systems
- Central concept: rewriting

- A classical example: Koch construction of snowflake

curve

CS Dept, UK9

L-systems – a brief history

 The most extensively studied & best understood

rewriting systems operate on character strings.

 The 1st formal definition of such a system was

given at the beginning of this century by Thue,

but a wide interest in string rewriting was

spawned in the late 1950s by Chomsky’s work on

formal grammars. He applied the concept of

rewriting to describe the syntactic features of

natural languages.

 A few years later Backus/Naur introduced a

rewriting-based notation in order to provide a

formal definition of the programming language

ALGOL-60.

CS Dept, UK10

L-systems – a brief history

 The equivalence of the Backus-Naur form (BNF)

and the context-free class of Chomsky grammars

was soon recognized [Ginsburg/Rice, 1962], and a

period of fascination with syntax, grammars and

their application to computer science began.

 At the center of attention were sets of strings —

called formal languages — and the methods for

generating, recognizing and transforming them.

 In 1968 a biologist, A. Lindenmayer, introduced a

new type of string-rewriting mechanism,

subsequently termed L-systems.

 The difference between Chomsky grammars and L-

systems lies in the method of applying productions.

CS Dept, UK11

L-systems – a brief history

 In Chomsky grammars productions are applied

sequentially, whereas in L-systems they are

applied in parallel and simultaneously replace all

letters in a given word.

 This difference reflects the biological motivation

of L-systems. Productions are intended to

capture cell divisions in multicellular organisms,

where many divisions may occur at the same time.

 Parallel production application has an essential

impact on the formal properties of rewriting

systems. For example, there are languages

which can be generated by context-free L-systems

(called OL-systems) but not by context-free

Chomsky grammars.

CS Dept, UK12

L-systems – a brief history

Relations between Chomsky classes of languages and

language classes generated by L-systems.

OL: language classes

generated by context-

free L-systems

IL: language classes

generated by context-

sensitive L-systems

CS Dept, UK13

L-systems : D0L-systems

- parallel rewriting systems

- D0L-system : deterministic & 0-context (or, context-

free),

simplest class of L-system

- a set of production rules of the form

αi → βi

αi : predecessor, a single symbol

βi : successor, a sequence of symbols

- Axiom: a sequence of one or more symbols is

given as the initial string

- The production rules are iteratively applied (in

parallel) until no occurrences of a lefthand side of

a production rule occur in the string.

CS Dept, UK14

L-systems : D0L-systems

Geometric Interpretation of L-Systems:

two ways: geometric replacement, turtle graphics

Given

string

Geometric

Replacement:
each symbol

is replaced by

a geometric

element

CS Dept, UK15

L-systems : D0L-systems

Turtle graphics: interpret the symbols as drawing

commands given to a simple cursor

called a turtle

),,(yx

Location of cursor
Direction of cursor relative to

a given reference direction

CS Dept, UK16

L-systems : L-systems

CS Dept, UK17

L-systems : Bracketed L-systems

- In bracketed L-systems, brackets are used to mark

the beginning and the end of additional offshoots

from the main lineage

- The turtle graphics interpretation of the brackets

is given below

Production

Rules:

CS Dept, UK18

L-systems : Bracketed L-systems

- The production rules are context-free and
nondeterministic

- S is the start symbol, and A and B represent a

location of possible branching

- A branches to the left and B to the right

- The production stops when all symbols have

changed into ones that have a turtle graphic

interpretation

Production

Rules:

CS Dept, UK19

L-systems : Bracketed L-systems

- Some possible terminal strings & the corresponding

graphics produced by the turtle interpretation

Production

Rules:

CS Dept, UK20

L-systems : Bracketed L-systems

Weeds, generated using an L-system in 3D.

CS Dept, UK21

L-system notations:
L-systems are now commonly known as parametric L-

systems, defined as a tuple

G = (V, ω, P),

where

 V (the alphabet): a set of symbols containing elements

that can be replaced (variables)

 ω (start, axiom or initiator): a string of symbols from V

defining the initial state of the system

 P: a set of production rules or productions defining the

way variables can be replaced with combinations of

constants and other variables. For any symbol A in V

which does not appear on the left hand side of a

production in P, the identity production A → A is

assumed; these symbols are called constants or

terminals.

http://en.wikipedia.org/wiki/Tuple
http://en.wikipedia.org/wiki/Production_rule

CS Dept, UK22

L-system: revisit

 An L-system is context-free if each production rule refers

only to an individual symbol and not to its neighbors.

 Context-free L-systems are thus specified by either a

prefix grammar, or a regular grammar. If a rule depends

not only on a single symbol but also on its neighbours, it

is termed a context-sensitive L-system.

 If there is exactly one production for each symbol, then

the L-system is said to be deterministic

 A deterministic context-free L-system is popularly called

a D0L system.

depends only on a single symbol

see next two slides

http://en.wikipedia.org/wiki/Prefix_grammar
http://en.wikipedia.org/wiki/Regular_grammar
http://en.wikipedia.org/wiki/D0L_system

CS Dept, UK23

Prefix grammar











over strings are and e wher

 form theof rules production ofset :

over strings base ofset finite :

alphabet finite :

),,(

vu

vuP

S

PSG

For strings x, y, we write x →G y (and say: G can

derive y from x in one step) if there are strings u, v,

w such that x = vu, y = wu, and v → w is in P.

The language of G, denoted L(G), is the set of

strings derivable from S in zero or more steps

CS Dept, UK24

Prefix grammar: example

10000100010010

01010101010101010101

E.g.,





CS Dept, UK25

L-system: example 1 – algae

Lindenmayer's original L-system for modelling the growth of

algae.

variables : A, B

constants : none

start : A

rules : (A → AB), (B → A)

which produces:

n = 0 : A

n = 1 : AB

n = 2 : ABA

n = 3 : ABAAB

n = 4 : ABAABABA

n = 5 : ABAABABAABAAB

n = 6 : ABAABABAABAABABAABABA

n = 7 : ABAABABAABAABABAABABAABAABABAABAAB

CS Dept, UK26

L-system: example 1 – algae, explained

If we count the length of each string, we obtain the famous

Fibonacci sequence of numbers:

1 2 3 5 8 13 21 34 55 89 ...

http://en.wikipedia.org/wiki/Fibonacci_sequence

CS Dept, UK27

L-system: example 2

variables : 0, 1

constants: [,]

axiom : 0

rules : (1 → 11), (0 → 1[0]0)

The shape is built by recursively feeding the axiom

through the production rules. Applying this to the

axiom of '0', we get:

axiom: 0

1st recursion: 1[0]0

2nd recursion: 11[1[0]0]1[0]0

3rd recursion: 1111[11[1[0]0]1[0]0]11[1[0]0]1[0]0

http://en.wikipedia.org/wiki/Recursion

CS Dept, UK28

L-system: example 2

Turtle graphics:

0 : draw a line segment ending in a leaf

1 : draw a line segment

[: push position and angle, turn left 45 degrees

] : pop position and angle, turn right 45 degrees

http://en.wikipedia.org/wiki/Line_segment

CS Dept, UK29

L-system: example 2

Turtle graphics:

0 : draw a line segment ending in a leaf

1 : draw a line segment

[: push position and angle, turn left 45 degrees

] : pop position and angle, turn right 45 degrees

1111[11[1[0]0]1[0]0]11[1[0]0]1[0]0

http://en.wikipedia.org/wiki/Line_segment

CS Dept, UK30

L-system: example 3 – Koch Curve

variables : F

constants : + −

start : F

rules : (F → F+F−F−F+F)

Here, F means "draw forward", + means "turn left

90°", and − means "turn right 90°".

CS Dept, UK31

L-system: example 3 – Koch Curve

CS Dept, UK32

L-system: example 4 – Sierpinski triangle

variables : A, B

constants : +, −

start : A

rules : (A → B−A−B), (B → A+B+A)

angle : 60°

Here, A and B both mean "draw forward", + means

"turn left by angle", and − means "turn right by

angle" (see turtle graphics).

The angle changes sign at each iteration so that

the base of the triangular shapes are always in the

bottom (otherwise the bases would alternate

between top and bottom).

http://en.wikipedia.org/wiki/Turtle_graphics

CS Dept, UK33

L-system: example 4 – Sierpinski triangle

ABA-B-A-B-ABA

B-A-BA





CS Dept, UK34

L-system: example 5 – Fractal plant

variables : X F

constants : + − []

start : X

rules : (X → F-[[X]+X]+F[+FX]-X), (F → FF)

angle : 25°

Here, F means "draw forward", - means "turn left

25°", and + means "turn right 25°".
X does not correspond to any drawing action and is

used to control the evolution of the curve.

[corresponds to saving the current values for

position and angle, which are restored when the

corresponding] is executed.

CS Dept, UK35

L-system: example 5 – Fractal plant

CS Dept, UK36

L-system: example 5 – Fractal plant

N=7

CS Dept, UK37

L-systems : Stochastic L-systems

- The previous section introduced nondeterminism

into the concept of L-systems, but the method

used to select the possible applicable productions

for a given symbol was not addressed

- Stochastic L-systems assign a user-specified

probability to each production. These probabilities

indicate how likely it is that the production will be

applied to the symbol on a symbol-by-symbol

basis

- With stochastic (nondeterministic) L-systems, one

can set up an L-system that produces a wide

variety of branching structures that still exhibit

some family-like similarity

CS Dept, UK38

L-systems : Stochastic L-systems

When used in an

evolutionary context, it

is advisable to incor-

porate a random seed

into the genotype, so

that the stochastic

properties of the image

remain constant

between generations.

Production

Rules:

Production

Rules with

assigned

probabilities:

http://en.wikipedia.org/wiki/Evolution
http://en.wikipedia.org/wiki/Random
http://en.wikipedia.org/wiki/Genotype

CS Dept, UK39

L-systems : Stochastic L-systems

Examples of branching structures generated by this L-

system with derivations of length 5 are shown below. Note

that these structures look like different specimens of the

same (albeit fictitious) plant species.

Example was copied

from: “The Algorithmic

Beauty of Plants” by

P. Prusinkiewicz and

A. Lindenmayer

CS Dept, UK40

L-systems : Stochastic L-systems

A more complex example is shown below. The field consists

of four rows and four columns of plants. All plants are

generated by a stochastic modification of the L-system used

to generate the figure shown on the next page.

Example was copied

from: “The Algorithmic

Beauty of Plants” by

P. Prusinkiewicz and

A. Lindenmayer

CS Dept, UK41

L-systems : Stochastic L-systems

n=5, δ=18◦

ω : plant

p1 : plant → internode + [plant + flower] − − //

[− − leaf] internode [+ + leaf] −

[plant flower] + + plant flower

p2 : internode →

F seg [// & & leaf] [// ∧ ∧ leaf] F seg

p3 : seg → seg F seg

p4 : leaf →

[’ { +f−ff−f+ | +f−ff−f }]

p5 : flower →

[& & & pedicel ‘ / wedge //// wedge ////

wedge //// wedge //// wedge]

p6 : pedicel → FF

p7 : wedge →

[‘ ∧ F] [{ & & & & −f+f | −f+f }]

CS Dept, UK42

L-systems : Context-sensitive L-systems

- add the ability to specify a context, in which the

left-hand side (the predecessor symbol) must

appear in order for the production rule to be

applicable

- e.g.

- Can be extended to n left-side context symbols

and m right-side context symbols in the

productions, called (n, m)L-systems

CS Dept, UK43

L-systems : Context-sensitive L-systems

- e.g.

- Compatible with nondeterministic L-systems

- In (n, m)L-systems, productions with fewer than n

context symbols on the left and m on the right are

allowable

- Productions with shorter contexts are usually given

precedence over productions with longer contexts

when they are both applicable to the same

symbol

CS Dept, UK44

L-systems : animating plant growth

- three types of animation in plants:

- flexible movement of an otherwise static structure

- changes in topology that occur during growth

- elongation of existing structures

- Topological changes (captured by the L-systems

already described) occur as discrete events in time

and are modeled by the application of a

production that encapsulates a branching structure,

as in A ⇒ F [+F]B

- Elongation can be modeled by productions of the

form F ⇒ FF

CS Dept, UK45

L-systems : animating plant growth

- Elongation can be modeled by productions of the

form F ⇒ FF

- Problem: growth is chunked into units equal to

the length of the drawing primitive represented by

F. If F represents the smallest unit of growth, then

an internode segment can be made to grow

arbitrarily long. But the production rule F ⇒ FF lacks

termination criteria for the growth process

- Additional drawing symbols can be introduced to

represent successive steps in the elongation

process, resulting in a series of productions F0 ⇒

F1, F1 ⇒ F2, F2 ⇒ F3, F3 ⇒ F4, and so on. Each

symbol would represent a drawing operation of a

different length

CS Dept, UK46

L-systems : parametric L-systems

- Providing a solution to the proliferation of symbols

and productions in the elongation process if the

time steps is large

- symbols can have one or more parameters

associated with them

- parameters can be set and modified by
productions of the L-system

- optional conditional terms (in terms of parametric

values) can be associated with productions

- production is applicable only if its associated

condition is met

CS Dept, UK47

L-systems : parametric L-systems

- Context-sensitive productions can be combined

with parametric systems to model the passing of

information along a system of symbols

- single context symbol on both sides of the left-hand

symbol that is to be changed. These productions

allow for the relatively easy representation of

such processes as passing nutrients along the

stem of a plant

End of Special

Models for

Animation II

CS Dept, UK48

CS Dept, UK49

L-systems : timed L-systems

- Add two more concepts to L-systems:

- global time variable

- local age value

CS Dept, UK50

CS Dept, UK51

N=1 N=2

For the system shown on slide 34:

