7.4 Rigid body simulation*

Quaternions vs. Rotation Matrices

- unit quaternions, a better way to represent the orientation
- of a rigid body. Why?

(1) More compact: 4 numbers vs. 9 numbers

(2) Smooth transition can be achieved by interpolating the
quaternions, but difficult with the matrices

(3) Due to cumulation of rounding errors, both quaternions
and rotation matrices can cease to be unitary and
orthogonal. However, a quaternion can be easily
normalized, whereas a rotation matrix is harder to bring
back to being orthogonal

(4) Quaternions can avoid gimbal lock

*Some materials used here are taken from David Baraff’s notes: Physically Based Modeling - Rigid Body Simulation

Quaternions vs. Rotation Matrices

- unit quaternions, a better way to represent the orientation
of a rigid body.

- degree of redundancy is noticeably lower for quaternions
than rotation matrices (hence, quaternions experience far
less drift than rotation matrices)

_ When we integrate this equation
- a formula for R(r) we inevitably encounter drift

R(1) = w()*R(1)

- drift problem can be easily corrected by renormalizing the
quaternion to unit length

- Quaternions revisited:
quaternion definition
quaternion multiplication
rotation

Quaternions vs. Rotation Matrices

- quaternion definition
[x, v]

o - quaternion multiplication
[s1, v1][s2, v2] = [5152 — V1 - V2, 5102 + 5201 + V1 X V7]

- rotation
[cos(fH/2), sm(B/2)u]

- if g1 and Q2 indicate
rotations, then Qz2qg1
represents the composite
rotation of g1 followed by

g2

Quaternions vs. Rotation Matrices

- a formulafor ¢(t)

q‘(r,}:%afr) a(t) (7-11)

@& e the multiplication @(7)g(t) is a shorthand for
multiplication between the guaternions [0, m(r)|] and q(t)

Proof:
Recall that the angular velocity w(t) indicates that the
body is instantaneously rotating about the @(t) axis with
magnitude | @(t)|. Suppose that a body were to rotate with
a constant angular velocity w(t). Then the rotation of the
body after a period of time Af is represented by the
guaternion

lw()| At . |w(t)|Ar (1)
05

5 , SIN 5 If:uff}l]

[c

Quaternions vs. Rotation Matrices

Proof: (conti.)

Let us compute ¢(t) at some particular instant of time fo.

At times ¢, + At (for small At), the orientation of the body
@ s (to within first order) the result of first rotating by ¢(t,) and

then further rotating with velocity w(t,) for At time.

Combining the two rotations, we get

| (fg)| At = | (fg) | Ar w(ip)

q(to + At) = [cos T |m{m)|]m{m)

Substituting t for ¢, +At¢, we get

l(rp)| (1 —1g) . |w(fp)|(t —1y) w(tp)
, sin
2 2 (7o)

Differentiate q(f) attime fo, we get

q(r) = [cos

lg (o)

Quaternions vs. Rotation Matrices
Proof: (conti.)
i) = d ([CGS @(f0)|(T—To) . @) —1) w(io)]q“ﬂ})
o dt 2 2 | (To)|
_d No(ip)|[(t —1p) . |w(f)|(t—1y) w(fh)
([c:}a > , S1n 5 @)]) q(ip)
jw(fo)| @(to)
2 |e(t)

= [0, 30(f0)] q(t0) = 5[0, w(t)] ¢(t0).

= [0, 14q(to)

The product [0, o(t,)]q(t,) is abbreviated to the form
a(t,)q(t,), thus, the general expression for g(t) is

G(t) = 5w(t)q(t).
Q.E.D.

Quaternions vs. Rotation Matrices
- to use a quaternion representation, need to redefine the

type RigidBody:

struct RigidBody {

/* Constant quantities */

double mass;
matrix Ibody,
Ibodyinv;

/* State variables */
triple Xx;
(:zguatern%gf;éz:D
triple P,
L;

/’*
/’*
/’*

/‘*
/’*
f*
/’*

mass M */

I body x /
%ﬁﬁ (inverse of Ip) */

x(f) */
q(t) */
(1) %/
Lie) =y

Quaternions vs. Rotation Matrices

/* Derived quantities (auxiliary variables) */
matrix Iinv, /* I7N1) */

C__Ri_D * Rt *[D
triple v, L% wit) %
omega; X wyt) %/

/* Computed quantities */

triple force, [* F(t) */
torque; F* Ty

¥

Quaternions vs. Rotation Matrices
- next, in StateToArray, replace the double loop

for(int i = 0; 1 < 3; i++)
| for{int 4 = 0;] = 3 J++)

C*y++ = rb—}EIiLJJIZD

\ICopy rotation matrix

where quaternion is represented in terms of elements ‘r’

(3] (%]

for the real part, and 7', j, and 'k’ for the vector part.

Quaternions vs. Rotation Matrices

- a similar change can be made in ArrayToState
- ArrayToState must also compute R(f) as an auxiliary
variable: in the section

/* Compute auxiliary variables... */

/* v(t)=52 */

rb->v = rb->P / mass;

[* I (1) = RN R(OT*/

rb->Iinv = R * Ibodyinv * Transpose(R) ;

/* ot)=I"YWOL{E) */
rb-=omega = rb->Iinv * rb-:>L;
we add th¢ line

-<::EE;iR = QuateriGnTDMatrix{nﬂrmalize{rb—pq}};2

Quaternions vs. Rotation Matrices
- QuaterionToMatrix returns the matrix

:
1 —203 —2v7 200, —25v, 20,0, + 25,

| 2uxvy + 250, 1 — 21.-*_‘3; — 31}% 20,0 — 25Uy
), P,
2ux0; — 25y, 2vpu: + 250 1 —2vp —2v;

why?
- a brilliant way to convert a quaternion to a rotation matrix

Rotation of the vector p=(x, y, z) with the quaternion q is
done by the operation ¢|0, plg . We want to determine
the corresponding matrix which multiplied on [x, y, z,1]"

from the left will yield the same result.

The product of two guaternions ¢, =[w,(a,b,c)] and
gﬁi = [S:' (};:- y:' Z)] IS:

Quaternions vs. Rotation Matrices
QVQ}Z — [W’ (aa b: C)] [S! (Xa Y9Z)]
=[ws—ax—by—cz,(as+wx—cy+bz,

- bs+wy+cx —az,cs +wz—bx +ay)]

Written as columns using sloppy notation this equals

(1 T wr —ey+ bz +as

¥ T, e+ wy —az+ bs
Gty = s —

i L —be + ay + wz + ¢

1 5 —ax==by —czt+ws. |

From this we can write the matrices corresponding to multi-
plying from the left and from the right with a quaternion.

First we determine Az, such that M g, = ¢q.q4, where g,
and 4.4, are written as columns:

Quaternions vs. Rotation Matrices

My

=

T8
!"r
—bh

—

—q
()
¥}

—b

[
— (1
T

—

(1

b
i
'

Then we write M, suchthat M,q =¢q.q, :

Mh

-

-~

Y

_.-t‘

o
_I.Il‘

.

Y

A

&~

Y

-

We are now ready to write the matrix M such that
Mq=4q[0,plq™ . Using q=[s,(x,y,2)]
g =[s,(—x,—y,—2)] we get:

and

I

§ —2z Y

&] =i
—1 £ 5
= T =2

syt)

2oy + 252
—2sy + 2uaz
()

el [s —z
Y z 5
z —1 £
2 - - 7

28 4+ 24z
0

Quaternions vs. Rotation Matrices

Yy = |
—r =y

& — 2

L |

25y + 2z
—2su + 2yz
1 = 2(z? + y*)
()

Q.E.D.

I

§ —2z Y

&] =i
—1 £ 5
= T =2

syt)

2oy + 252
—2sy + 2uaz
()

el [s —z
Y z 5
z —1 £
2 - - 7

28 4+ 24z
0

Quaternions vs. Rotation Matrices

Yy = |
—r =y

& — 2

L |

25y + 2z
—2su + 2yz
1 = 2(z? + y*)
()

Q.E.D.

Quaternions vs. Rotation Matrices
- convert from a rotation matrix to a quaternion

Recall that

Q20 + 2
2y + 25z

—2sy + 2z
()

First, we find s :
i"rf“ -+ 4':1122 -+ i"(.'f:g:; -+]

This vields s2. Now the other values follow:

1
b oo— - — \/11-1“ + Moy + Myz 4+ 1

Quaternions vs. Rotation Matrices

" 1-2(y* + 2°) 2ey — 28z
2y + 25z 1 —2(x :

—2sy + 2z
()

s
Myz — My,

s
Mgy — My

s
The sign of x, y and z depends on the sign of s. For s, we
choose the positive square root.

(why? Note that positive square root and negative square
root yield the same rotation, but the interpolation curve could
be influenced by this choice.)

g =

= Pr—

Quaternions vs. Rotation Matrices
- Hence, to convert from a rotation matrix to a quaternion:

quaternion matrixToQuaternion (const matrix &m)

{ /
gquaternion qg;

double @5 : The matrix m is
structured so that

0, 0], m[0, 1
Ctr = m[0,0] + m[1,1] + m[gjzggngdm][omz[]for]m

the first row of m

IEIET == 0]

{

sgrbice £ I ;
5 %= 3;

.5 ¢ g
(2,11 = ml1,2])
(m[0,2] — mi2,
(m[1,0] - m[O,

S |
Lo B |

Il

A =]
1

else

{

int i =

&;

if (m[1,1] > m{D0,0])

3 = kg
if (m[2,2] > m[i,4i))
3 = 2
switch (1)
{
case 0:
g = ggrt{{m[0,0] - (m[1,1] + m[2,2])) + 1);
H.d. = B8 = 8=
g8 = 0.5 J 8;
Fegd = (mlo;1] = m[l,;8]} * 53
gk = mi2,0] ¥ m[0,2]]) * B;
g = (mi2,1] - ml[I;2]}) * B;
break;
case 1l:
g = sgrt{(m[1,1] - (m[2,2] + m[O,0])) + 1);
ge] = Dok % g
g =0.5 f 3;

Quaternions vs. Rotation Matrices

gode: = tmll:2] = mlEZ. 111 * g;:
.1 = b1l mil,0l} * 5;
g.r = (m[0;2] - m[2,0]) * s;

break;
case 2:
8 = agreimiz,2] - (mjo, 8] + m{l,1])) + 1);
g.k = 0.5 = g;
g = 0.5 / 3;
ag.i:- = (mlZ.80] 3 min,2]] * 58:
Q] = Amll:;2] + mli2;11) * 8;
qg.r = (m[1,0] - m[0,1]) * 8;

}

return q;

Quaternions vs. Rotation Matrices

- ArrayToBodies and BodiesToArray don’t need changes
- constant STATE SIZE changes from 18 to 13
- ddtState ToArray needs changes. Instead of

matrix Rdot = Star (rb->omega) * rb->R;

/* copy R(t) into array */

for(int i = 0; i < 3; i++)
for(int 5 = 0; 3 = 3; J+%)
*xdot++ = Rdot[i,jl;

we’ll use

quaternion .5 * (rb->omega * rb->gq);

*xdot++ gdot.
*xdot++ = gdot.i
*xdot++ = gdot.]]
*xdot++ gdot.

Examples — Inertia Tensor of a block

- How should the inertia tensor of the following block be
computed?

Xo Yo

.|' « (,}J,}Jz:} ,O(X,y,Z)El

g g -

(J; M=x,y,z

5- - 0.70<0
X V. .

(_;f’_#zﬂ i :;) '

- Again, what is an inertia tensor?
Given an object with mass m, what force do | need to
apply to get an acceleration a? |F — ma| (7-11)

If | apply a force 2*F, | get an acceleration 2*a. If the object
gets heavier, | need to apply more force to get the same
acceleration.

Examples — Inertia Tensor of a block

Now | want to ask the same question for rotation. First let’s
assume we have a world with known axes x, y, and z. And
let’s define the rotational velocity w for an object as a three

@ clcment-vector (wx, Wy, wz) that contains the rate at which the
object is spinning around each axis.

If all three are zero, the object isn’t spinning at all. If wx is the
only non-zero element, the object is spinning nicely around
the x-axis, etc.

So now | want to know what forque | need to apply to
accelerate the object’s rotation by some amount dw. For
example, maybe the object is spinning around the x axis
with rotational velocity (wx,0,0), and | want to stop itin ¢
seconds. So | want to know what torque | need to apply to
get a rotational acceleration of (-wx/t).

Examples — Inertia Tensor of a block

This is where the inertia tensor comes in. Just like we have
F = ma for linear acceleration and force, we have the
following equation for rotation :

-

...where T |s torque (a 3-element vector, indicating the
torque around the X, y, and z axes), dw is the rotational
acceleration (a 3-element vector), and [is the magic inertia
tensor (a 3-by-3 matrix). Note how it looks just like equation
(7-11)!

In matrix form, the above equation looks like :

T . 4., LI | do

X XX Xy Xz

s 1=1L. £ 1 dw (7-13)

1 ¥X »y ¥z y

5 i I 1 ||lde

ZX ¥

Examples — Inertia Tensor of a block

T i 9 0 do,

X XX

z2.1=210 1. 0 ||de (7-13)

1 3

o r | 1o o L |do

what do the individual elements of the inertia tensor mean in
the real world? The easy ones are the diagonal elements:
I, , I, and I, .Infact, let's take the simple case, where
all the other elements in I are zero. This happens to be true
for any object that's symmetric around all three axes, like a
C big sphereDor big cube ¥hat’s sitting nicely on the axes.

We'll deal with the other elements later.

In this case, if we multiply the first row of equation (7-13)
out, we get :

. =1, %do, (7-14)

Examples — Inertia Tensor of a block

T =1_*do, (7-14)

This looks a /ot like F = ma.

@ Can think of Ixx as the rotational inertia around the x axis.
So for rotation around the x axis, Ixx behaves just like the m
In F=ma.
The bigger Ixx is, the more torque we have to apply around
the x axis to get it to spin.
Or, conversely, for a given torque, a bigger Ixx means we’ll
get /ess rotation around the x axis. Just like m.

What would it mean for Ixx to be zero?

It would mean that for a given torque, we would get an
infinite rotational acceleration around the x axis.

For real objects, none of the diagonal elements in [can be
zero, since we know there’s no real object where a tiny
touch will set it spinning at an infinite rate.

Examples — Inertia Tensor of a block

R T 1 [z . L. 1rd o, 1
I, 1, [I.|ldo, (7-13)

1

' ' N dwm.

L ZX Iy zz@ L. z. |

what’s the deal with the off-diagonal elements, for
example Ixy ?

What this element (/xy) tells us is how much our object will
be accelerated around the y axis when we apply torque
around the x axis.

How’s that possible? How could spinning an object around
one axis make it rotate around another axis too?

For symmetric objects, it can’t. If we take a uniform cube in
space and we torque it around the x axis, intuition suggests
that it only spins around the x axis.

Examples — Inertia Tensor of a block
But now let’s say | attach a big-ass weight somewhere on
the sphere. N

For example, let's say I'm spinning
@l thc Earth around the axis that runs
from the north pole to the south
pole (and we’re assuming of course
that the Earth is a uniform sphere),
and | attach a big weight to Canada.

Now suddenly I've accelerated that big weight, and it wants
to “pull” that part of the world along with it.

This is going to make the Earth want to “tilt”, so the north
pole moves along with big heavy Canada.

This is a rotational acceleration along an axis other than the
one | torqued!

Examples — Inertia Tensor of a block

Remember that off-diagonal elements are always zero for a
perfectly symmetric object

Actually, for any object, there’s some basis along which
the inertia tensor is diagonal (all the off-diagonal elements
are zero).

That means that there’'s some set of perpendicular axes
(x,y,z) around which we can torque the object and get
rotational acceleration only along the axis we torqued...

Another way of saying this is that there’s some set of
“principal axes” around which an object will “spin stably”,
meaning it can spin around those axes without “wobbling”
off-axis.

Finding those axes is straightforward, but that is not our
concern here, so I'm not going to talk about it.

Examples — Inertia Tensor of a block
Now, how the inertia tensor is defined...

For the diagonal elements, say / _, we have

xx!

I = IV o(x,v,2)(y* +z°)dV (7-14)

where p(x,y,z) s the density of the object, V is the
volume of the object, and y and z are the positions of a
particular point along the y and z axes.

What does the /xx equation (7-14) mean?

We're taking an integral over the whole volume, and we're
summin%; the squared distance of every point from the x axis
(y° +z°) . So for a given amount of mass, we are going to

the x axis.

Examples — Inertia Tensor of a block

This means to get a given acceleration around the x axis,
we need to apply more torque around the x axis.

How can we understand that intuitively?

The classic example for understanding this comes from
figure skating... how does an ice skater get ready to spin
super fast on the ice? What does he/she do? he puts his
arms way above his head.

What does this have to do with the inertia tensor? If axis of
the skater’s body is the x axis, he is spinning himself around
this axis with some torque (whatever he can generate with
his legs). Eq. (7-14) shows that the lower his [xx value is, the
more rotational acceleration he’'ll get for that torque. He can
make his [xxvalue smaller by putting his mass closerto the x
axis... and he does that by putting his arms —which carry
some of his weight — along the axis of his body. Amazing.

Examples — Inertia Tensor of a block

Nest, the off-diagonal elements. Equation for /xy looks like
this :

‘[xy = —IV o(x,y,z)xy dV (7-15)

where po(x,3,2) is the density of the object, Vis the volume
of the object, and x and y are the distance of a particular

point from the yz and the xz planes.

The off-diagonal elements are called products of inertia,
they are a measure of the imbalance in the mass distri-

bution.

Products of inertia can be positive, negative, or zero. If the
object is symmetric, every point on one side of each axis is
going to “cancel out” the corresponding point on the other
side of the axis. Hence we get off-diagonal elements that are

Zero.

Examples - Inertia Tensor of a block

‘I > = —jV o(x,y,z)xy dV (7-15)

Ixy is exactly the same as lyx. This tells us that all inertia
tensors are symmetric, which makes them numerically
friendly for many applications.

- So, how should the inertia tensor of the following block be
computed?

(Iu Yo <o)

Y | £ T e
g — 4_

X . Yo o Z, ,./ l M :xﬂyﬂzﬂ

Examples — Inertia Tensor of a block

2 3 3 -
IH:f, j: j: p(x,v,2)(y"+z")dxdvd:
-3 =4
f f V4 dxdy

3z

Examples — Inertia Tensor of a block

Iﬁ

Similarly. 7,, = %(x% +z3) and L. = {5(x§ + ¥5)-

- The off-diagonal terms, such as /xy, are

fx_? o dxdyd
= , p(x, v, 2)(xy)dxdvd:
%‘ﬂf;;‘:ﬂf:;a
- T .
=./.:;il f—m f—;u xydxdyd:z =
-)

and similarly for the others. Thus, the inertia tensor of the
block is

yf otz O 0
Ibﬂdyzﬁ 0 I%—FE% 0
0 0 ag4yy

End of Physically
Based Animation ll|

