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7.4 Rigid body simulation* 

Objective: create realistic-looking motion for 

physically based reaction of rigid bodies to forces 

such as gravity, viscosity, friction, and those 

resulting from collisions with key-frame techniques 

 

Covers two parts: 

-unconstrained motion: simulations that aren’t 

concerned about collisions between rigid bodies 

- constrained motion: regard bodies as solid, and 

need to disallow inter-penetration 

• Some materials used here are taken from David Baraff’s notes: Physically Based Modeling - Rigid Body Simulation                    
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7.4.1 Unconstrained Rigid Body Dynamics 

Simulation basics 
- basic structure for simulating the motion of a rigid body  

- (almost) the same as simulating the motion of a particle 

- x(t):  particle’s location in world space at time t 

-                            : velocity of the particle at time t 

- state vector X(t) of a particle at time t is the particle’s 

   position and velocity 

 

                                                                       (7-1) 
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7.4.1 Unconstrained Rigid Body Dynamics 

Simulation basics (conti) 

-  For system with n particles, enlarge X(t) to be 

 

-  F(t) :  force acting on particle at time t, sum of all forces 

             acting on particle: gravity, wind, spring forces, etc.  

-  If particle i has mass mi, then change of X over time is 

    given by 

                                                                                 (7-2) 

  

                

       

                    

 Tnn tvtxtvtxtX )(),(,),(),()( 11 



CS Dept, UK 4 

7.4.1 Unconstrained Rigid Body Dynamics 

Simulation basics (conti) 

- given any value of X(t), equation (7-2) describes how X(t) 

   is instantaneously changing at time t 

-  A simulation starts with initial conditions for X(0) (values 

   for x(0) and v(0)) and then uses an ode solver to track the 

   change (“flow”) of X(t), for as long as we’re interested in. 

   To animate the motion of the particle, compute X(1/30),  

   X(2/30) ... 

-  how we’d actually interact with a numerical solver (ode), in 

   a C++-like language 

 

                

       

                    

Numerical solver 
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Simulation basics (conti) 

 

 

 

x0: initial state vector to ode 

len: length of x0 

t0, t1: starting and ending times of simulation 

xEnd: state vector at  t1 returned by ode 

dxdt( ): a function passed to ode; given an array y that 

            encodes a state vector X(t) and a time t, dxdt() 

            computes and returns             in the array xdot; 

            ode is allowed to call dxdt as often as it likes. 

Numerical solver 
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Rigid Body Concepts 
-  simulating rigid bodies is like simulating particles, except 

    more complicated state vector X(t) and derivative              

-  use the same paradigm of tracking the movement of a 

    rigid body using a solver ode, with a provided dxdt() 

-  to describe the motion of a rigid body, one needs 

    x(t): describes translation of the body  

    R(t): describes rotation of the body 

-  the rigid is defined in a body space (fixed & unchanged 

    local space; mass center of the body lies at the origin) 

-  geometric description of the body in body space is 

     transformed into world space by x(t) and R(t) 

)(tX
dt
d

spatial variables 

quaternions? 
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Rigid Body Concepts              

-  movement tracking of a rigid body using ode, with a 

    provided dxdt( ) 
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Rigid Body Concepts              

-  provided dxdt( ) 
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mass center 

R’s first column gives the 

direction that the rigid body’s 

x axis points in, when 

transformed to world space 

at time t   

),,( zyx 
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Velocities (linear and angular) 

-  define how the position and orientation change over time 

-  a rigid can translate and spin 

-  need        and 

-  linear velocity 

-  angular velocity         : 

    a vector, encodes both 

    the axis of the spin and 

    the speed of the spin 

-  How are R(t) and  

    related?                 
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Velocities (linear and angular) 
- how the change of an arbitrary 

  vector in a rigid body is related 

  to the angular velocity 

 

   r(t), fixed to the rigid body; 

   as a direction, independent of 

   any translational effects, in 

   particular,        is independent 

   of 

 

   Assumption: the rigid body were to maintain a constant 

                        angular velocity 

   Conclusion: the tip of r(t) traces out a circle centered on 

                        the          axis ; 

                       instantaneous velocity of r(t) has magnitude 
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Velocities (linear and angular) 

 On the other hand, we have 

 

 Consequently, we have 

 

 

 

 

 Put all this together: 

 (1) At time t, the direction of the x axis of the rigid body in 

      world space is the first column of R(t): 
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Velocities (linear and angular) 
 (2) At time t, derivative of the 

      first column of R(t) is just 

      the rate of change of this  

      vector; using the cross 

      product rule we just 

      discovered, this change is 

 

 

 

 

 (3) The same holds for the other two columns of R(t). This 

       means that we can write 
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Velocities (linear and angular) 
 (3) The same holds for the other two columns of R(t). This 

       means that we can write 

 

 

 

 

 (4) Note if a and b are 3-vectors, then          is the vector 

 

 

 

 

      Given the vector a, let us define      to be the matrix 
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Velocities (linear and angular) 
  Then  

 

 

 

 

 

 (5) Using the “ * ” notation, we can rewrite        as 

 

 

 

 

       or 

 

 

 

       or simply                                                          (7-3) 

                                        

 

)(tR



CS Dept, UK 16 

Mass of a body 

- assume a rigid body is made up of large number of small 

   particles (to make subsequent derivations simpler) 

 

-  Notations 

        : mass of i-th particle  (i = 1, …, N) 

        : location of i-th particle in body space 

        : location of i-th particle in world space 

        : total mass of the body 

-  Formulas 

                                                                                (7-4) 
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Velocity of a particle 

-  differentiating (7-4) and using (7-2) to get 

               

 

-  the velocity can be decomposed into a linear term and a 

    angular term 

 

 

 

 

 

 

                                        

                           ……..(7-5) 
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Center of mass 

-  enables us to separate the dynamics of bodies into linear 

    and angular components 

               

-  in a center of mass coordinate system for body space, we  

   have 

 

-  x(t) is the location of the center of mass at time t  
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Force and Torque 

-         : total force from external forces acting on the i-th 

             particle at time t.               

-         : external torque acting on the i-th particle 

 

 

-  think of the direction of         as 

   being the axis the body would 

   spin about due to 

-  F(t) : total external force 

 

-         : total external torque   
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Linear momentum 

-         : linear momentum of particle        with velocity              

 

 

-         : total linear momentum 
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-  Consequently,                                                                 
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Why is                       ? 

Proof: For a rigid body to maintain its shape, there must be 

some “internal” constraint forces that act between particles 

in the same body. 

These constraint forces act 

passively on the system and 

do not perform any net work. 

Let           denote the net 

internal constraint force 

acting on the i-th particle. 

The work performed by 

on the i-th particle from 

Time  t0  to  t1  is 

 

 

 

where          is the velocity of i-th particle. 
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Proof:  (conti) 
The net work over all the particles is the sum 

 

 

 

which must be zero for any interval t0 to t1. 

This means that the integrand 

 

                                                                                 

 

is itself always zero for any time t. 

    We can use this fact to eliminate any mention of  Fci  from 

our derivations. First, some notes about the “ * ” operator. 

since  a*b = a x b, and  a x b =−b x a, we get 

 

 

Since a* is an anti-symmetric matrix,                           
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Proof:  (conti) 
Finally, since the “ * ” operator is a linear operator, we have 

 

 

 

for a set of vectors ai . 

    Recall that we can write the velocity      as                       

where ri is the particle’s location, x is the position of the 

center of mass, and v and      are linear and angular velocity. 

Letting                   and using the “ * ” notation, 

 

 

Substituting this into (7-7), which is always zero, yields 

 

 

Note that this equation must hold for arbitrary values of v 

and     . Since v and      are completely independent, if we 
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Proof:  (conti) 
choose      to be zero, then                     for any choice of v, 

from which we conclude that in fact                 0  is always 

true. This means that the constraint forces produce no net 

force 

Similarly, choosing v to be 0  we see that                              

for any     . Rewriting                    as                   we get that 

 

 

for any      , so                           . Transposing, we have  

 

 

which means that the internal forces produce no net torque. 

    We can use the above to derive the rigid body equations 

of motion. The net force on each particle is the sum of the 

internal constraint force Fci and the external force Fi. 
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Proof:  (conti) 
choose      to be zero, then                     for any choice of v, 

from which we conclude that in fact                 0  is always 

true. This means that the constraint forces produce no net 

force 

Similarly, choosing v to be 0  we see that                              

for any     . Rewriting                    as                   we get that 

 

 

for any      , so                           . Transposing, we have  

 

 

which means that the internal forces produce no net torque. 

    We can use the above to derive the rigid body equations 

of motion. The net force on each particle is the sum of the 

internal constraint force Fci and the external force Fi. 
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Proof:  (conti) 
The acceleration       of the i-th particle is 

 

 

 

Since each individual particle must obey Newton’s law  f = 

ma, or equivalently  ma − f = 0, we have 

 

                                                                                              

for each particle. 

    To derive                   , we sum the above equation over all 

the particles. We obtain 

 

 

Breaking the large sum into smaller ones, 
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Proof:  (conti) 

 

 

 

 

 

 

 
Since we are in a center-of-mass coordinate system, eq. (7–

6) from slide 20 tells us that                 0, which also means 

that                       0. Removing terms with             , and the 

term            from the above equation yields 
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Angular momentum 

-  most unintuitive concept! Nevertheless, makes equations 

    simpler than using angular velocity  

-  constant angular momentum does not imply constant  

    angular velocity 

-  Total angular momentum 

 

    where        is a 3x3 (rank two) matrix called inertia tensor 

-  The inertia tensor describes how the mass in a body is  

    distributed relative to the body’s center of mass 

-          depends on the orientation of a body, but does not 

    dependent on its translation 

-  Relationship between L(t) and total torque:  
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The inertia tensor 

-  scaling factor between angular momentum and angular 

     velocity  

 

 

 

 

 

    where 

 

-  for an actual implementation, replace the finite sums with 

   integrals over a body’s volume 

-  however, computation should not be done in world space,  

   but using body-space coordinates to compute the inertia 

   tensor for any orientation R(t) in terms of a pre-computed  

   integral in body-space coordinates (why and how?) 

-  The mass terms mi  are replaced by a density function 
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The inertia tensor 

 Note that  

 

 

           

 

 

 

where E is the 3x3 identity matrix. 
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The inertia tensor 
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The inertia tensor 

 

 

then from the previous equation we have 
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Why is                       ? 

Proof: To obtain the above equation, we again start with 

equation (7-8). Multiplying both sides by         yields 

 

 

Summing over all the particles, we obtain 
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Proof:  (conti.) 
It is easy to verify that the matrix −a*a*  is equivalent to the 

matrix                           where      is the  3x3 identity matrix. 

Thus 

 

 

 

Substituting into equation (7–9), this yields 
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Proof:  (conti.) 
Thus, we can add                              0  to equation (7-10) to 

obtain 

 

 

 

Finally, since 

 

 

 

we have 
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Rigid Body Equations of Motion 

-  ready to define the state vector X(t) 

 

 

 

-  body mass M and body space inertia tensor            are 

     constants known before the simulation begins 

 

 

 

-  derivative  dX(t)/dt  is 
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Computing the derivative of X(t) 

-  consider an implementation of the function dxdt() for rigid 

    bodies 

-  representing a rigid body by the structure 

    

 

 

 
 

 

 

(Assume the datatypes matrix and triple are available ) 
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Computing the derivative of X(t) (conti.) 

 

 

 

 

 

 
- assume a global array of bodies 

 

- constants mass, Ibody and Ibodyinv  are calculated for  

   each member of Bodies, before simulation begins 

- initial values are assigned to the state variables x, R, P and 

   L of each member of Bodies 
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Computing the derivative of X(t) (conti.) 

- communicate with the differential equation solver ode by 

   passing arrays of real numbers. Several bookkeeping 

   routines are required: 
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Computing the derivative of X(t) (conti.) 

 

 

 

and 
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Computing the derivative of X(t) (conti.) 
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Computing the derivative of X(t) (conti.) 

-  Transfers between all the members of Bodies and an array 

    y of size 18 x NBODIES  are implemented as 

 

 

 

 

 

and 
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Computing the derivative of X(t) (conti.) 

 

 

-  dxdt( ) can be defined as follows: 
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Computing the derivative of X(t) (conti.) 

 

 

-  dxdt( ) can be defined as follows: 

 

 

 

 

    

 

 

 
 

does the real work! 
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Computing the derivative of X(t) (conti.) 
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Computing the derivative of X(t) (conti.) 

 

 

 

 

 

 

 

 

 

    

 See slide 14 for definition of a*  
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Computing the derivative of X(t) (conti.) 
- performing a simulation for 10 seconds, calling  Display- 

  Bodies every (1/24)-th of a second to display the bodies :  

 

 

 

 

 

 

 

 

 

    

initialize the state variables of  

all NBODIES of rigid bodies 
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Computing the derivative of X(t) (conti.) 



 End of Physically 

Based Animation II 
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