7.4 Rigid body simulation*

Objective: create realistic-looking motion for
physically based reaction of rigid bodies to forces
@l such as gravity, viscosity, friction, and those
resulting from collisions with key-frame techniques

Covers two parts:

-unconstrained motion: simulations that aren't
concerned about collisions between rigid bodies

- constrained motion: regard bodies as solid, and
need to disallow inter-penetration

» Some materials used here are taken from David Baraff’s notes: Physically Based Modeling - Rigid Body Simulation



7.4.1 Unconstrained Rigid Body Dynamics

Simulation basics
- basic structure for simulating the motion of a rigid body

@ - (@lmost) the same as simulating the motion of a particle

- X(t): particle’s location in world space at time ¢

-v(t)=x(t) = dix(t) . velocity of the particle at time ¢
X
- state vector X(t) of a particle at time t is the particle’s

position and velocity

(7-1)




7.4.1 Unconstrained Rigid Body Dynamics

Simulation basics (conti)

- For system with n particles, enlarge X(t) to be

X(0) = (%0, D), x,(0), v, )
- F(t) : force acting on particle at time t, sum of all forces
acting on particle: gravity, wind, spring forces, etc.

- If particle i has mass mi, then change of X over time is
given by x®) [ v@®
F@)/m, (7'2)

1"?? (r)

v, (1) F (f)/m,



7.4.1 Unconstrained Rigid Body Dynamics

Simulation basics (conti)

- given any value of X(t), equation (7-2) describes how X(t)
o IS instantaneously changing at time t

- A simulation starts with initial conditions for X(0) (values
for x(0) and v(0)) and then uses an ode solver to track the
change (“flow”) of X(t), for as long as we’re interested in.
To animate the motion of the particle, compute X(1/30),
X(2/30) ...

- how we'd actually interact with a numerical solver (ode), in
a C++-like language

Numerical solver

typedef void (*Derj nc) (double t, double x[], double xdot([]);

void ode (double x0[], double xEnd[], int len, double tO0,
double tl, DerivFunc dxdt) ;




Numerical solver

Simulation basics (c

typedef void (*Derj nc) (double t, double x[], double xdot[]);

void ode (double x0[], double xEnd[], int len, double tO0,
double tl, DerivFunc dxdt) ;

x0: initial state vector to ode
len: length of x0
tO, t1: starting and ending times of simulation

XEnd: state vector at t1 returned by ode

dxdt( ): a function passed to ode; given an array y that
encodes a state vector X(t) and a time t, dxdft()
d :
computes and returns X0 In the array xdot,
ode is allowed to call dxdt as often as it likes.



Rigid Body Concepts
- simulating rigid bodies is like simulating particles, except
more complicated state vector X(t) and derivative < X ()

- use the same paradigm of tracking the movement of a
@ rigid body using a solver ode, with a provided dxdft()

to describe the motion of a rigid body, one needs

X(t): describes translation of the boV spatial variables
R(t): describes rotation of the body<&<

quaternions?

the rigid is defined in a body space (fixed & unchanged
local space; mass center of the body lies at the origin)

geometric description of the body in body space is
transformed into world space by x(t) and R(t)



Rigid Body Concepts

- movement tracking of a rigid body using ode, with a
provided dxdft( )

ODE solver

void Dxdt (double t, double xI[],
double xdot][])




Rigid Body Concepts
- provided dxdt( )

void Dxdt (double t, double x[],
double xdot][])




body space world space I

4 p(1) = R(t)po + x(1)

mass center

R’s first column gives the
direction that the rigid body’s

Fxx T';_L-'x Fzx

R(1) = sy Tyy Tzy <€ x axis points in, when
Fxz Fyz Fzz transformed to world space
at time t

— (xl, y’, Z’)




Velocities (linear and angular)

- define how the position and orientation change over time

a rigid can translate and spin
need x(¢) and R(?)

linear velocity v(¢) = x(z)

angular velocity w(t) :
a vector, encodes both
the axis of the spin and
the speed of the spin

How are R(t) and w(?)
related?

vir)




Velocities (linear and angular)

- how the change of an arbitrary
vector in a rigid body is related
to the angular velocity o(z)

r(t), fixed to the rigid body;

as a direction, independent of
any translational effects, in
particular, 7(¢) is independent
of v(¢)

Assumption: the rigid body were to maintain a constant
angular velocity
Conclusion: the tip of r(t) traces out a circle centered on
the w(t) axis ;
instantaneous velocity of r(t) has magnitude
6] eo(?) |



Velocities (linear and angular)

On the other hand, we have
| (@) xb|=[D|| a(?)]

@ Consequently, we have
r(t)=aw(t)xb
=w(t)xb+w(t)xa
=w(t)x(b+a)

C=otyxr() D

Put all this together:
(1) At time t, the direction of the x axis of the rigid body in
world space is the first column of R(t):

I XX



Velocities (linear and angular)

(2) At time t, derivative of the
first column of R(t) is just
the rate of change of this
vector; using the cross
product rule we just
discovered, this change is

'F-'I.I
(1) x Fxy

Fxz

(3) The same holds for the other two columns of R(t). This
means that we can write

; Fix F*'II ;g
K= 1 wll)x Fxy (1) X Fyy w(r) x Iy
Fxz Fyz Fzz



Velocities (linear and angular)
(3) The same holds for the other two columns of R(t). This
means that we can write

; F.‘-L’ X 'rl‘l X I J: X
- K= 1 wll)x Fxy (1) X Fyy w(r) x Iy
I -'.1': I 4}': I 4_‘-' o

(4) Note if a and b are 3-vectors, then axb is the vector

b —bya.
—ah. + EJ 8
by, — b.a,

Given the vector a, let us define a” to be the matrix

I T
a- 0 ==, <—| anti-symmetric I

o ﬂ'}- ﬂ'_-,,; {}



Velocities (linear and angular)
Then

0 —a: ay b, ayb. — bya;
a'h = a. 0 —a, by | =| —aib.tha, | =axb
- = 0 b. axb, — bya,

(5) Using the “ * ” notation, we can rewrite R(r) as

Fxx Fyx Fzx
RU) = m(f}* Fxy Eﬂ{f}$ Fyy E’U{F)* I'zy )
Fxz F‘J.: Vzz
or
: Fxx Fyx Fox
R(t) = w()* (( - ) s ( iy )
Fxz Fyz Fzz

or simply @r} = w(1)*R(1) (7-3)




Mass of a body

- assume a rigid body is made up of large number of small
particles (to make subsequent derivations simpler)

- - Notations

m; : mass of i-th particle (i=1, ..., N)
¥,; . location of i-th particle in body space
v, . location of i-th particle in world space
M : total mass of the body
- Formulas
1= R() 1y +x(2) (7-4)

N
M = Zml.
i=1



Velocity of a particle
- differentiating (7-4) and using (7-2) to get
7, () = (1) R(¢) 1, + V()

@&l velocity can be decomposed into a linear term and a
angular term

i:(6) = (1) (R(E) 1y, + x(0) = x(0) + (1)
= (1)’ (1,(6)~ x(1))

+v(t)

@r)x(n (6) = (D>
CHv(t) >

........ (7-5)




Center of mass

- enables us to separate the dynamics of bodies into linear
and angular components

center of mass = (Z myr,(t))/ M

- in a center of mass coordinate system for body space, we
have . ,
(> mr, )1 M =0=(0,0,0)

- x(t) is the location of the center of mass at time ¢

x(0)= (X m, r(0)/ M

Yomri(t) Y miy(R(Dro; +x(1))  R() D_miro; + Y mix(1)
M M B M
— ‘\{I}me =Xir)




Force and Torque

- F.(¢) : total force from external forces acting on the i-th
particle at time t.

- 7.(¢) . external torque acting on the i-th particle

Ti (1) = (1i(t) — x(1)) x Fi(7)

- think of the direction of z;(¢) as ()= (13() - x() X Fy(0)
being the axis the body would v/ﬂ)
spin about due to F,(¢)

F(t) : total external force T/._
F(ty=) F() \

7(?) : total external torque

t() =) T(t) =) (i(t) —x(0) x Fi(1)



Linear momentum
- p.(t) : linear momentum of particle m, with velocity 7 (?)
=m, i(t)
@ - P : total linear momentum
P(1) = Zmi 7 (1)
=" (m(t) + m.o(t)x(r, () — x(?) )<—m

= mv(t)+a(t)x Y m (1) - x(t)) S w0 — =)

= v(t)z s — Z m;i(R(t)ro; + x(t) —x(1))
=M v(¢t) = R(1) ) " mirg; =0 (7-6)
- Consequently,

i0="0LO Py = F(t)  Why?




Why is [P(1) = F(1) | ?

Proof: For a rigid body to maintain its shape, there must be
some “internal” constraint forces that act between particles
In the same body.

- These constraint forces act

passively on the system and
do not perform any net work.

Let F_(r) denote the net

internal constraint force  [«—O) \C)
acting on the i-th particle. y
The work performed by F, [C)

on the j-th particle from ? C)\

Time foto f1is

[RAGRAGY!

where 7.(t) is the velocitv of i-th particle




Proof: (conti)
The net work over all the particles is the sum

f1 11
Z[ F{?:’(r}'ﬁi(r) (?T.F:/ ZE‘}(I) *f.*}'{f“}ﬂ?'f
i iy to 2

- which must be zero for any interval to to t.

This means that the integrand
Y Fei(t) - (1) (7-7)

s itself always zero for any time {.

We can use this fact to eliminate any mention of Fc¢i from
our derivations. First, some notes about the “ * " operator.
since a*b=axb, and axb =-b x a, we get

—a*b=b x a=b*a

Since a*is an anti-symmetric matrix, (a*)! = —a*



Proof: (conti)
Finally, since the " * " operator is a linear operator, we have

(4)" = (ciﬂ:g(a*) Ya=(Ya)

- for a set of vectors ai.

Recall that we can write the velocity 7, as v+ @ (7 —x)
where riis the particle’s location, x is the position of the
center of mass, and vand @ are linear and angular velocity.
Letting »'=7,—x and using the “ * ” notation,

Fi=v+ o', =v—-1ro.
Substituting this into (7-7), which is always zero, yields

Z E,.(v—rw)=0.

Note that this equation must hold for arbitrary values of v
and o . Since v and @ are completely independent, if we



Proof: (conti)

choose @ to be zero, then ZFCZ- -v=0 for any choice of v,
from which we conclude that in fact ZF = 0 is always

true. This means that the constraint forces produce no net
force

Similarly, choosing v to be 0 we see that Y —F,-(r*w)=0
for any @ . Rewriting F,-(r,"*@w) as F.'(r"*w) we get that

Z —F, 1w = (Z —Fm-rr*;*) w=70

T T .
forany @ | so Y —Fa 1,*=0 . Transposing, we have

ST s Y GYE= Y F =0

which means that the internal forces produce no net torque.

We can use the above to derive the rigid body equations
of motion. The net force on each particle is the sum of the
internal constraint force Fei and the external force Fi.



Proof: (conti)

choose @ to be zero, then ZFCZ- -v=0 for any choice of v,
from which we conclude that in fact ZF = 0 is always

true. This means that the constraint forces produce no net
force

Similarly, choosing v to be 0 we see that Y —F,-(r*w)=0
for any @ . Rewriting F,-(r,"*@w) as F.'(r"*w) we get that

Z —F, 1w = (Z —Fm-rr*;*) w=70

T T .
forany @ | so Y —Fa 1,*=0 . Transposing, we have

ST s Y GYE= Y F =0

which means that the internal forces produce no net torque.

We can use the above to derive the rigid body equations
of motion. The net force on each particle is the sum of the
internal constraint force Fei and the external force Fi.



Proof: (conti)
The acceleration ¥, of the i-th particle is

e d d [ . g FE .
o= _Fi= (V=0 0 =0—F, @7, a.

dt dt

- Since each individual particle must obey Newton’s law f =
ma, or equivalently ma - f= 0, we have

mii; — F;— Fi=mij(0—F, o —1, @) — F;— F;=0  (7-8)

for each particle.

To derive P=F =Y _F,, we sum the above equation over all
the particles. We obtain

. = F ok o ow
E mi(v—r"w—r;®)—F—F,;=0.

Breaking the large sum into smaller ones,



Proof: (conti)
Z mi(v— i w—r @) — F;— Fyy =
Z m;v — Z mir w — Z Mm@ — Z F; — Z F,;
- Z m;v — (Z HI":I'*;-)* w — (Z nf.l,-r;)#m - Z F. — Z F.. =
m;v — i mr; * W — m;r; $:;L} = F; — F.=0.
dt .

Since we are in a center-of-mass coordinate system, eq. (7—
6) from slide 20 tells us that ) m.7;'= 0, which also means
that d(Q_mr,')/dt = 0. Removing terms with Zm,-ri', and the
term ZFC,. from the above equation yields

ZJHI-I:-‘—ZE::'U

orsimply Myv=P=> F,=F. Q.E.D.




Angular momentum

- most unintuitive concept! Nevertheless, makes equations
simpler than using angular velocity

o - constant angular momentum does not imply constant
angular velocity

Total angular momentum

L) = 1(2) o(0)]

where 1(¢) is a 3x3 (rank two) matrix called inertia tensor

The inertia tensor describes how the mass in a body is
distributed relative to the body’s center of mass

I(t) depends on the orientation of a body, but does not
dependent on its translation

Relationship between L(t) and total torque: ‘L(t) = r(t)‘




The inertia tensor

- scaling factor between angular momentum and angular
velocity

y, y,
o [ Gl ¥)  —mrl & ah
I(t) = Z —In; ;I};H mr-(r}. —H*'I._,} — .’”II_
.'r-— gF =
\ —mir —IN; .FI_FI} mi(r;] —|—rf},)

where 7, =r;i(t) — x(t)

- for an actual implementation, replace the finite sums with
iIntegrals over a body’s volume

- however, computation should not be done in world space,
but using body-space coordinates to compute the inertia
tensor for any orientation R(t) in terms of a pre-computed
integral in body-space coordinates (why and how?)

- The mass terms mi are replaced by a density function



The inertia tensor

Note that
1 0 0 mirly  mir, mir
I(H) = Zm;r;frr'; 010 ]- m;r’,f},r’,:x n.r,-r;fi T T
53 T | N S mﬂ"}f

= mi(G rHE—1ir")
where E is the 3x3 identity matrix.

Since 1. = R(t)ro; and R(t)R(t)T = E, we have




The inertia tensor
I =Y m(} ¥HE —vigih)
=) mi((R070) T (R(10)E = (R(D70) (R(B)1o;)T)
=Y my(ro; R()T R(1)ro; E— R(t)ro;ro; R(1)T)
= Z mi((rol ro;)E— R(t)roirol R(1)D).

Since ;-D;T Io; 1S @ scalar, we can rearrange things by writing

I(ty =) m;((rof ro;) E— R(t)ro;r07 R(1)")
=Y mi(R() (o] ro) R(YTE — R(Drosrol R(H)T)
— R(?) (Zm{{m‘,;ﬂr]f—;ﬂr;m )R{r)



The inertia tensor
If we define £, ; asthe matrix

e - sl
Ibﬂd}' — Z‘T”}'{(Fﬂj Fﬂf}-"'-:_ "0i0; }

- then from the previous equation we have

I(t) = R() Lyoq, R(D) .

Since I, . is specified in body-space, it is constant over the
simulation. Thus, by pre-computing [/ o TOr @ body before
the simulation begins, we can easily compute I(z) from

I/ soay @nd the orientation matrix R().



Why is ‘ L) =(¢) ‘ ?
Proof: To obtain the above equation, we again start with
equation (7-8). Multiplying both sides by #'* vyields

i

o om0 =7 w—r; w)—1 Fi—r Fp =1 0=0.

Summing over all the particles, we obtain

Zf ?”11—2 ZHH}J}) (ZHH}I‘, ':. ZFI*FH_G-

Since Zr}'* F. =0 and mer}': 0, we are left with

—( E mir; 1 )m— ( E mir; r; )m— E o FE =8

or, recognizing that X717 Fi=Y rix F=T.

— (X mi i) o— (o mafr) o=z @9



Proof: (conti.)
It is easy to verify that the matrix —a*a™ is equivalent to the
matrix (@' a)E—aa’ where E is the 3x3 identity matrix.

Thus
& =Y meE-rirh =1a).

Substituting into equation (7-9), this yields

(Z—mr )m+I(r}fu_ T. (7-10)

Since #;'=@xr,' and "o =—oxr,' we can write

gk 1k
E mir; v o= E mi(w x 1) (—w x ;)

— Z —m;(@ X r;} X (W X r;) =4




Proof: (conti.)
Thus, we can add —Zml. 7,"*1r,'"* =0 to equation (7-10) to
obtain

( E — I — T T )::u +I(Nw=T.

Finally, since

' d % % * -k T
I(t) = = E —mgr T, = E —mgr; F; — Ml F

we have
; : i
I(Hw+ I(1Hw = E(I{r}m) =¥

Since L(r) = I(rn)w(r), this leaves us with the result that

L(t)=T1.



Rigid Body Equations of Motion

- ready to define the state vector X(t)

X(t) =(x(2), R(t), P(t), L(t))"

P .. ™

Ispatial information I |uelo:ity information |

- body mass M and body space inertia tensor 1, are
constants known before the simulation begins

- auxiliary quantities 7(7), «(z) and v(¢) are computes by

(1) = Q I(t) = R(D Iy R()T  and (1) = I(t) " L(1)

M’
- derivative dX(t)/dt is (7) [ v(@)
d _d | R(t) | | @@®)*R@)

a =gl o | T Fo

L(1) \



Computing the derivative of X({)

- consider an implementation of the function dxdt() for rigid
bodies

- representing a rigid body by the structure
-

struct RigidBody ({
/* Constant quantities */

double mass; /* mass M */
matrix Ibody, I i ™4
Ibodyinv; o ﬁﬁh (inverse of lpay) */

/* State wvariables */

triple x; Fx i) xJ
matrix .R: /* R(t) */
triple P, f% F{e) *f

L; fx 1) *f

(Assume the datatypes matrix and triple are available )



Computing the derivative of X(t) (conti.)

/* Derived quantities (auxiliary variables) */

matrix Iinv; /* I (@) */
triple v, pE W) %i
omeqga ; ;* wity *f

/* Computed quantities */
triple EIorce, /* F(t) */
torque; X i) =)

- assume a global array of bodies

RigidBody Bodies [NBODIES] ;

- constants mass, Ibody and Ibodyinv are calculated for
each member of Bodies, before simulation begins

- initial values are assigned to the state variables x, R, P and
L of each member of Bodies




Computing the derivative of X(t) (conti.)

- communicate with the differential equation solver ode by
passing arrays of real numbers. Several bookkeeping
routines are required:

/* Copy the state information into an array */
void StateToArray(RigidBody *rb, double *y)

{

||

Y44 rb->x[0] ; /* x component of position */
Vit = Ih->¥%11]; /* etc. */
*YV++ = rb->x(2];

1|

for{int i = 0; i < 3; i++) /* copy rotation matrix */
for(int § = 0; j < 3; j++)
*v++ = Yb->R[1,7];

*v++ = rb->P[0];
*yv++ = rb->P[1];
*v++ = rb->P[2];




Computing the derivative of X(t) (conti.)

*V++ = rb-=L[0] ;
*¥Y++ = rb-=L[1];
*v++ = rb->L[2];

and

/* Copy information from an array into the state wvariables */
void ArrayToState (RigidBody *rb, double *y)

{
rb->x[0] = *y++;
rb->x[1] = *y++;
Yb->x[2] = *y++;
for(int 1 = 0; 1 < 3; i++)

Tortint. 3 = §; 3 < 3§ G%+3)
rb->R[1i;]] = *V++;




Computing the derivative of X(t) (conti.)

f*
rb-

}

rb -
rb-
rb-

rb-
rb-
rb-

f*

>P[0] = *Vv++;
>P[1l] = *VvV++;
sP[2] = *v++;
>L[0] = *y++;
sLill]l = *yi+;
>L[2] = *yV4++;
Compute auxiliary wvariables... */

<%
rb-

w(f) = T =y

>V = rb->P / mass;

IY() = RO Jpmuy, R(OT*/
>TIinv = R Ibodyinvwv R) ;

o) =TI (L@ */
somega = rb—}Iinv(:)rb—ﬁL;




Computing the derivative of X(t) (conti.)

- Transfers between all the members of Bodies and an array
y of size 18 x NBODIES are implemented as

‘ ffdefine STATE SIZE 18

void ArrayToBodies (double x[1])

{

for(int i = 0; i < NBODIES; i++)
ArrayToState (&Bodies([i], &x[1 * STATE SIZE]);

}

and

void BodiesToArray (double x[])

{

for(int i = 0; i < NBODIES; i++)
StateToArray (&Bodies [i], &x[i1i * STATE SIZE]);




Computing the derivative of X(t) (conti.)

- the following routine computes force F(t) and torque o(7):

‘ void ComputeForceAndTorque (double t, RigidBody *rb};‘

@ dxdt( ) can be defined as follows:
void dxdt (double t, double x[], double xdot[])

{

/* put data in x[] into Bodies[] */
ArrayToBodies (x) ;

for{int 1 = 0; 1 < NBODIES; 1i++)

{

ComputeForceAndTorque (£, &Bodies[i]);
DdtStateToArray (&Bodies [i],

&xdot [1 * STATE SIZE]) ;




Computing the derivative of X(t) (conti.)

- the following routine computes force F(t) and torque o(7):

‘ void ComputeForceAndTorque (double t, RigidBody *rb};‘

@ dxdt( ) can be defined as follows:

{

void dxdt (double t, double x[], double xdot[])

/* put data in x[] into Bodies[] */
ArrayToBodies (x) ;

for(int i = 0; i <« NBODIES; i++)
{
ComputeForceAndTorgue (£, &Bodies[i]) ;
dtStateToArray (&Bodies [1i],
&xdot [1 * STATE SIZE]);

does the real work! I




Computing the derivative of X(t) (conti.)

void ddtStateToArray (RigidBody *rb, double *xdot)
{

/* copy %x{f):u(i) into xdot */

*xdot++ = rb->wv[0];

*Xdot++ = rb->v|[1l];

*xdot++ = rb->v[2];

/* Compute R(f)= -
matrix Rdot Star (rb->omega) rb-=R;

/* copy Rﬂj into array */
for(int 1 = 0; 1 < 3; 1i++)
for{int 7 = 03 3 .« 3; J++)
*xdot++ = Rdot[i,j];

*xdot++ = rb->force[0]; i %fﬁﬂ::PIﬁ g
*xdot++ = rb->force[1l];
*xdot++ = rb->forcel[2];




Computing the derivative of X(t) (conti.)

*wdot++ = I‘b—::-tDI'que [U] i /* %L(r} o T(f) */
*Kd{}t—++ = I‘b—::tDI'q'LlE [1] '
*Kd‘:}t—++ = I‘b—::tDI'q'LlE [2] ’

- The routine Star, used to calculate R(?) is defined as

matrix Star (triple a);

and returns the matrix

0 —al2] alll
al2] 0 —alo0]
/‘ =g[1] al0] 0

/
See slide 14 for definition of a* |




Computing the derivative of X(t) (conti.)
- performing a simulation for 10 seconds, calling Display-
Bodies every (1/24)-th of a second to display the bodies :

void RunSimulation ()

{

double x0[STATE SIZE * NBODIES],
XxFinal [STATE SIZE * NBODIES] ;

| initialize the state variables of

InitStates() ;) € | all NBODIES of rigid bodies
BodiesToArray (xFinal) ;

for(double £t = 0; £t < 10.0; £t += 1./24.)

{

/* copy xXFinal back to x0 */
for(int 1 = 0; 1 < STATE SIZE * NBODIES; i++)

{

x0[1i] = xFinal[i];




Computing the derivative of X(t) (conti.)

for(double £t = 0; £t < 10.0; €t += 1./24.)

{

/* copy xFinal back to x0 */
for(int i1 = 0; 1 < STATE SIZE * NBODIES; i++)

{

x0[1i] = xFinall[i];

ode (x0, xFinal, STATE SIZE * NBODIES,
t, £+1./24., dxdt);

/* copy %K{t—l—l%} into state wvariables */

ArrayToBodies (xFinal) ;
DisplayBodies() ;




End of Physically
Based Animation |



