
CS Dept, UK1

7. Physically Based Animation

- Concerned with quality of motion than with

precisely controlling the position and orientation

- Animation is not necessarily concerned with

accuracy, but is concerned with believability

(sometimes referred to as being physically

realistic)

- Forces used to maintain relationships among

geometric elements might not be physically

correct

CS Dept, UK2

Physically based Animation
- There are often several levels at which a process

can be modeled

e.g., cloth modeling

surface level – less expensive, less flexible

thread level - more expensive, more flexible

- We hope to relieve the animators of low-level

specifications of motions, and only be concerned

with specifying high-level relationships or qualities

of the motion

- Mainly concerned with dynamic control,

basic physics, spring meshes, particle systems,

rigid body dynamics, use of constraints

CS Dept, UK3

Cloth Modeling – surface level

- less expensive, less flexiblehow

How?

CS Dept, UK4

Cloth Modeling – thread level

- more expensive, more flexible
Rendered using volumetric

techniques

Rendered using volumetric

models

Rendered with Monte Carlo path-tracing and virtual

scattering

CS Dept, UK5

Basic Physics

CS Dept, UK6

Basic Physics

CS Dept, UK7

Differential Equation Basics

Initial value problem:

CS Dept, UK8

Differential Equation Basics

Initial value problem:

CS Dept, UK9

Differential Equation Basics

Initial value problem:

CS Dept, UK10

Differential Equation Basics

Initial value problem:

CS Dept, UK11

Differential Equation Basics

Initial value problem:

CS Dept, UK12

Differential Equation Basics

Initial value problem:
(Shrinking the step size doesn’t cure the problem, but

only reduces the rate at which the error accumulates.)

CS Dept, UK13

Differential Equation Basics

Initial value problem:

(Too large a step size can make Euler’s method diverge)

CS Dept, UK14

Differential Equation Basics

Initial value problem:

(Too large a step size can make Euler’s method diverge)

CS Dept, UK15

Differential Equation Basics

Initial value problem:

(Too large a step size can make Euler’s method diverge)

CS Dept, UK16

Differential Equation Basics

Initial value problem:

(Too large a step size can make Euler’s method diverge)

CS Dept, UK17

Differential Equation Basics

Initial value problem:

(Too large a step size can make Euler’s method diverge)

CS Dept, UK18

Differential Equation Basics

Initial value problem:

(Too large a step size can make Euler’s method diverge)

CS Dept, UK19

Spring Model:
- common tool for modeling flexible objects

- to keep 2 objects at a prescribed distance

- to insert temporary control forces into an

environment

CS Dept, UK20

Damper:
Damping is an influence within or upon an

oscillatory system that has the effect of reducing,

restricting or preventing its oscillations

Un-damped

spring P2

P1

P1

http://en.wikipedia.org/wiki/Oscillator

CS Dept, UK21

Damper:
- Damper works against its

relative velocity

- the force of a damper is

negatively proportional to the

velocity of spring length)(sv

12

12

12

12
12

pp

pp

pp

pp
ppkf dd

change)length spring to

esistanceconstant(rdamper :dk
works in two cycles:

compression cycle ;

extension cycle

CS Dept, UK22

Spring-Damper Pair:
- one of the most useful tools to incorporate some

use of forces into an animation

- the spring represents a force to maintain a rela-

tionship between two points, the damper is used

to restrict the motion and keep the system from

reacting too violently

12

12

12

12
12

pp

pp

pp

pp
ppkLLkf drcs

CS Dept, UK23

7.2 Spring Animation Examples
Mass-spring-damper modeling of flexible objects:

• model each vertex as a point mass

• model each edge as a spring with a paired damper (not

shown)

• each spring’s rest length is set equal to the original length

of the edge

• a mass is assigned to the object by the animator and the

mass is evenly distributed among the object’s vertices

• spring constants are assigned uniformly throughout object

Dampers not

shown

CS Dept, UK24

7.2 Spring Animation Examples
Mass-spring-damper modeling of flexible objects:

• as external forces are applied to specific vertices, vertices

will be displaced relative to other vertices of the object

• this displacement will induce spring forces, which will

impart forces to the adjacent vertices as well as reactive

forces back to the initial vertex

• these forces will result in further displacements, which will

induce more spring forces throughout the object, result in

more displacements, and so on.

Dampers not

shown

CS Dept, UK25

7.2 Spring Animation Examples
Mass-spring-damper modeling of flexible objects:

• the result will be an object that is wriggling and jiggling as a

result of the forces propagating along the edge springs

and producing constant relative displacements of vertices

Drawback: the effect has to propagate through the object,

one time step at a time. This means that the object’s

reaction to forces depends on the representation of the

object (not unique)

Dampers not

shown

CS Dept, UK26

7.2 Spring Animation Examples
A simple example:

• an external force is applied to vertex V2 of an

equilateral triangle for one time step

• acceleration

• velocity

Dampers not

shown

22 / mFa

tatavv 2222 '

CS Dept, UK27

7.2 Spring Animation Examples
A simple example:

• position

Dampers not

shown

2

22222222)(
2

1
'

2

1
)'(

2

1
' taptvptvvpp

CS Dept, UK28

7.2 Spring Animation Examples
A simple example:

Dampers not

shown

CS Dept, UK29

7.2 Spring Animation Examples

• if a tube’s edges are modeled with springs, during

applications of external forces, the cube can turn

inside out (why?)

• to stable the shape of an object, additional springs

can be added across the object’s faces and its

volume

CS Dept, UK30

7.3 Particle System Dynamics:

CS Dept, UK31

7.3 Particle systems:

- Collection of large number of point-like elements

to simulate certain kinds of “fuzzy” phenomena

- Often animated as a simple physical simulation

(show a video here)

- Assumptions used in rendering and calculation:

- particles do not collide with other particles

- particles do not cast shadows, except in an aggregate

sense

- particles only cast shadows on the rest of the

environment

- particles do not reflect lights – they are treated as point

light sources

CS Dept, UK32

7.3 Particle systems:
- a particle system's position and motion are controlled by

an emitter (a regular 3D mesh object, such as a cube or

a plane)

- the emitter acts as the source of the particles, and its

location in 3D space determines where they are

generated and whence they proceed.

- a set of “fuzzy” particle behavior parameters are attached

to the emitter, including: spawning rate, particles' initial

velocity vector, particle lifetime, particle color, …

- the particles are usually appear to “spray” directly from

faces of the emitter (the initial velocity vector is set to be

normal to the individual face(s) of the object)

- a typical particle system's update loop (performed for each

frame of animation) can be separated into two distinct

stages, the parameter update/simulation stage and the

rendering stage.

CS Dept, UK33

Simulation stage:
- calculate the number of new particles that must be created

- each particle is spawned in a specific position in 3D space

(based on the emitter's position and the spawning area

specified) with initialized parameters (velocity, color, etc.)

- at each update, all existing particles are checked to see if

they have exceeded their lifetime (YES: removed from the

simulation; NO: particles' position and other characteristics

are advanced based on a physical simulation, which can

be as simple as translating their current position, or as

complicated as performing physically accurate trajectory

calculations which take into account external forces

(gravity, friction, wind, etc.))

- perform collision detection between particles and specified

3D objects in the scene to make the particles bounce off of

or otherwise interact with obstacles in the environment

- collisions between particles are rarely used, as they are

computationally expensive and not visually relevant

http://en.wikipedia.org/wiki/Translation_(geometry)

CS Dept, UK34

Life of a particle:

CS Dept, UK35

Particle generation:
-Generated according to a controlled stochastic process

Particle attributes:
-Position - Transparency

-Velocity - Lifetime

-Shape parameters

-Color

rRandAn

rRandn

)()(particles of #

)(particles of #

Randomized in some controlled way

CS Dept, UK36

Particle termination:
- Lifetime attribute is decremented by 1 at each new frame

- Particle is removed when attribute reaches 0

Particle animation:
- each active particle is animated throughout its life

- the activation includes:

• position: considers forces and computes resultant

particle acceleration

• velocity: updated from its acceleration, then average of

its old velocity and newly updated velocity

• forces modeled in the environment: global force fields

(gravity, wind), local force fields (vertices),

collisions with objects in the environment

• mass: mass of the particle

• color and transparency: function of global time, its own

life span remaining, its height

• shape: function of velocity (use ellipsoid to represent a particle)

CS Dept, UK37

Representation:

CS Dept, UK38

unary

CS Dept, UK39

Representation:

CS Dept, UK40

Represen-

tation:

Coefficient of drag

The effect of this is to

resist motion, making

a particle gradually

come to rest in the

absence of other

influences.

Highly Recommended!

CS Dept, UK41

Representation:

CS Dept, UK42

Representation:

CS Dept, UK43

Life of a particle:

CS Dept, UK44

Simulation:

CS Dept, UK45

Simulation:

CS Dept, UK46

Simulation:

Theoretically, zero

CS Dept, UK47

Simulation: coefficient of restitution

CS Dept, UK48

Simulation:

CS Dept, UK49

Simulation:

CS Dept, UK50

Rendering stage:

- after the update is complete, each particle is rendered,

usually in the form of a textured billboarded quad

(i.e. a quadrilateral that is always facing the viewer).

- However, this is not necessary; a particle may be

rendered as a point light source

- it adds color to the pixel(s) it covers, but is not

involved in the display pipeline (except to be hidden)

or shadowing

- density of particles between a position in space and a

light source can be used to estimate the amount of

shadowing

CS Dept, UK51

Rendering stage:
- particles can be rendered as metaballs in off-line

rendering

- isosurfaces computed from particle-metaballs

make quite convincing liquids.

CS Dept, UK52

Rendering stage:
- 3D mesh objects can "stand in" for the particles —

a snowstorm might consist of a single 3D

snowflake mesh being duplicated and rotated to

match the positions of thousands or millions of

particles.

CS Dept, UK53

Snowflakes vs Hair
- particle systems can be either animated or static; that is,

the lifetime of each particle can either be distributed over

time or rendered all at once

- consequence of this distinction is similar to the difference

between snowflakes and hair - animated particles are akin

to snowflakes, which move around as distinct points in

space, and static particles are akin to hair, which consists

of a distinct number of curves

A cube emitting 5000 animated particles,

obeying a "gravitational" force in -Y direction

The same cube emitter rendered using

static particles, or strands.

http://en.wikipedia.org/wiki/Stationary_point
http://en.wikipedia.org/wiki/Curve

CS Dept, UK54

Snowflakes vs Hair

- the term "particle system" itself often brings to

mind only the animated aspect, which is

commonly used to create moving particle

simulations — sparks, rain, fire, etc.

- In these implementations, each frame of the

animation contains each particle at a specific

position in its life cycle, and each particle

occupies a single point position in space.

- For effects such as fire or smoke that dissipate,

each particle is given a fade out time or fixed

lifetime; effects such as snowstorms or rain

instead usually terminate the lifetime of the

particle once it passes out of a particular field of

view

CS Dept, UK55

Snowflakes vs Hair
- However, if the entire life cycle of each particle is rendered

simultaneously, the result is static particles — strands of

material that show the particles' overall trajectory, rather

than point particles. These strands can be used to simulate

hair, fur, grass, and similar materials.

Alice Lin and Fuhua (Frank) Cheng

CS Dept, UK56

Snowflakes vs Hair
- However, if the entire life cycle of each particle is rendered

simultaneously, the result is static particles — strands of

material that show the particles' overall trajectory, rather

than point particles. These strands can be used to simulate

hair, fur, grass, and similar materials.

Alice Lin and Fuhua (Frank) Cheng

CS Dept, UK57

Snowflakes vs Hair
- However, if the entire life cycle of each particle is rendered

simultaneously, the result is static particles — strands of

material that show the particles' overall trajectory, rather

than point particles. These strands can be used to simulate

hair, fur, grass, and similar materials.

Alice Lin and Fuhua (Frank) Cheng

CS Dept, UK58

Snowflakes vs Hair
- The strands can be controlled with the same velocity

vectors, force fields, spawning rates, and deflection

parameters that animated particles obey.

- In addition, the rendered thickness of the strands can be

controlled and in some implementations may be varied

along the length of the strand.

- Different combinations of parameters can impart stiffness,

limpness, heaviness, bristliness, or any number of other

properties. The strands may also use texture mapping to

vary the strands' color, length, or other properties across

the emitter surface.

CS Dept, UK59

References:

- A. Witkin, Physically Based Modeling: Principles and Practice,

http://www.cs.cmu.edu/~baraff/ sigcourse/

- A. Witkin, D. Baraff, M. Kass, An Introduction to Physically Based

Modeling, http://www.cs.cmu.edu/~baraff/pbm/pbm.html

- D. Baraff, Physically based modeling,

http://www.pixar.com/companyinfo/research/pbm2001/

- D. James, Physically Based Animation for Computer Graphics,

http://www.cs.cornell.edu/courses/cs5643/2010sp/

Acknowledgement:
Some materials are taken from the above references.

http://www.cs.cmu.edu/~baraff/pbm/pbm.html
http://www.pixar.com/companyinfo/research/pbm2001/

End of Physically

Based Animation I

CS Dept, UK60

CS Dept, UK61

7.3 Particle System Dynamics:

(a) (b) (c)

(d) (e)

CS Dept, UK62

Life of a particle:

