[7. Physically Based

Animation]

- Concerned with quality of motion than with
precisely controlling the position and orientation

- Animation is not necessari
accuracy, but Is concernec

y concerned with
with believability

(sometimes referred to as
realistic)

neing physically

- Forces used to maintain relationships among
geometric elements might not be physically

correct

CS Dept, UK

Physically based Animation

- There are often several levels at which a process
can be modeled
& ©9- cloth modeling | |
surface level — less expensive, less flexible
thread level - more expensive, more flexible
- We hope to relieve the animators of low-level
specifications of motions, and only be concerned
with specifying high-level relationships or qualities
of the motion
- Mainly concerned with dynamic control,
basic physics, spring meshes, particle systems,
rigid body dynamics, use of constraints

CS Dept, UK

Cloth Modeling — surface level
- less expensive, less flexiblenf & ¢

XXX
XD

Cloth Modeling — thread level
- more expensive, more erxibI_

Rendered usi

Modeling scattering ,,
from a fiber , _— !

Rendered Wlth Monte Carlo path-tracing and virtual
R scattering

Basic Physics
- Newton’s 2" law of motion: f =m *a

&l object’'s new velocity: V' =v+a*Atf

. _ : 1 '
- object’'s new location: p=p+ 5*(\? +v') * At
- gravitational force: @_’:. F a
r
mxm,
FR=F=0G

r2

where G=6.67384x10"" m’ kg"s™

and Is called the gravitational constant
CS Dept, UK

Basic Physics

- gravity model for earth:
gravitational acceleration a, is computed as

follows:
) m meter
a=d Mgy M
m, I sec
om

CS Dept, UK

Differential Equation Basics

Initial value problem:

A Canonical
Differential Equation

x—=f(x1)

* X(7): a moving point.
* f(x,7): x’s velocity.

Differential Equation Basics

Initial value problem:

(i

;] e |) i

L__

H i
Z |
[| define
N/

‘l; (1 (

Differential Equation Basics

Initial value problem:
Integral Curves

Start Here

Pick any starting point,
and follow the vectors.

Given the starting point,
follow the integral curve.

* Simplest numerical
solution method

* Discrete time steps

* Bigger steps, bigger

/ /@ errors.

X{(f EAl) = xt) + At1(Xx,1)

Differential Equation Basics

Problem I Inaccurac

Error turns x(t) from a
circle into the spiral of
your choice.

Problem I1: Instability

I (Too large a step size can make Euler’s method diverge) I

to Neptune!

The Midpoint Method

a. Compute an Euler step
) Ax = Atf(X,7)

b. Evaluate f at the midpoint

. :f(x+Ax’t+At]

2 2

c. Take a step using the
midpoint value

X(t == At) = X(t) == Atfmld

More methods...

e Euler’s method is Ist Order.
* The midpoint method is 2nd Order.

* Just the tip of the iceberg. See
Numerical Recipes for more.

* Helpful hints:

— Don’t use Euler’s method (you will
anyway.)

— Do use adaptive step size.

CS Dept, UK

Modular Implementation

* Generic operations:
— Get dim(x)
— Get/set x and t
— Deriv Eval at current (x,t)
* Write solvers in terms of these.
— Re-usable solver code.

— Simplifies model implementation.

CS Dept, UK

Solver Interface

Dim(state)

alf—p
Get/Set State

ﬁ

Deriv Eval

A Code Fragment

void eulerStep(Sys sys,
float t

getTime (sys) ;

vector<float> xO0,

getTime (sys) ;

deltaX;

x0 = getState (sys) ;
derivEval (sys, x0,

deltaX
setState(sys, x0 + h*deltaX, t+h);

float h)

Spring Model:

- common tool for modeling flexible objects
- to keep 2 objects at a prescribed distance
- to Iinsert temporary control forces into an

environment

|< LC >
= p 2 pl ks :Spring constant
f; - —ks (LC - Lr) = (stiffness)
‘ p2 pl H LD Uept, UK

Damper:

Damping is an influence within or upon an
oscillatory system that has the effect of reducing,
restricting or preventing its oscillations

Absorber

Upper
Mount

Piston
Rod

Oil

Reserve
Cylinder

Pressure
Tube

Base

Un-damped Valve
spring Lower

Mount

EXTENSION COMPRESSION
CYCLE CYCLE

http://en.wikipedia.org/wiki/Oscillator

Damper:

- Damper works against its
relative velocity

- the force of a damper Is
negatively proportional to the
velocity of spring length (V;)

: : P, — P, P, — P
f, ==k, (p,—p,)
; d(i l) [H P, — pluJ(H P, — le]

EXTENSION COMPRESSION
CYCLE CYCLE

k, :damper constant(resistance

to spring length change)

A

works in two cycles:
compression cycle ;
extension cycle

CS Dept, UK

Spring-Damper Pair:

- one of the most useful tools to incorporate some
use of forces into an animation

- the spring represents a force to maintain a rela-
tionship between two points, the damper is used
to restrict the motion and keep the system from

reacting too violently

Pl:mass spring]
point —WwWW— P2: fixed
5 T > point

damper

—p, || p,-
) B ~ Y P~ P P ~ Py
f_[ks(Lc)=k (o=) [HPZ—MHJGF’Z_“H)

CS Dept, UK

<>

7.2 Spring Animation Examples
Mass-spring-damper modeling of flexible objects:

Vi
E31 Dampers not
- < | shown

E12 V3

E23
V2

* model each vertex as a point mass

* model each edge as a spring with a paired damper (not
shown)

» each spring’s rest length is set equal to the original length
of the edge

e a mass Is assigned to the object by the animator and the
mass is evenly distributed among the object’s vertices

e Spring constants are assigned uniformly throughout object

7.2 Spring Animation Examples
Mass-spring-damper modeling of flexible objects:

Vi
E31 Dampers not
- < | shown

E12 V3

E23
V2

* as external forces are applied to specific vertices, vertices
will be displaced relative to other vertices of the object

* this displacement will induce spring forces, which will
Impart forces to the adjacent vertices as well as reactive
forces back to the initial vertex

* these forces will result in further displacements, which will
Induce more spring forces throughout the object, result in
more displacements, and so on.

7.2 Spring Animation Examples
Mass-spring-damper modeling of flexible objects:

Vi
E31 Dampers not
- < | shown

E12 V3

E23
V2

* the result will be an object that is wriggling and jiggling as a
result of the forces propagating along the edge springs
and producing constant relative displacements of vertices

Drawback: the effect has to propagate through the object,
one time step at a time. This means that the object’s
reaction to forces depends on the representation of the
object (not unigue)

7.2 Spring Animation Examples
A simple example:

Vi
E31 Dampers not
- < | shown

E12 V3

E23

/F/Vz

 an external force is applied to vertex V2 of an
equilateral triangle for one time step

e acceleration
a,=F/m,
* velocity

V, =V, +a,At = a,At

7.2 Spring Animation Examples
A simple example:

E31 Dampers not
- < | shown

* position . . .
pz': pz "‘E(Vz +V2')At — pz "‘EVz'At — pz +§a2(At)2

consequently, the lengths of edges £, and E,
are changed, and the spring force is created along
the two edges

7.2 Spring Animation Examples
A simple example:

Vi
E31 Dampers not
- < | shown

E12 V3

F E23

/ V2

* next time step, the spring that models edge E_
Imparts a restoring force to vertices 7, and 7,

while the spring that models edge E,, imparts a
restoring force to vertices p, and 7,

* needs to consider stable configuration

7.2 Spring Animation Examples

<3 DA ;

6
L

* if a tube’s edges are modeled with spxings, during
applications of external forces, the cube can turn
iInside out (why?)

* to stable the shape of an object, additional springs
can be added across the object’s faces and its
volume

/.3 Particle System Dynamics:

/.3 Particle systems:

- Collection of large number of point-like elements
to simulate certain kinds of “fuzzy” phenomena

B Often animated as a simple physical simulation
(show a video here)

- Assumptions used in rendering and calculation:

- particles do not collide with other particles

- particles do not cast shadows, except in an aggregate
sense

- particles only cast shadows on the rest of the
environment

- particles do not reflect lights — they are treated as point

light sources
CS Dept, UK

/.3 Particle systems:

- a particle system's position and motion are controlled by
an emitter (a regular 3D mesh object, such as a cube or
a plane)

@ the emitter acts as the source of the particles, and its
location in 3D space determines where they are
generated and whence they proceed.

a set of “fuzzy” particle behavior parameters are attached
to the emitter, including: spawning rate, particles' initial
velocity vector, particle lifetime, particle color, ...

the particles are usually appear to “spray” directly from
faces of the emitter (the initial velocity vector Is set to be
normal to the individual face(s) of the object)

a typical particle system's update loop (performed for each
frame of animation) can be separated into two distinct
stages, the parameter update/simulation stage and the
rendering stage.

Simulation stage:

- calculate the number of new particles that must be created

- each particle is spawned in a specific position in 3D space
(based on the emitter's position and the spawning area
specified) with initialized parameters (velocity, color, etc.)

- at each update, all existing particles are checked to see if
they have exceeded their lifetime (YES: removed from the
simulation; NO: particles' position and other characteristics
are advanced based on a physical simulation, which can
be as simple as translating their current position, or as
complicated as performing physically accurate trajectory
calculations which take into account external forces
(gravity, friction, wind, etc.))

- perform collision detection between particles and specified
3D objects in the scene to make the particles bounce off of
or otherwise interact with obstacles in the environment

- collisions between particles are rarely used, as they are
combutationallv exnensive and not visuallv relevant

http://en.wikipedia.org/wiki/Translation_(geometry)

Life of a particle:

Particle’s midlife with modified
color and shading

\ Particle's demise, based on
constrained and randomized
\ life span

Particle's birth: constrained and randomized
place and time with initial color and
shading (also randomized)

Trajectory based on
simple physics~__, Collides with environment

— but not other particles

CS Dept, UK

Particle generation:
-Generated according to a controlled stochastic process

of particles=n+ Rand() *r

Particle attributes:
-Position - Transparency

-Velocity - Lifetime

-Shape parameters

-Color Randomized in some controlled way

Particle termination:
- Lifetime attribute is decremented by 1 at each new frame
- Particle is removed when attribute reaches 0

Particle animation:
@ - cach active particle is animated throughout its life
- the activation includes:
* position: considers forces and computes resultant
particle acceleration
* velocity: updated from its acceleration, then average of
its old velocity and newly updated velocity
* forces modeled in the environment: global force fields
(gravity, wind), local force fields (vertices),
collisions with objects in the environment
* mass: mass of the particle
* color and transparency: function of global time, its own
life span remaining, its height
* shape: function of velocity (use ellipsoid to represent a particle)

Representation:

Particle Structure

Particle Systems

Constant
Position/time dependent
Velocity-Dependent

n-ary
Force Structures

e Unlike particles, forces are
heterogeneous.

* Force Objects:
— black boxes
— point to the particles they influence

— add 1n their own forces (type dependent)
* Global force calculation:

— loop, invoking force objects

A list of force
objects to invoke

Represen-

tation:

Coefficient of drag

Force Law:

fa’rag — 'kdragv

EE - < M‘

Gravity

Force Law:

f . . —mG

grav

Particle system

Viscous Drag

The effect of this is to
Particle system resist motion, making
a particle gradually
come to rest in the
absence of other
Influences.
Highly Recommended!

p->E —= F-5k * p—>v|

Representation:

Force Law:

1= {ks(IAX’ 1) & AV.AX)} ax :
Ax|)||Ax| [Particle system

Damped
Spring

fp_:-fl
TR L

Deriv Eval Loop

-
@)
pra
M
)
-
)
)
)
-
O
D
A

Life of a particle:

Particle’s midlife with modified
color and shading

\ Particle's demise, based on
constrained and randomized
\ life span

Particle's birth: constrained and randomized
place and time with initial color and
shading (also randomized)

Trajectory based on
simple physics~__, Collides with environment

— but not other particles

CS Dept, UK

Bouncing off the Walls

* Later: rigid body
collision and contact.

* For now, just simple
point-plane collisions.

 Add-ons for a particle
simulator.

Normal and Tangential Components

V= (N-V)N
Vip=V = Vi

Collision Detection

(X-P)N<eg
N-V <0

 Within £ of the wall.
« Heading 1n.

Simulation:

Collision Response

O

Conditions for Contact

(X -P)-N
A%

~.&

<~ E

e On the wall

* Moving along the wall
» Pushing against the wall

Contact Force
F, — FT

The wall pushes back,
cancelling the normal
component of F.

Rendering stage:

- after the update Is complete, each particle is rendered,
usually in the form of a textured billboarded quad
(l.e. a quadrilateral that is always facing the viewer).

- However, this Is not necessary; a particle may be
rendered as a point light source

- It adds color to the pixel(s) it covers, but is not
Involved In the display pipeline (except to be hidden)
or shadowing

- density of particles between a position in space and a
light source can be used to estimate the amount of
shadowing

Rendering stage:

- particles can be rendered as metaballs in off-line
rendering

. x
- Isosurfaces computed from particle-metaballs
make quite convincing liquids.

Rendering stage:

- 3D mesh objects can "stand in" for the particles —
a snowstorm might consist of a single 3D
snowflake mesh being duplicated and rotated to
match the positions of thousands or m|II|ons of
particles. S S R ey

Snowflakes vs Hair

- particle systems can be either animated or static; that is,
the lifetime of each particle can either be distributed over
time or rendered all at once

al conseguence of this distinction is similar to the difference

between snowflakes and hair - animated particles are akin
to snowflakes, which move around as distinct points in
space, and static particles are akin to hair, which consists
of a distinct number of curves

A cube emitting 5000 animated particles, The same cube emitter rendered using
obeying a "gravitational" force in -Y direction static particles, or strands.

http://en.wikipedia.org/wiki/Stationary_point
http://en.wikipedia.org/wiki/Curve

Snowflakes vs Hair
- the term "particle system" itself often brings to
mind only the animated aspect, which Is

o commonly used to create moving particle

simulations — sparks, rain, fire, etc.

- In these iImplementations, each frame of the
animation contains each particle at a specific
position In its life cycle, and each particle
occupies a single point position in space.

- For effects such as fire or smoke that dissipate,
each particle is given a fade out time or fixed
lifetime; effects such as snowstorms or rain
iInstead usually terminate the lifetime of the
particle once It passes out of a particular field of
view

Snowflakes vs Hair

- However, if the entire life cycle of each particle is rendered
simultaneously, the result is static particles — strands of
material that show the particles' overall trajectory, rather

@ han point particles. These strands can be used to simulate
hair, fur, grass, and similar materials.

Alice Lin and Fuhua (Frahk) Cheng

Snowflakes vs Hair

- However, if the entire life cycle of each particle is rendered
simultaneously, the result is static particles — strands of
material that show the particles' overall trajectory, rather

@ han point particles. These strands can be used to simulate
hair, fur, grass, and similar materials.

Alice Lin and Fuhua (Frank) Cheng

Snowflakes vs Hair

- However, if the entire life cycle of each particle is rendered
simultaneously, the result is static particles — strands of
material that show the particles' overall trajectory, rather
than point particles. These strands can be used to simulate
hair, fur, grass, and similar materials.

Alice Lin and Fuhua (Frank) Cheng

Snowflakes vs Hair

- The strands can be controlled with the same velocity
vectors, force fields, spawning rates, and deflection
parameters that animated particles obey.

@ - In addition, the rendered thickness of the strands can be
controlled and in some implementations may be varied
along the length of the strand.

- Different combinations of parameters can impart stiffness,
limpness, heaviness, bristliness, or any number of other
properties. The strands may also use texture mapping to
vary the strands' color, length, or other properties across
the emitter surface.

References:

- A. Witkin, Physically Based Modeling: Principles and Practice,
http://www.cs.cmu.edu/~baraff/ sigcourse/
- - A. Witkin, D. Baraff, M. Kass, An Introduction to Physically Based
Modeling, http://www.cs.cmu.edu/~baraff/pbm/pbm.html
- D. Baraff, Physically based modeling,
http://www.pixar.com/companyinfo/research/pbm2001/
- D. James, Physically Based Animation for Computer Graphics,
http://www.cs.cornell.edu/courses/cs5643/2010sp/

Acknowledgement:
Some materials are taken from the above references.

http://www.cs.cmu.edu/~baraff/pbm/pbm.html
http://www.pixar.com/companyinfo/research/pbm2001/

End of Physically
Based Animation |

/.3 Particle System Dynamics:

@) @)

Life of a particle:

Particle’s midlife with modified
color and shading

—

Trajectory based on

. . Collides with environment
simple physics

but not other particles

Particle's demise, based on
¢ constrained and randomized
life span

Particle’s birth: constrained and randomized
place and time with initial color and
shading (also randomized)

CS Dept, UK

