5.3.2 The Jacobian

- Iterative numeric solution

Solving a system by analysis is difficult

- Construct the motion incrementally

What is a Jacobian?
Consider $y=f(x)$

$$
f^{\prime} \sim \frac{d y}{d x} \quad \text { or } \quad d y \sim f^{\prime} d x
$$

Hence, $f(x+d x)$ can be approximated by

$$
\begin{aligned}
f(x+d x) & =f(x)+d y \\
& \sim f(x)+f^{\prime} d x
\end{aligned}
$$

Works only when dx is small

In the 2-variable case,

$$
y=f\left(x_{1}, x_{2}\right),
$$

$$
\begin{equation*}
d y \sim \frac{\partial f}{\partial x_{1}} d x_{1}+\frac{\partial f}{\partial x_{2}} d x_{2} \tag{array}
\end{equation*}
$$

$f\left(x_{1}+d x_{1}, x_{2}+d x_{2}\right)$ can be approximated by

$$
f\left(x_{1}+d x_{1}, x_{2}+d x_{2}\right)=f\left(x_{1}, x_{2}\right)+d y
$$

$$
\sim f\left(x_{1}, x_{2}\right)+\left[\frac{\partial f}{\partial x_{1}}, \frac{\partial f}{\partial x_{2}}\right]\left[\begin{array}{l}
d x_{1} \\
d x_{2}
\end{array}\right]
$$

Why is (*) true?

Let $x_{2}+d x_{2}$ be fixed, then
$g(x) \equiv f\left(x, x_{2}+d x_{2}\right)$ can be considered as a function of one variable x, therefore $g\left(x_{1}+d x_{1}\right) \approx g\left(x_{1}\right)+g^{\prime}\left(x_{1}\right) d x_{1}$

$$
\begin{aligned}
& =f\left(x_{1}, x_{2}+d x_{2}\right)+\frac{\partial f\left(x_{1}, x_{2}+d x_{2}\right)}{\partial x_{1}} d x_{1} \\
& \approx f\left(x_{1}, x_{2}\right)+\frac{\partial f\left(x_{1}, x_{2}\right)}{\partial x_{2}} d x_{2}+\frac{\partial f\left(x_{1}, x_{2}\right)}{\partial x_{1}} d x_{1}
\end{aligned}
$$

If $f\left(x_{1}, x_{2}\right)=\left(f_{1}\left(x_{1}, x_{2}\right), f_{2}\left(x_{1}, x_{2}\right)\right)$ then

$$
d y=\left(d y_{1}, d y_{2}\right) \sim\left[\begin{array}{ll}
\frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} \\
\frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}}
\end{array}\right]\left[\begin{array}{l}
d x_{1} \\
d x_{2}
\end{array}\right]
$$

$f\left(x_{1}+d x_{1}, x_{2}+d x_{2}\right)$ can be approximated by

$$
f\left(x_{1}+d x_{1}, x_{2}+d x_{2}\right)=f\left(x_{1}, x_{2}\right)+d y
$$

$$
\sim f\left(x_{1}, x_{2}\right)+\left[\begin{array}{ll}
\frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} \\
\frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}}
\end{array}\right]\left[\begin{array}{l}
d x_{1} \\
d x_{2}
\end{array}\right]
$$

$$
F:\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \rightarrow\left(y_{1}, y_{2}, y_{3}, y_{4}\right)
$$

Now Consider:

$$
\left\{\begin{array}{l}
y_{1}=f_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \\
y_{2}=f_{2}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \\
y_{3}=f_{3}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \\
y_{4}=f_{4}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)
\end{array}\right.
$$

$$
d y_{i} \sim\left[\frac{\partial f_{i}}{\partial x_{1}}, \frac{\partial f_{i}}{\partial x_{2}}, \frac{\partial f_{i}}{\partial x_{3}}, \frac{\partial f_{i}}{\partial x_{4}}\right]\left[\begin{array}{l}
d x_{1} \\
d x_{2} \\
d x_{3} \\
d x_{4}
\end{array}\right]
$$

$$
d y=\left[\begin{array}{l}
d y_{1} \\
d y_{2} \\
d y_{3} \\
d y_{4}
\end{array}\right]^{T} \sim\left[\begin{array}{llll}
\frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} & \frac{\partial f_{1}}{\partial x_{3}} & \frac{\partial f_{1}}{\partial x_{4}} \\
\frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}} & \frac{\partial f_{2}}{\partial x_{3}} & \frac{\partial f_{2}}{\partial x_{4}} \\
\frac{\partial f_{3}}{\partial x_{1}} & \frac{\partial f_{3}}{\partial x_{2}} & \frac{\partial f_{3}}{\partial x_{3}} & \frac{\partial f_{3}}{\partial x_{4}} \\
\partial f^{2} & \partial f^{2} & \partial f^{2 f}
\end{array}\right]\left[\begin{array}{l}
d x_{1} \\
d x_{2} \\
d x_{3} \\
d x_{4}
\end{array}\right]
$$

$$
d Y=\frac{\partial F}{\partial X} \cdot d X
$$

$\frac{\partial F}{\partial X}$ is called a Jacobian

The Jacobian maps the velocities of X to the velocities of Y

$$
\dot{Y}=J(X) \cdot \dot{X}
$$

So a Jacobian is a linear transformation (like a rotation)
In our case, x_{i} are the joint angles and y_{i} are position and orientation of the end effector:

$$
V=J(\theta) \cdot \dot{\theta}
$$

with

$$
\begin{aligned}
& V=\left[v_{x}, v_{y}, v_{z}, \omega_{x}, \omega_{y}, \omega_{z}\right] \\
& \dot{\theta}=\left[\dot{\theta}_{1}, \dot{\theta}_{2}, \cdots, \dot{\theta}_{n}\right]
\end{aligned}
$$

$$
V=J(\theta) \cdot \dot{\theta}
$$

$$
J(\theta)=\left[\begin{array}{ccccc}
\frac{\partial V_{x}}{\partial \theta_{1}} & \frac{\partial V_{x}}{\partial \theta_{2}} & \cdot & \cdot & \frac{\partial V_{x}}{\partial \theta_{n}} \\
\frac{\partial V_{y}}{\partial \theta_{1}} & \frac{\partial V_{y}}{\partial \theta_{2}} & \cdot & \cdot & \frac{\partial V_{y}}{\partial \theta_{n}} \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
\frac{\partial \Omega_{z}}{\partial \theta_{1}} & \frac{\partial \Omega_{z}}{\partial \theta_{2}} & \cdot & \cdot & \frac{\partial \Omega_{z}}{\partial \theta_{n}}
\end{array}\right]
$$

$$
V=J(\theta) \cdot \dot{\theta}
$$

V : vector of linear and rotational velocities represents the desired change in the end effector
e.g. $\quad v_{x}=(G-E)_{x}$
$\dot{\theta}$: vector of joint angle velocities unknowns of the equation
$J(\theta)$: each term of $J(\theta)$ relates the change of a specific joint to a specific change in the end effector

Rotational change:

- merely the velocity of the joint angle about the axis of revolution at the ioint under consideration

Linear change (in the end effector) :

- the cross product of the axis of revolution and the vector from the joint to the end effector

A Simple Example:

Objective: move the end effector E to the global location G

Orientation of E is of no concern

Therefore, the corresponding equation is:

$$
\begin{aligned}
& {\left[\begin{array}{c}
(G-E)_{x} \\
(G-E)_{y} \\
(G-E)_{x}
\end{array}\right]=} \\
& {\left[\begin{array}{lll}
(Z \times E)_{x} & \left(Z \times\left(E-P_{1}\right)\right)_{x} & \left(Z \times\left(E-P_{2}\right)\right)_{x} \\
(Z \times E)_{y} & \left(Z \times\left(E-P_{1}\right)\right)_{y} & \left(Z \times\left(E-P_{2}\right)\right)_{y} \\
(Z \times E)_{z} & \left(Z \times\left(E-P_{1}\right)\right)_{z} & \left(Z \times\left(E-P_{2}\right)\right)_{z}
\end{array}\right] \cdot\left[\begin{array}{c}
\dot{\theta}_{1} \\
\dot{\theta}_{2} \\
\dot{\theta}_{3}
\end{array}\right]}
\end{aligned}
$$

where $Z=(0,0,1)$

Or, simply.

$$
V=J \cdot \dot{\theta}
$$

5.3.3 Numerical Solutions to IK

How to solve $V=J \cdot \dot{\theta}$ for $\dot{\theta}$?
(1)

Non-singular (J is a square matrix)

$$
\dot{\theta}=J^{-1} \cdot V
$$

(2)

Singular (J^{-1} does not exist)

(3)

If the manipulator is redundant

$$
\begin{aligned}
& \operatorname{dim}(J(\theta))=m \times n, \quad m<n \\
& J(\theta) \text { is of full rank) }
\end{aligned}
$$

Since $\operatorname{rank}(J)=m$ and the $m \times m$ matrix $\left(J J^{T}\right)$ is invertible, we can define

$$
\beta \equiv\left(J J^{T}\right)^{-1} V
$$

So,

$$
\left(J J^{T}\right) \beta=V
$$

$$
\begin{aligned}
& \rightarrow J J^{T} \cdot \beta=J \cdot \dot{\theta} \\
& \rightarrow J\left(J^{T} \cdot \beta-\dot{\theta}\right)=0 \\
& \rightarrow J^{T} \beta=\dot{\theta} \\
& \rightarrow J^{T}\left(J J^{T}\right)^{-1} V=\dot{\theta}
\end{aligned}
$$

$$
J^{+} \equiv J^{T}\left(J J^{T}\right)^{-1}
$$

14 is called the pseudo inverse of J

In real-life implementation, $\dot{\theta}$ should be computed as follows:

First, use an efficient method such as LU decomposition to solve the following equation for β :

$$
\left(J^{T} J\right) \beta=V
$$

Then substitute β into the following equation to solve for $\dot{\theta}$:

$$
J^{T} \beta=\dot{\theta}
$$

Then we use Euler method to update the joint angles. The Jacobian has changed at the next time step, so the computation must be performed again and another step taken. This process repeats until the end effector reaches the goal configuration within some acceptable tolerance.
$\dot{\theta}$ can also be computed as

$$
\dot{\theta}=\left(J^{T} J\right)^{-1} J^{T} \mathrm{~V} \quad \text { Why? }
$$

One possible way to find a solution to an underdetermined system like the following one

$$
\begin{equation*}
M X=Y \tag{*}
\end{equation*}
$$

(M is an $m \times n$ matrix with $n>m, \mathbf{X}$ is an unknown vector of dimension n and Y is a constant vector of dimension m) is to solve the following system for \mathbf{X}.

$$
\left(M^{\mathrm{T}} \mathrm{M}\right) \mathbf{X}=\mathrm{M}^{\mathrm{T}} \mathbf{Y}
$$

Note that if we define $F(\mathbf{X})$ as follows:

$$
F(\mathbf{X}) \equiv(M \mathbf{X}-\mathbf{Y})^{T}(M \mathbf{X}-\mathbf{Y}),
$$

we get a non-negative function whose minimum occurs at a point X where Eq. (*) is satisfied (why?).
Hence, to find a solution for (*), we simply compute the derivative of $F(\mathbf{X})$ with respect to \mathbf{X}, set it to zero, and solve for \mathbf{X}. Note that

$$
\begin{aligned}
F(\mathbf{X}) & =\left(\mathbf{X}^{T} M^{T}-\mathbf{Y}^{T}\right)(M \mathbf{X}-\mathbf{Y}) \\
& =\mathbf{X}^{T} M^{T} M \mathbf{X}-\mathbf{X}^{T} M^{T} \mathbf{Y}-\mathbf{Y}^{T} M \mathbf{X}+\mathbf{Y}^{T} \mathbf{Y}
\end{aligned}
$$

Since $X^{T} M^{T} Y=Y^{T} M X$, we have

$$
F(\mathbf{X})=\mathbf{X}^{T} M^{T} M \mathbf{X}-2 \mathbf{X}^{T} M^{T} \mathbf{Y}+\underset{\mathbf{Y}^{T} \mathbf{Y}}{\text { CS Dept, UK }}
$$

Since $X^{T} M^{T} Y=Y^{T} M X$, we have

$$
F(\mathbf{X})=\mathbf{X}^{T} M^{T} M \mathbf{X}-2 \mathbf{X}^{T} M^{T} \mathbf{Y}+\mathbf{Y}^{T} \mathbf{Y}
$$

By differentiating $F(\mathbf{X})$ with respect to \mathbf{X} and setting it to zero,

$$
\frac{d F(\mathbf{X})}{d \mathbf{X}}=2 M^{T} M \mathbf{X}-2 M^{T} \mathbf{Y}=0
$$

we get $\left({ }^{* *}\right)$. Hence, solving (*) is equivalent to solving (**) for X.

From this one can see now why $\dot{\theta}$ can also be computed as $\quad \dot{\theta}=\left(J^{T} J\right)^{-1} J^{T} \mathrm{~V}$

End of Kinematic II

