CS 633 Computer Animation

Fuhua (Frank) Cheng

Department of Computer Science College of Engineering
University of Kentucky

1. Introduction

1.1 What is Computer Animation

- the process of using "continuous image" to convey information
- deals with motion

CS Dept, UK

1. Introduction

1.2 Applications

- motion films
(https://www.youtube.com/watch?
- television
- advertising (read Chapter 1)

2. Technical Background

- The display pipeline:

Object space -
World space -
Eye space -
viewing parameters
field of view
Image space -
Screen space -

2. Technical Background

- Ray Casting:
- act of tracing rays through world space

2. Technical Background

- Ray Casting:
- implicitly accomplishes
the perspective
transformation
(HOW ?)

2. Technical Background

- Homogeneous Coordinates:

$$
\left(\frac{x}{w}, \frac{y}{w}, \frac{z}{w}\right)=[x, y, z, w]
$$

- why do we want to use homogeneous coordinates?

2. Technical Background

- Transformation Matrices:

4×4

2. Technical Background

- Compounding Transformations:

$$
\begin{aligned}
& P^{\prime}=M_{1} * M_{2} * M_{3} \\
& M=M_{1} * M_{2} * M_{3}
\end{aligned}
$$

$$
P^{\prime}=M * P
$$

2. Technical Background

- Basic Transformations:

Translation Rotation Scaling (reflection)

Representing an arbitrary orientation:

- Fixed angle representation $\left(\theta_{x}, \theta_{y}, \theta_{z}\right)$

Representing an arbitrary orientation:

- Problems

For (0, -90, 0)
$(\varepsilon,-90,0) \quad$ and $\quad(0,-90, \varepsilon)$
are the same. Why?

Representing an arbitrary orientation:

CS Dept, UK

Representing an arbitrary orientation:

$$
(0,-90,0)
$$

Representing an arbitrary orientation:

- Interpolation is difficult

Consider ($0,90,0)$ and $(90,45,90)$

Direct interpolation: $(45,67.5,45)$
Desired interpolation: $(90,67.5,90)$

Representing an arbitrary orientation:

Direct interpolation $=((0,90,0)+(90,45,90)) / 2$
16

$$
=(45,67.5,45) \quad \text { cs Dept, UK }
$$

Representing an arbitrary orientation:

Question: Is $(45,67.5,45)$ coplanar with $(0,90,0)$ and $(90,45,90) ?$

Representing an arbitrary orientation:

$(0,90,0)$
$(90,45,90)$
Desired interpolation $=(90,67.5,90)$

Quaternions

Motivation:

 multiplying complex numbers can be interpreted as a rotation in two dimensions.$$
r_{1} e^{i \theta_{1}} \cdot r_{2} e^{i \theta_{2}}=r_{1} r_{2} e^{i\left(\theta_{1}+\theta_{2}\right)}
$$

Can hyper-complex numbers be defined so their multiplication can be viewed as a rotation in three dimensions?

Quaternions

Remember that a general rotation in three dimension is defined by four numbers:
one for rotation angle and three for rotation axis

Quaternions: several approaches

1. 2×2 matrices of complex numbers

$$
\begin{aligned}
& q=\left(\begin{array}{cc}
z & w \\
-w^{*} & z^{*}
\end{array}\right)=\left(\begin{array}{cc}
a+b i & c+d i \\
-c+d i & a-b i
\end{array}\right) \\
& q=a \mathbf{U}+b \mathbf{I}+c \mathbf{J}+d \mathbf{K}
\end{aligned}
$$

where

$$
\begin{array}{ll}
\mathbf{U}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) & \mathbf{I}=\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right) \\
\mathbf{J}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) & \mathbf{K}=\left(\begin{array}{ll}
0 & i \\
i & 0
\end{array}\right)
\end{array}
$$

Quaternions: several approaches

2. Four dimensional vector space one of the bases:

$$
\begin{gathered}
\text { bases: } \\
\mathbf{i}=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & -1 & 0
\end{array}\right) \quad \mathbf{j}=\left(\begin{array}{cccc}
0 & 0 & 0 & -1 \\
0 & 0 & -1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right) \\
\mathbf{k}=\left(\begin{array}{cccc}
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0
\end{array}\right) \quad \mathbf{I}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \\
4 \times 4 \text { Identity matrix } \\
\mathbf{i}^{2}=\mathbf{j}^{2}=\mathbf{k}^{2}=-\mathbf{I} \\
\mathbf{i} \mathbf{j}=-\mathbf{j} \mathbf{j}=\mathbf{k} \\
\mathbf{j} \mathbf{k}=-\mathbf{k} \mathbf{j}=\mathbf{i} \quad \mathbf{k i}=-\mathbf{i k}=\mathbf{j} \quad \text { CS Dept, UK }
\end{gathered}
$$

Quaternions: several approaches

3. Combination of a scaler and a vector

$$
\begin{array}{ll}
q \equiv[s, \mathbf{v}] & \left.\begin{array}{l}
s \\
q
\end{array}\right)=(x, y, z) \\
q \equiv w+x \mathbf{i}+y \mathbf{j}+z \mathbf{k} &
\end{array}
$$

Conjugate quaternion: $\quad q^{*}=w-x \mathbf{i}-y \mathbf{j}-z \mathbf{k}$
Sum/difference:

$$
\begin{aligned}
q_{2} \pm q_{2} \equiv & \left(w_{1} \pm w_{2}\right)+\left(x_{1} \pm x_{2}\right) \mathbf{i} \\
& +\left(y_{1} \pm y_{2}\right) \mathbf{j}+\left(z_{1} \pm z_{2}\right) \mathbf{k} \\
= & {\left[s_{1} \pm s_{2},\left(\mathbf{v}_{1} \pm \mathbf{v}_{2}\right)\right] }
\end{aligned}
$$

Quaternions: several approaches

Product:

$$
\begin{aligned}
& q_{1} \cdot q_{2}=\left[s_{1} s_{2}-\mathbf{v}_{1} \cdot \mathbf{v}_{2}\right. \\
& \left., s_{1} \mathbf{v}_{2}+s_{2} \mathbf{v}_{1}+\sqrt{\mathbf{v}_{1} \otimes \mathbf{v}_{2}}\right] \\
& |q|=\sqrt{q \cdot q^{*}}=\sqrt{q^{*} \cdot q}=\sqrt{w^{2}+x^{2}+y^{2}+z^{2}}
\end{aligned}
$$

Norm:

Inverse:

Division:

$$
q^{-1}=\frac{q^{*}}{q q^{*}}=\frac{q^{*}}{|q|^{2}}=\frac{q^{*}}{w^{2}+x^{2}+y^{2}+z^{2}}
$$

$$
q_{1} / q_{2}=q_{1} \cdot q_{2}^{-1}
$$

Representing rotations using quaternion:

Representing rotations using quaternion:

Rotate a point \mathbf{P} by an angle θ about a unit axis u:

$\mathbf{u}(=\vec{u})$: unit vector

CS Dept, UK

Representing rotations using quaternion:

1. Represent the point \mathbf{P} as

$$
[0, r] \quad(\text { or, }[0, \mathrm{P}])
$$

2. represent the rotation by a quaternion

$$
q=\left[\cos \left(\frac{\theta}{2}\right), \sin \left(\frac{\theta}{2}\right) \mathbf{u}\right]
$$

3. perform the rotation

$$
q \cdot[0, \mathbf{r}] \cdot q^{-1}
$$

$$
\left(\text { or, } \mathbf{P}^{\prime}=q \cdot[0, \mathbf{P}] \cdot q^{-1}\right)
$$

Representing rotations using quaternion:

1. Represent the point \mathbf{P} as

$$
[0, r] \quad(\text { or, }[0, \mathrm{P}])
$$

2. represent the rotation by a quaternion

$$
q=\left[\cos \left(\frac{\theta}{2}\right), \sin \left(\frac{\theta}{2}\right) \mathbf{u}\right]
$$

3. perform the rotation

$$
\begin{aligned}
& q \cdot[0, \mathbf{r}] \cdot q^{-1} \\
& \left(\text { or, } \mathbf{P}^{\prime}=q \cdot[0, \mathbf{P}] \cdot q^{-1}\right)
\end{aligned}
$$

Representing rotations using quaternion:

Example: Consider a 90° rotation of point $\mathbf{P}=(0,1,1)$ about the y-axis.

After rotation, we should get

$$
\mathrm{P}^{\prime}=(1,1,0)
$$

Would we?

Representing rotations using quaternion:

$$
\begin{aligned}
& {[0, \mathbf{P}]=[0,(0,1,1)]} \\
& q=\left[\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}(0,1,0)\right] \\
& q^{-1}=\left[\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2}(0,1,0)\right]
\end{aligned}
$$

Representing rotations using quaternion:

Hence,

$$
\begin{aligned}
q \cdot & {[0, \mathbf{P}] \cdot q^{-1} } \\
= & {\left[\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}(0,1,0)\right] \cdot[0,(0,1,1)] \cdot\left[\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2}(0,1,0)\right] } \\
= & {\left[\frac{\sqrt{2}}{2} * 0-\frac{\sqrt{2}}{2}(0,1,0) \cdot(0,1,1), \frac{\sqrt{2}}{2}(0,1,1)+\right.} \\
& \left.0 * \frac{\sqrt{2}}{2}(0,1,0)+\frac{\sqrt{2}}{2}(0,1,0) \otimes(0,1,1)\right] . \\
& {\left[\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2}(0,1,0)\right] }
\end{aligned}
$$

Representing rotations using quaternion:

$$
\begin{aligned}
= & {\left[-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}(1,1,1)\right] \cdot\left[\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2}(0,1,0)\right] } \\
= & {\left[-\frac{\sqrt{2}}{2} * \frac{\sqrt{2}}{2}+\frac{1}{2}(1,1,1) \cdot(0,1,0), \frac{1}{2}(0,1,0)+\right.} \\
& \left.\frac{1}{2}(1,1,1)-\frac{1}{2}(1,1,1) \otimes(0,1,0)\right] \\
= & {[0,(1,1,0)] } \\
= & {\left[0, \mathbf{P}^{\prime}\right] }
\end{aligned}
$$

Representing rotations using quaternion:

Prove that the triple product $q \cdot[0, \mathbf{P}] \cdot q^{-1}$ indeed performs a rotation of \mathbf{P} about \mathbf{u}.

First,
Note that

$\overrightarrow{C P^{\prime}}=\cos \theta[\vec{r}-(\vec{r} \cdot \vec{u}) \vec{u}]+\sin \theta(\vec{u} \otimes \vec{r})$

$$
\begin{gathered}
\overrightarrow{r^{\prime}}=(\vec{r} \cdot \vec{u}) \vec{u}+\cos \theta[\vec{r}-(\vec{r} \cdot \vec{u}) \vec{u}] \\
+\sin \theta(\vec{u} \otimes \vec{r})
\end{gathered}
$$

$q=\left[\cos \left(\frac{\theta}{2}\right), \sin \left(\frac{\theta}{2}\right) \vec{u}\right]$

Now prove that $q \cdot[0, \mathbf{P}] \cdot q^{-1}$ would give us $\left[0, \mathbf{P}^{\prime}\right]$
$q \cdot[0, \vec{r}] \cdot q^{-1}$
$=\left[\cos \left(\frac{\theta}{2}\right), \sin \left(\frac{\theta}{2}\right) \vec{u}\right] \cdot[0, \vec{r}] \cdot\left[\cos \left(\frac{\theta}{2}\right),-\sin \left(\frac{\theta}{2}\right) \vec{u}\right]$
$=\frac{\left[\cos \left(\frac{\theta}{2}\right) * 0-\sin \left(\frac{\theta}{2}\right) \vec{u} \cdot \vec{r}, \cos \left(\frac{\theta}{2}\right) \vec{r}+0 * \sin \left(\frac{\theta}{2}\right) \vec{u}+\sin \left(\frac{\theta}{2}\right) \vec{u} \otimes \vec{r}\right]}{\cdot\left[\cos \left(\frac{\theta}{2}\right),-\sin \left(\frac{\theta}{2}\right) \vec{u}\right]}$
$=\underline{\left[-\sin \left(\frac{\theta}{2}\right) \vec{u} \cdot \vec{r}, \cos \left(\frac{\theta}{2}\right) \vec{r}+\sin \left(\frac{\theta}{2}\right) \vec{u} \otimes \vec{r}\right] \cdot\left[\cos \left(\frac{\theta}{2}\right),-\sin \left(\frac{\theta}{2}\right) \vec{u}\right]}$

Now prove that $q \cdot[0, \mathbf{P}] \cdot q^{-1}$ would give us $\left[0, \mathbf{P}^{\prime}\right]$

$$
\begin{aligned}
= & {\left[-\sin \left(\frac{\theta}{2}\right) \vec{u} \cdot \vec{r}, \cos \left(\frac{\theta}{2}\right) \vec{r}+\sin \left(\frac{\theta}{2}\right) \vec{u} \otimes \vec{r}\right] \cdot\left[\cos \left(\frac{\theta}{2}\right),-\sin \left(\frac{\theta}{2}\right) \vec{u}\right] } \\
= & {\left[-\sin \left(\frac{\theta}{2}\right) \cos \left(\frac{\theta}{2}\right) \vec{u} \cdot \vec{r}+\cos \left(\frac{\theta}{2}\right) \sin \left(\frac{\theta}{2}\right) \vec{r} \cdot \vec{u}+\sin ^{2}\left(\frac{\theta}{2}\right)(\vec{u} \otimes \vec{r}) \cdot \vec{u},\right.} \\
& \sin ^{2}\left(\frac{\theta}{2}\right)(\vec{u} \cdot \vec{r}) \vec{u}+\cos ^{2}\left(\frac{\theta}{2}\right) \vec{r}+\cos \left(\frac{\theta}{2}\right) \sin \left(\frac{\theta}{2}\right) \vec{u} \otimes \vec{r} \\
& \left.-\cos \left(\frac{\theta}{2}\right) \sin \left(\frac{\theta}{2}\right) \vec{r} \otimes \vec{u}-\sin ^{2}\left(\frac{\theta}{2}\right)(\vec{u} \otimes \vec{r}) \otimes \vec{u}\right]
\end{aligned}
$$

$(\vec{u} \otimes \vec{r}) \otimes \vec{u}=\vec{r}-(\vec{u} \cdot \vec{r}) \vec{u}$

Now prove that $q \cdot[0, \mathbf{P}] \cdot q^{-1}$ would give us $\left[0, \mathbf{P}^{\prime}\right]$

$$
\begin{aligned}
= & {\left[-\sin \left(\frac{\theta}{2}\right) \cos \left(\frac{\theta}{2}\right) \vec{u} \cdot \vec{r}+\cos \left(\frac{\theta}{2}\right) \sin \left(\frac{\theta}{2}\right) \vec{r} \cdot \vec{u}+\sin ^{2}\left(\frac{\theta}{2}\right)(\vec{u} \otimes \vec{r}) \cdot \vec{u},\right.} \\
& \sin ^{2}\left(\frac{\theta}{2}\right)(\vec{u} \cdot \vec{r}) \vec{u}+\cos ^{2}\left(\frac{\theta}{2}\right) \vec{r}+\cos \left(\frac{\theta}{2}\right) \sin \left(\frac{\theta}{2}\right) \vec{u} \otimes \vec{r} \\
& \left.-\cos \left(\frac{\theta}{2}\right) \sin \left(\frac{\theta}{2}\right) \vec{r} \otimes \vec{u}-\sin ^{2}\left(\frac{\theta}{2}\right)(\vec{u} \otimes \vec{r}) \otimes \vec{u}\right]
\end{aligned}
$$

$$
=\left[0, \sin \theta(\vec{u} \otimes \vec{r})+\sin ^{2}\left(\frac{\theta}{2}\right)(\vec{u} \cdot \vec{r}) \vec{u}+\cos ^{2}\left(\frac{\theta}{2}\right) \vec{r}-\sin ^{2}\left(\frac{\theta}{2}\right) \vec{r}\right.
$$

$$
\left.+\sin ^{2}\left(\frac{\theta}{2}\right)(\vec{r} \cdot \vec{u}) \stackrel{\rightharpoonup}{u}\right]
$$

Now prove that $q \cdot[0, \mathbf{P}] \cdot q^{-1}$ would give us $\left[0, \mathbf{P}^{\prime}\right]$

$$
\begin{aligned}
& =\left[0, \sin \theta(\vec{u} \otimes \vec{r})+\cos \theta \vec{r}+2 \sin ^{2}\left(\frac{\theta}{2}\right)(\vec{u} \cdot \vec{r}) \vec{u}\right] \\
& =[0, \sin \theta(\vec{u} \otimes \vec{r})+\cos \theta \vec{r}+
\end{aligned}
$$

$$
\left(\cos ^{2}\left(\frac{\theta}{2}\right)+\sin ^{2}\left(\frac{\theta}{2}\right)-\cos ^{2}\left(\frac{\theta}{2}\right)+\sin ^{2}\left(\frac{\theta}{2}\right)((\vec{r} \cdot \vec{u}) \vec{u})\right]
$$

$$
=[0,(\vec{r} \cdot \vec{u}) \vec{u}+\cos \theta(\vec{r}-(\vec{r} \cdot \vec{u}) \vec{u})+\sin \theta(\vec{u} \otimes \vec{r})]
$$

$$
=\left[0, \vec{r}^{\prime}\right]
$$

$$
=\left[0, \mathrm{P}^{\prime}\right]
$$

Geometric Meaning of Quaternions

Quaternions provide a clear difference between a vector (point) and a rotation.

Point/vector: $[0, P]=[0, \vec{r}]$
Rotation: $q=[\cos \alpha, \sin \alpha \vec{u}]$
All the operations for vectors such as vector addition/subtraction, 3escalar multiplication hold.

Geometric Meaning of Quaternions

Rotation is performed as:

```
q\cdot[0,P]\cdotq}\mp@subsup{q}{}{-1
```

Why?
Let $R(P) \equiv q[0, P] q^{-1}$
For $R(P)$ to be a rotation,
It must satisfy four properties:

CS Dept, UK

Geometric Meaning of Quaternions

For $R(P)$ to be a rotation, it must satisfy four properties:

1. $R(P)$ is a 3 D vector
2. $R(P)$ preserves length
3. $R(P)$ is a linear transformation
4. $R(P)$ does not have a reflection component

$R(P)$ is a 3D vector

Let $W(p)$ represent the real part of the quaternion p.
Then we need to show that $W(R(P))=0$

First, note that quaternion multiplication is distributive and associative. Besides, we have

$$
W(p)=\left(p+p^{*}\right) / 2
$$

and

$$
(p q)^{*}=q^{*} p^{*}
$$

$R(P)$ is a 3D vector

Hence,
$W(R(P))=W\left(q[0, P] q^{*}\right)$
$=\left\{q[0, P] q^{*}+\left(q[0, P] q^{*}\right)^{*}\right\} / 2$
$=\left\{q[0, P] q^{*}+q[0,-P] q^{*}\right\} / 2$
$=q\left\{\frac{[0, P]+[0,-P]}{2}\right\} q^{*}$
$=q[0, \overrightarrow{0}] q^{*}$
$=0$

$R(P)$ preserves length

Let $N(p)$ represent the length of the quaternion p,
i.e., if $\quad p=w+x \vec{i}+y \vec{j}+z \vec{k}$
then $\quad N(p)=w^{2}+x^{2}+y^{2}+z^{2}$
Note that $\quad N(p q)=N(p) N(q)$
Hence,

$$
\begin{aligned}
N(R(P)) & =N\left(q[0, P] q^{*}\right) \\
& =N(q) N([0, P]) N\left(q^{*}\right) \\
& =N([0, P])
\end{aligned}
$$

$R(P)$ is a linear transformation

 Let a be a scalar and P, Q be 3D vectors, then$$
\begin{aligned}
& R(a P+Q)=q[0, a P+Q] q^{*} \\
& =q\{[0, a P]+[0, Q]\} q^{*} \\
& =q[0, a P] q^{*}+q[0, Q] q^{*} \\
& =q(a[0, P]) q^{*}+q[0, Q] q^{*} \\
& =a\left(q[0, P] q^{*}\right)+q[0, Q] q^{*} \\
& =a R(P)+R(Q)
\end{aligned}
$$

$R(P)$ does not have a reflection component

Consider R as a function of q for a fixed vector \vec{r}. That is, $\mathrm{R}(\mathrm{q})=q[0, \vec{r}] q^{*}$.
This function is a continuous function of q. For each q it is a linear transformation with determinant $D(q)$, so the determinant itself is a continuous function of q . Thus, $\lim R(q)=R(1)=I$, the identity function (the limit is taken along any path of quaternions which approach the quaternion 1) and $\lim D(q)=D(1)=1$. By continuity, $D(q)$ is identically 1 and $R(q)$ does not have a reflection component.

\vec{u} is the unit rotation axis

To see that \vec{u} is a unit rotation axis we need only show that \vec{u} is unchanged by the rotation. Indeed,

$$
\begin{aligned}
& R(\vec{u})=q[0, \vec{u}] q^{*} \\
& =[\cos \alpha, \sin \alpha \vec{u}][0, \vec{u}][\cos \alpha,-\sin \alpha \vec{u}] \\
& =[-\sin \alpha, \cos \alpha \vec{u}][\cos \alpha,-\sin \alpha \vec{u}] \\
& =\left[-\sin \alpha \cos \alpha+\cos \alpha \sin \alpha, \sin ^{2} \alpha \vec{u}+\cos ^{2} \alpha \vec{u}\right] \\
& =[0, \vec{u}]
\end{aligned}
$$

The rotation angle is 2α

To see that the rotation angle is 2α, let \vec{u}, \vec{r} and \vec{s} be a right-handed set of orthonormal vectors, i.e., The vectors are all of unit length;
$\vec{u} \cdot \vec{r}=\vec{u} \cdot \vec{s}=\vec{r} \cdot \vec{s}=0$; and
$\vec{u} \otimes \vec{r}=\vec{s}, \vec{r} \otimes \vec{s}=\vec{u}$ and
$\vec{s} \otimes \vec{u}=\vec{r}$.
The vector \vec{r} is rotated by an angle ϕ to the vector $q[0, \vec{r}] q^{*}$, so $\vec{r} \cdot\left(q[0, \vec{r}] q^{*}\right)=\cos (\phi)$.

The rotation angle is 2α

A quaternion q may also be viewed as a $4 D$ vector ($w ; x ; y ; z$). The dot product of two quaternions is

$$
q_{0} \cdot q_{1}=w_{0} w_{1}+x_{0} x_{1}+y_{0} y_{1}+z_{0} z_{1}=W\left(q_{0} q_{1}^{*}\right)
$$

Also,

$$
[0, \vec{r}]^{*}=-[0, \vec{r}]
$$

and

$$
[0, p]^{2}=-1
$$

for any unit quaternion $[0, p]$ with zero real part.

The rotation angle is 2α

$\cos (\phi)=\vec{r} \cdot\left(q[0, \vec{r}] q^{*}\right)$
$=W\left([0, \vec{r}]^{*} q[0, \vec{r}] q^{*}\right)$
$=W(-[0, \vec{r}][\cos \alpha, \vec{u} \sin \alpha][0, \vec{r}][\cos \alpha,-\vec{u} \sin \alpha])$
$=W([0,-\vec{r} \cos \alpha+\vec{s} \sin \alpha][0, \vec{r} \cos \alpha+\vec{s} \sin \alpha])$
$=W\left(\left[\cos ^{2} \alpha-\sin ^{2} \alpha,-2 \vec{u} \cos \alpha \sin \alpha\right]\right)$
$=\cos ^{2} \alpha-\sin ^{2} \alpha$
$=\cos (2 \alpha)$
Hence, the rotation angle is $\phi=2 \alpha$

End of

Introduction \&
Technical Background

