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1. Introduction

1.1 What is Computer Animation

 the process of using

“continuous image” to

convey information

 deals with motion
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1. Introduction

1.2 Applications

- motion films
(https://www.youtube.com/watch?v=D0a0aNqTehM)

- television

- advertising
(read Chapter 1)

https://www.youtube.com/watch?v=D0a0aNqTehM
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2. Technical Background

 The display pipeline:

Object space -

World space -

Eye space –

viewing parameters

field of view

Image space -

Screen space -
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2. Technical Background

Ray Casting:

- act of tracing

rays through

world space
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2. Technical Background

Ray Casting:

- implicitly

accomplishes

the perspective

transformation

(HOW ?)
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2. Technical Background

Homogeneous Coordinates:

- why do we want to use homogeneous

coordinates ?
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2. Technical Background

 Transformation Matrices:
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2. Technical Background

Compounding Transformations:
beforeafter
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2. Technical Background

Basic Transformations:

Translation

Rotation

Scaling (reflection)
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Representing an arbitrary orientation:

 Fixed angle representation
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Representing an arbitrary orientation:
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Representing an arbitrary orientation:
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Representing an arbitrary orientation:
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Representing an arbitrary orientation:

• Interpolation is difficult
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Representing an arbitrary orientation:

0) ,90 ,0( )90 ,45 ,90(

90

90

45

90

Direct interpolation = ((0, 90, 0) + (90, 45, 90))/2

= (45, 67.5, 45)
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Representing an arbitrary orientation:

0) ,90 ,0( )90 ,45 ,90(

90

90

45

90

Question:  Is (45, 67.5, 45) coplanar with (0, 90, 0) and

(90, 45, 90) ?
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Representing an arbitrary orientation:

0) ,90 ,0( )90 ,45 ,90(

90

90

45
90

Desired interpolation = (90, 67.5, 90) 

5.6790
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Quaternions

Motivation:

 multiplying complex numbers can be

interpreted as a rotation in two dimensions.

 Can hyper-complex numbers be defined

so their multiplication can be viewed as

a rotation in three dimensions?

)(

2121
2121  


iii

errerer
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Quaternions

Remember that a general

rotation in three dimension

is defined by four numbers:

one for rotation angle

and three

for rotation axis
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Quaternions: several approaches

1. 2 × 2 matrices of complex numbers

where
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Quaternions: several approaches

2. Four dimensional vector space

one of the bases:

where
4x4 Identity matrix



CS Dept, UK23

Quaternions: several approaches

3. Combination of a scaler and a vector

Conjugate quaternion:

Sum/difference:
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Quaternions: several approaches

Product:

Norm:

Inverse:

Division:

Inner product Cross product
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Representing rotations using 
quaternion:
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Representing rotations using 
quaternion:

Rotate a point P by an angle about a unit

axis u:


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Representing rotations using 
quaternion:

1. Represent the point P as

[0, r]          ( or, [ 0, P ] )

2. represent the rotation by a quaternion

3. perform the rotation
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Representing rotations using 
quaternion:

1. Represent the point P as

[0, r]          ( or, [ 0, P ] )

2. represent the rotation by a quaternion

3. perform the rotation
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Representing rotations using 
quaternion:

Example: Consider a     rotation of point

P = (0, 1, 1)  about the y-axis.

After rotation, we should get

= (1, 1, 0)

Would we?

90

 P

P P’
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Representing rotations using 
quaternion:



CS Dept, UK31

Representing rotations using 
quaternion:
Hence,
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Representing rotations using 
quaternion:
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Representing rotations using 
quaternion:

Prove that the triple product indeed 

performs a rotation of P about u.

First,

Note

that
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Now prove that                     would give us
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Now prove that                     would give us
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Now prove that                     would give us
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Now prove that                     would give us
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Geometric Meaning of Quaternions

Quaternions provide a clear difference

between a vector (point) and a rotation.

]sin,[cos :Rotation

],0[],0[  :orPoint/vect

uq

rP








All the operations for

vectors such as vector

addition/subtraction,

scalar multiplication hold.  

2
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Geometric Meaning of Quaternions

Rotation is performed as: 1],0[  qPq

Why?

Let

For R(P) to be a rotation,

It must satisfy four

properties:

1],0[)(  qPqPR
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Geometric Meaning of Quaternions

For R(P) to be a rotation, it must satisfy four

properties:

1. R(P) is a 3D vector

2. R(P) preserves length

3. R(P) is a linear

transformation

4. R(P) does not have

a reflection 

component 
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R(P) is a 3D vector

Let  W(p) represent the real part of the quaternion p.

Then we need to show that  W(R(P))=0

First, note that quaternion multiplication is distributive

and associative. Besides, we have

and

2/)()(  pppW

  
 pqpq
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R(P) is a 3D vector

Hence,

0
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R(P) preserves length

Let  N(p) represent the length of the quaternion p,

2222)( then      

    if i.e.,
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R(P) is a linear transformation
Let  a be a scalar and P, Q be 3D vectors, then 
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R(P) does not have a reflection  

component 
Consider R as a function of q for a fixed vector     . 

That is, R(q) =             .

This function is a continuous function of q. For each q 

it is a linear transformation with determinant D(q), so

the determinant itself is a continuous function of q. 

Thus,                          ,  the identity function (the

limit is taken along any path of quaternions which 

approach the quaternion 1) and                            .

By continuity, D(q) is identically 1 and R(q) does not 

have a reflection component.

r
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is the unit rotation axisu


u
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To see that       is a unit rotation axis we need only 

show that       is unchanged by the rotation.

Indeed,
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The rotation angle is 2
2

s  and  ,


ru

0 srsuru
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.

and,
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To see that the rotation angle is      , 

let                      be a right-handed

set of orthonormal vectors, i.e.,

The vectors are all of unit length;

;  and

The vector      is rotated by an angle      to the

vector              , so                                  .   
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The rotation angle is

A quaternion q may also be viewed as a

4D vector (w; x; y; z). The dot product of

two quaternions is

Also, 

and 

for any unit quaternion            with zero real part.

2

)( 101010101010

 qqWzzyyxxwwqq

],0[],0[ rr
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1],0[ 2 p

],0[ p
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The rotation angle is

Hence, the rotation angle is  
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