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1. Introduction

What is Computer Animation

e process of using
ontinuous image” to
nvey information g

als with motion

horse_sph_morph_loop.avi
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1. Introduction

1.2 Applications

- motion films

(https://www.youtube.com/watch?

- television f i
Ll
.. .
- advertising

(read Chapter 1)


https://www.youtube.com/watch?v=D0a0aNqTehM

2. Technical Background
-

e The display pipeline:

Object space -
World space -
Eye space —
viewing parameters
field of view
Image space -
Screen space - CS Dept, UK



2. Technical Background

e Ray Casting:
- act of tracing
rays through

world space )\
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2. Technical Background
-
e Ray Casting: ]
- Implicitly
accomplishes
the perspective
transformation
(HOW ?)
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2. Technical Background
-

e Homogeneous Coordinates:

- why do we want to use homogeneous
coordinates ?

CS Dept, UK



2. Technical Background
-

e Transformation Matrices:

4 x4

CS Dept, UK



2. Technical Background
.

e Compounding Transformations:
/|after ‘ ,Ibefore \

PIZM]*MQ*M3*P

M=M1*M2*M3

P'=M*P
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2. Technical Background
-

e Basic Transformations:

Translation
Rotation
Scaling (reflection)
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Representing an arbitrary orientation:
-

e Fixed angle representation (6y, 6y, 6;)
2 Y v Y

(6, 8, 2)

1 Orientation
| vector

Orientafjon
vector

| [ ———
S ARSI
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Representing an arbitrary orientation:
-

* Problems

For (0, -90, 0)

(5, -90, 0) and (0, -90, ¢)

are the same. Why?



Representing an arbitrary orientation:

E

Y

_goel Ay

(s, =90, 0)
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Representing an arbitrary orientation:

v Y

-90

E
A~
ALY

(0, —90, &)
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Representing an arbitrary orientation:
-

* [Interpolation is difficult

Consider (0., 90, O0)and (90, 45. 90)

Direct interpolation: (45, 67.5, 45)

Desired interpolation: ( 90, 67.5, 90 )

CS Dept, UK



Representing an arbitrary orientation:

(0, 90, 0) (90, 45, 90)

o

Direct interpolation = ((0, 90, 0) + (90, 45, 90))/2
- (45’ 675’ 45) CS Dept, UK

90°




Representing an arbitrary orientation:

(0, 90, 0) (90, 45, 90)

o

Question: Is (45, 67.5, 45) coplanar with (0, 90, 0) and
(90, 45, 90) ? CS Dept, UK

90°




Representing an arbitrary orientation:

(0,90,0)  tx (90,45,90) tx
//
90°
/ s

Desired interpolation = (90, 67.5, 90)

CS Dept, UK



Quaternions
S

Motivation:
» multiplying complex numbers can be
Interpreted as a rotation in two dimensions.

io i0, 1(0,+0,)
e 1-r2e ° =nre Loe

» Can hyper-complex numbers be defined
so their multiplication can be viewed as
a rotation in three dimensions?

CS Dept, UK



Quaternions
S

Remember that a general
rotation in three dimension
IS defined by four numbers:

one for rotation angle
and three |  ~ __—

for rotation axis

CS Dept, UK



Quaternions: several approaches
o]

1. 2 x2 matrices of complex numbers
C B w a+bi c+di
d — ) » — . .
. —w* z* —c+di .a-— b

g=aU+bl+cJ+dK

where

0 1 6 i
J=(_1 O) K:(i O) CS Dept, UK



Quaternions: several approaches

2. Four dimensional vector space

one of the bases:

where

O 1 0 0 (0 0 0 -~
L |-l 0 0 0 oo -1 0
N1s @ g 1 =l o1 o o
0 0 -1 0 1 0 0 0
(0 @ —t 0 (1.0 0 0
0 0 0 1 6 1 @8

k= [—
I 0 0 O 0O 0 1 O
0 =1 0 9 / L0 0 0 1

4x4 ldentity matrix
= =k’=-1 ij=—ji=k

ik=—Kkj=i ki=—ik = j CS Dept, UK




Quaternions: several approaches
o]

3. Combination of a scaler and a vector
S=W
‘([E[S. \]‘

¥V=A X... V. Z.)
‘q—zn‘+.\'i+'\‘j+:k ‘

Conjugate quaternion: ¢ *=w—xi—yj—zK

Sum/difference: gy £ gy = (wy £ wy) + (x) £ xp)i

+(y1 £ y)j+(zy 20k

e

=|:S] 5 5 52 , ( \B = \ D) )J



Quaternions: several approaches
o]

Product: Inner product Cross product
~
g1 -G, =| S189 —|Vq - V2J. S1Vy) + 5,V V| & sz
Norm:
' T Sy .2 2 2V, 2D
lgl =g -g*=+q*q :\]n‘- + x° + y* + zZ°
Inverse: s . sact
qgq* gl w?+ x?+ y2+ 72
Division:

(/1/(/2 = gy " (/5l CS Dept, UK



Representing rotations using
guaternion:

u(=u):

unit vector

-
-
-
-
—
O--‘.
-
-
-
-
—

q=[cos(6/2), sin (6/2) u]

CS Dept, UK



Representing rotations using
guaternion:

Rotate a point P by an angle € about a unit
axis u:

u(=w):

unit vector

CS Dept, UK



Representing rotations using
guaternion:

1. Represent the point P as

2. represent the rotation by a quaternion
% %

g = | cos(;) : sin(’;) u |

s e

3. perform the rotation

q-[O.r]-q—1

(Ol‘, P, =g - [ 0. P ] . (/_1 ) CS Dept, UK



Representing rotations using
guaternion:

1. Represent the point P as
2. represent the rotation by a quaternion

g = |cos (g) , sin (g) uj

3. perform the rotation

q-[O.r]-q—1

(Ol‘, P, =g - [ 0. P ] . (/_1 ) CS Dept, UK



Representing rotations using
guaternion:

Example: Consider a 90° rotation of point
P=(0,1, 1) aboutthe y-axis.

After rotation, we should get 5 . [ ~<

P'=(1, 1, 0) /\

Would we?

CS Dept, UK



Representing rotations using
guaternion:

[0,P]=[0, (0,1,1)]

N2 N2

7 T(O 1,0) ]

q=1

g =] (0,1,0) ]

V2 3
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Representing rotations using

guaternion:
Hence,

q-[0,P]-q7"
[\/_ —(010)] [0, (0,1,1)] - [— ——(010)]

— [g *O—?(O, 1,0) - (0,1;1);5(0»1'1) T

0 * -\/2—5- (0,1,0) + g (0,1,0)®(0,1,1)] -

VZ V2
[2,

—(0,1,0)]



Representing rotations using
guaternion:

2(1,1,1) - %(1, 1,1)®(0,1,0)]

= [Q.CL. 1,0}

= [0, P7]



Representing rotations using
guaternion:

Prove that the triple product

performs a rotation of P about u.

_ —1].
qg-10.P] ¢ '|indeed
r> —(r> -u>)u>
C
7 (k2
wer




7 —(r u)?
B4 )
> P
W er ’
P
Q

C?'=COS¢9[—I-‘->—(T>'E))?]+Sinﬂ(7®_)‘—))

17)=(r> W )u>+cosﬂ[7)—(r> ST T

+sino(w 7))
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q = [cos (g), sin (g)ﬁ] ‘

Now prove that|¢-[0.P]-4"'[ would give us |[0, P’]
S

q-[0,F]-q”

0\ . (6). q % . (6.

E- [COS(E/’ sm(aj u]-[o, r]-[cos(aj, —sm(gj U]

E [cos(g\ *O—Sin(gjﬁ T, cos(gjf + O*sin(gjﬁ +sin(€jﬁ ®r]
2 ) 2 2 2 2
0




Now prove that|¢-[0.P]-4"'| would give us [0, P’]

U-r, co{gjﬂrsin(‘gju@r] [cos( j —sm(g)
2 2 2
0.

N S N
o
o

/AL\

N |

N S
-]
=
_|_
o
o

| /L\\

N | D

N S
w.

/A\

| N |

N
=
]
_|_
w,
=3

/_\\

N D

\_/
w
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Now prove that|¢-[0.P]-4"'| would give us [0, P’]

sl

= [O, Slﬂ@(ﬁ@ F) -I—Sinz(gj(ﬁ F)U +COS (‘er _SinZ(QJF

2

Y2 VAN
+S|n2(§j(r 'U)U ] CS Dept, UK




Now prove that

g-[0,P] g

=[0, sin B(I ®F)+cos & I + 2sin 2 (‘Zj( .

=[0,sin (G ®T)+cosOT +

(cos® (gj +5sin? (gj — Ccos?

=[0,7]
=[0,P]

would give us

cl

|
~—

cl
e

=[0, (F-G)i + cos O(F — (F -G )i )+sin Qi @]

CS Dept, UK
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Geometric Meaning of Quaternions
o]

Quaternions provide a clear difference
between a vector (point) and a rotation.

All the operations for
vectors such as vector ’
addition/subtraction, — P

scalar multiplication hold. CS Dept, UK




Geometric Meaning of Quaternions
o]

Rotation Is performed as: |( -[O, P] - C]_1

Why?

Let [R(P)=q[0, Plq”’|

~or R(P) to be a rotation,
t must satisfy four
properties:

CS Dept, UK



Geometric Meaning of Quaternions
o]

For R(P) to be a rotation, it must satisfy four

properties:

1.
2.
3.

R(
R(
R(

transformation
4. R(P) does not have —
a reflection

P) Is a 3D vector
P) preserves length

P) Is a linear

U

component /

CS Dept, UK



R(P) Is a 3D vector

Let W(p) represent the real part of the quaternion p.
Then we need to show that W(R(P))=0

First, note that quaternion multiplication is distributive
and associative. Besides, we have

W(p)=(p+p)/2
and

(pa) =q"p’

CS Dept, UK



R(P) is a 3D vector

Hence,

W (R(P))=W(q[0, P]q’)
={a[0, PIg" +(q[0, P]g™)"}/ 2
={q[0, P]q” +q[0, — P]g"}/2

- ogl0.PL 0Pl

=q[0, 0]q’
0

CS Dept, UK



R(P) preserves length

Let N(p) represent the length of the quaternion p,
ie,if p=w+xi+yj+zk

then N(p)=w"+Xx°+y°+2°

Notethat N(pqg)=N(p)N(q)
Hence,

N(R(P))=N(q[0, Pla’)

= N(a)N([0, P)N(q’)
=N ([0, P])

CS Dept, UK



R(P) I1s a linear transformation
Let a be a scalar and P, Q be 3D vectors, then

R(aP+Q)=q[0,aP+Q]qg’
= {[0, aP]+[0, QI}q"
=q[0, aP]g" +q[0, Qla’
=q(a[0, P])q" +q[0, Qla’

=a(q[0, P]g™) +q[0, Qlg”
=aR(P) + R(Q)

CS Dept, UK



R(P) does not have a reflection

component

Consider R as a function of g for a fixed vector r.
That is, R(q) =d[0, F1q".

This function is a continuous function of . For each g
it Is a linear transformation with determinant D(q), so
the determinant itself is a continuous function of g.
Thus, limR(q) =R(@) =1, the identity function (the
limit is taken along any path of quaternions which
approach the quaternion 1) and I|m D(q)=D(@) =1.

By continuity, D(q) is identically 1 and R(g) does not
have a reflection component.

CS Dept, UK



—

Ul is the unit rotation axis

To see that U is a unit rotation axis we need only
show that U Is unchanged by the rotation.
Indeed,

R(U) =q[0, u]g’
=[cosa, sina U][0, G][cosa, —sina U]
=[-sina, cosa U][cosa, —Sina U] ]

w

=[-sina cosa +cosasine, sin® a U +cos’ o U]
=0, U]

CS Dept, UK



The rotation angle is 2«

To see that the rotation angle is 2«
let U,r and S be a right-handed
set of orthonormal vectors, I.e.,

The vectors are all of unit length;

U-r=u-s=r-s=0; and
URT
S®U =
The vector F is rotated by an angle ¢ to the
vector q[0,F1a", so F-(q[0, F]q*)=cos(g).

cl

|

r®s=u and

I|
= U

|

CS Dept, UK
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The rotation angle is 2«

A quaternion g may also be viewed as a
4D vector (w; X; y; z). The dot product of
two quaternions is Y

Uo O = WoW, + XX + Yo Y1 + 404 =W(quIf)

Also, \)
[0, 7] =-]0, 1]

and
[0, p]* =-1

for any unit quaternion [0, p] with zero real part.

)



The rotation angle is 2«

cos(@)=T - (q[O, F]q*) 3

_W([0, 7140, F1q) <
=W (-0, r]lcosa, Usinx][0, r][cosa, —Usina])

=W ([0, —rcosa +Ssin«][0, r cosa +5sina])

},1

=W ([cos’ a —sin’ a, — 2l cosa sina])
=Cco0s* o —sin‘ «

=C0S(2c)

Hence, the rotation angle is ¢ =2«



End of

Introduction &
Technical Background



