4.4 3D Shape Interpolation

- changing one 3D object into another

Turk/O’Brien

Two categories:
surface based approach (2" case)
volume based approach (15t case

CS D).pt, UK

Surface based approach (2nd case)

- modify boundary representations of the objects so
that vertex-edge topologies would match then
perform vertex interpolation

- sensitive to different object topologies (holes)

(horse_sph_morph_loop.avi)

Volume based approach (1st case)

- blend one set of volume elements into another set
of volume elements

- less sensitive to different object topologies

- computationally more expensive

- a more promising approach but will not be covered
here

CS Dept, UK

Terminologies: "”0
object - 3D entity with finite volume [ponut and teacup
shape - an object’s surface [‘Oag;cfgs same

@@ Model - rep of the shape of an objecl/ one componen)
topology - connectivity of the surface of an
object (no. of holes, components)
homeomorphism
genus

- vertex/edge/face connectivity of an

ObJeCt (vertex -> vertex; edge -> edge; loop -> loop; face -> face;
sphere (a simply-connected closed surface -> sphere)

Question: if 2 objects are not topologically
equivalent in the 1st sense, can they be
topologically equivalent in the 2nd sense?
(the other direction?) |YES | Cs Dept, UK

Shape Representation: a review

A representation of a 3D object:

Face Table Index Table Vertex TabléNormal Table

A veﬁﬁctes i > 1014 v0 i
B 3|4 Vi n;
D I _E C 0|4 v, n,
\ Eg i A V2 = — <

]
Vo@ D 114 V3 3
= % | E — | 3|0 V, n,

Eq C !
: i Es F 710 V. N5

8 E V
< | | L Ve 1
Va E1o

<
~
9

2(0 V;

to Vertex Table
to Normal Table

Shape Representation: a review

An alternative:

‘ Face Table |—>| Edge Index Table |—|

\Eo E & Va2 A
Vo N Es
B E"’B - L>| Edge Table |—>| Vertex Table I
Eq C Vsi

<E7 = Ve
- = Edge Index Table |<-

CS Dept, Univ of Kentucky

Shape Representation: a review

Vo

E4

Va

An alternative:

Va2

Es

Ve

Face Table

jl # of edges

Vertex Table

Bl # of edges

*

>l .

Edge >
Index Table ‘Edc e Table
0] TVvovil Al DIE

1 >

2 >

3
- *

CS Dept, Univ of Kentucky

Shape Representation: a review

An alternative:

Edge Index
Table
Edge Table Vertex Table —>
D\EO Or—Es . Eol\VolMu AL D] 1 x | v | z | #of degree Vo
Vol N\ Esi - - > V1
e : Va Es
Esa) C | B
v Es
Es E7 Ve N N
Va E1o 1
E1 - * * *

CS Dept, Univ of Kentucky

Shape Representation: a review

An alternative:

Edge Index
Vertex Table Table
D | g A Vol %ol vol zol # of degree > 0 >
\ Eo l = Vz o Edge Table
Voll\u Edl & V1| X1| vi| z1| # of degree | —4=— 3 >
Es g
e C EVS g [4
I Vs Es — O
<E7 Ve
* * *
Va E1o
E11 s * * *

CS Dept, Univ of Kentucky

Winged-Edge Data Structure:
areview

» To avoid using variable-
length data structures

* Hide the implementation
behind a class interface

Vertices Faces Clockwise Counter-
Edge Clockwise
from to | left right | pred succ | pred suce
¢ u \' A B d a b C

cw-predecessor

\ A

Left face ’

A /

//l.

CW-SUCCEeSSsor

¢
/

CCW-successor

|I Right face

\ B

\
\

b

&

ccw-predecessor

Winged-Edge Data Structure:

areview

Example: representing a tetrahedron

Edge Table
Edge Vertices Faces Clockwise Counter-
Clockwise
Name | from to | left right | pred succ | pred succ
a I 2 A D e d f b
b 2 3 B P C e a f
| f 3 € B | @ c b a
c 3 A B C e b f d
d I B C A C f a e
e 2 4 A B d a b c

Winged-Edge Data Structure:
areview

Example: representing a tetrahedron

Vertex-Edge Table Face-Edge Table
4 C Vertex | Edge Face | Edge
. I d A d
2 b B e
I 3 b C d
- C D b

CS Dept, Univ of Kentucky

Winged-Edge Data Structure:
areview

- How to find edges adjacent to a given vertex v ?

W ‘Vertex Edge Table ‘ (to find c)

‘ Edge Table ‘ (to find g)

A

‘ Edge Table ‘ (to find 1)

CS Dept, Univ of Kentucky

Winged-Edge Data Structure:
areview

- How to find edges adjacent to a given vertex v ?

c\ P/ & A
: 2 | Edge Table | (o find
AV
A 4
" =4 5 ‘ Edge Table ‘ (to find d)
A 4
2 U
b

/\ ‘ Edge Table ‘ (to find c, stop)
da .
CS Dept, Univ of Kentucky

Winged-Edge Data Structure:
areview

- How to find faces adjacent to a given vertex v ?

‘Vertex-Edge Table ‘ (to find c)

A 4

‘ Edge Table ‘ (to find B and g)

A Ef B 2

‘ Edge Table ‘ (to find E and f)

/‘\ CS Dept, Univ of Kentucky

Winged-Edge Data Structure:
areview

- How to find faces adjacent to a given vertex v ?

A 4

‘ Edge Table ‘ (to find D and e)

A 4

‘ Edge Table ‘ (to find C and d)

A 4

& U ‘ Edge Table ‘ (to find A and c, stop)
/-\ CS Dept, Univ of Kentucky

AR
Matching Topology QQ Qy

- only the interpolation step is needed
@ - how do you tell if two objects have the same
topology? (2nd sense)

A

Star-shaped polyhedra L ﬁ/
- generating new vertices and edges thru ray
emanating from a central point in the kernel
of the objects so that the objects would
have the same topology

CS Dept, UK

How to build new
face-edge-vertex
data structure?

CS Dept, UK

. . -] _
xlal Slices > —

1— ol
|
I
- object has a central axis and slices of the
object with respect to the axis are star shaped
- the axis should be parametrized from 0 to 1

- corresponding slices are interpolated

©

e

(@
(@

CS Dept, UK

Map to Sphere

@ map both objects onto a

sphere

- construct a union of the
projected vertex-edge
topologies

- map the new vertex-edge topology back onto
each original object

- the new models for the objects are transformed
by a vertex-by-vertex interpolation

How to build new
face-edge-vertex

Map to Sp here data structure?

UNION of the projected vertex-edge topologies
@ - costly process
- projected edges are intersected and merged

Iinto one tOpOIOgy Face -> Edge -> Vertex ?
\ - _r Vertex -> Edge -> Face ?

7 Faf
<o ‘4'9\ > L

Face-Edge intersection:
to find new edges and vertices
Then form new faces

CS Dept, UK

Recursive subdivision

- recursively split the surfaces of the objects
Into disjoint meshes

- splitting I1s done by selecting appropriate splitting
paths (sometime needs to add new edges)

- corresponding meshes must maintain adjacency
relationship and have the same boundary topology
(sometime needs to add new vertices)

- recursive subdivision stops when all the
meshes have been reduced to triangles

- at that point both objects have the same
topology

- then perform vertex-to-vertex interpolation
of vertices to carry out object transformation

Recursive subdivision

..

Key ldea:

- break each object into two meshes (using the
shortest paths between the topmost, bottommost,
leftmost and rightmost vertices)

- add new edges to the cutting path if necessary

- building a one-to-one correspondence between
vertices of the two cutting paths (add vertices if
necessary

Recursive subdivision

Cutting
path

Recursive subdivision {sut
pat

Cutting
path

Recursive subdivisio

N New
vertex

Y F

4.5 I\/Iorphing (2D) transforming one image

(Source image) into another image (destination image)

CS Dept, UK

oordinate Grid Approach

- based on user-defined coordinate grids
super-imposed on each image

- corresponding elements must be in corresponding
cells of the grids

I T
\ CS Dept, UK

eneration of intermediate images:

1. For given 0 <t <1, generate an intermediate
grid

A
S e %! D
\ /
_ A, e.g.
=0.2) |— A =

\\\"’_”// (1-0As + 14,

Generation of intermediate images (conti):
|

2. Source image Is warped according to the
Intermediate grid in a two-pass process

waswi|

e I ' /
'.. |
/=02 L

CS Dept, UK

0-pass process:

Auxiliary gnd

V-coordinate of, A I

A =(x,y

X-coordinate of A4 S

CS Dept, UK

S

rt source image in x-direction

mk

1 Scanline

3

Lt ety i iilyiy L

HEEEN

| I Y R | 1 X

0 4 8 20

pixel

0

6

16 20

() For each scan line, x-intercepts of the vertical grid
curves with the scan line are computed

(i) Use relative position of each pixel on the scanline in the
auxiliary image to determine which portion of the
scanline in the source image should be used to color the

CS Dept, UK

rt source image in x-direction

(i) Use relative position of each pixel on the scanline in the
auxiliary image to determine which portion of the
scanline in the source image should be used to color the

pixel

0 1 2 3

stort auxiliary image in y-
direction

/——_—__ l
10 '

2

(]
lINEEEEENIIEEERIIEEEER

IIHEEENIIEEENIINEEREENI

18 3

() For each column line, y-intercepts of the horizontal grid
curves with the column line are computed

(i) Averaging auxiliary image pixel colors to form the
iIntermediate image using information from (i)

CS Dept, UK

12

18

Generation of intermediate images (conti):
|

3. Destination image is also warped according
to the intermediate grid in a two-pass process

@ e @ < e
| D I
\
| | 4 —\ | &(t=02)
\:}&\-\\-%“*x_ '\ __,./(qj—" 4,> l‘\
> } — .
S B ﬁ 4o G‘“‘—“\T_’T"’"@
\ |
/ | 1'
¢, &5 & & C & S D

CS Dept, UK

Generation of intermediate images (conti):

4. Performing cross-dissolve on a pixel-by-pixel
@ asis between the two warped images to

generate the final image

 is a function of

&Y, €

\ T T T the current frame
| ! Lo » number and the
i “Ji——"’ _ —‘—'\’ [| |range of the frame
\ | @ Cl[l][J] | @ Qz[l][kj] numbers over which
’M"T‘—'“‘“"ﬂ G__“ﬂ“—”’”@ the morph is to take

(L/ ’l}) C C‘l‘} (i o) place
€ Gi 57 D

= S
| el [CRI= oG R
| Lo 1-a)C,[1][]]

Generation of intermediate images (conti):

4. Performing cross-dissolve on a pixel-by-pixel
@ asis between the two warped images to
generate the final image

CS Dept, UK

Coordinate Grid Approach examples

» B

CS Dept, UK

Morphing of Animated Images:

_ key grids

Source 1mage sequence

.

17

s
LA

e

\' sk ok

A

/

intermediate grid

1N
/
\/\t

\

Destination image sequence

7 -
3 =

T interpolated grid /

key grids

TRy

%

1) define coordinate grids for key images in each sequence
2) generate interpolated grid for each frame

3) perform static morphing on corresponding frames
CS Dept, UK

Feature-bpased Morphing

- correspondence between images are established by using
feature lines

F I

- feature lines are interpolated to form intermediate feature
lines (based on interpolation endpoints or center points and
orientation)

- a mapping is used on the source image to form an
iIntermediate image, and on the destination image to form
its intermediate image as well

- the two Intermediate images are cross-dissolved to form
the final intermediate image

Morphing defined by a single feature line:

Q=Q, +uS+vT

> ,Q
Q,
S
T
Q,
P1P2 . feature line in Q1Q2 - feature line
an inermediate image In source image

The intensity values of Q in source image are used
to color the pixel P in the intermediate image

CS Dept, UK

Intermediate image

roach:

Source image

Mapping defined by multiple feature lines:

al for each interpolated feature line, a mapping like the one

described above is created

- arelative weight is computed that indicates the amount of
Influence that feature line should have for each
iIntermediate image pixel

- the mapping is used in the source image to identify the
corresponding pixel for a pixel in the intermediate image

- the relative weights are used to average the source image
locations generated by multiple line features into a final
source image location

- this location is used to color the intermediate image pixel

CS Dept, UK

Feature-based Morphing Example

Beier/Neely

Feature-based Morphing Example

Example

O)
-
L
O
-
®
=
O
D
)
qv)
=k
D
| —
>
e
M
D
LL

Feature-based Morphing Example

eature lines '’

Without
grid and
feature lines

Feature-based Morphing Example

“ross-
e» |ssolv

CS Dept, UK

Feature-based Morphing Example

Without
grid and
feature lines

CS Dept, UK

End of
Interpolation V

