3.3 Interpolation of rotations

reﬁresented bx ﬁuaternions

S® : set of unit quaternions S* :set of unit 3D vectors

Interpolation will be performed on §°

/.6\/ L 7\ (direct linear

Interpolation produces
nonlinear motion)

different ———
angles CS Dept, UK
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Interpolation of rotations

reﬁresented bx ﬁuaternions

How? use spherical linear interpolation (slerp)

/ ‘/2 Since ¢, and —q, represent the

/ \ same rotation, we use great
'( \ + circular arc with shorter path.

: This can be determined by
1808 /" testing the inner product:

/ COSO=¢q1 - q2=515, TV -V
42 .

e, o CS Dept, UK



Slerp is desirable because ...
|

® slerp produces the shortest path between the
two orientations on that unit sphere in 4D; (this is
equivalent to finding the "minimum torque"
rotation in 3D space, which you can think of as
the smoothest transition between two orientations )

® |t travels this path at a constant speed, which
basically means you have full control over the
nature of the transition

CS Dept, UK



Interpolation of rotations

reﬁresented bx ﬁuaternions

Two approaches:

(1) View S° as a group

slerp(q,. 4,:4) = ¢,(¢,'q, ). 0<u<1

This iIs the extension of unit complex
number interpolation

i(6+u(6,-6,))

- -1 -
e—el(e1 ez)J =€




How to define 9"

Given avector y=0ve R® with veS? , the
exponential can be defined as

o0 1/ .
exp(v)= Y — =(cosH. v sing ) € S°
=0 1!

—r<6<7|

exp is one-to-one when [6|< 7" Hence, can define
log as the inverse of exp. Consequently, can define

q“ =exp(a log q)




How to compute g~

If g=(w,X,Y,2z)eS°’

we have W* +X° +y° +2° =1.

1/2

Define cosd@=w, sin@=(x*+y°+2°)
and ¥V =(x/sin@, y/sin@, z/sinb)
then since exp(&v) =g = (cosd, vsinb)
so log(q) = &v.

Hence,| g =exp(a logq) =exp(a - )

= (coslad), Vsinlad))




Interpolation of rotations

reﬁresented bx ﬁuaternions

(1) From 4D geometry

~ sin((1-1)6)

sler‘p(qo, qi-- t) - .
sin &

9o T

sin(26)

i 1
sin @

(*)

where 4 "4, =cos6

........................

CS Dept, UK




Before we show that slerp(qo, g1; t) Is a unit quaternion,
let’'s see the geometric meaning of this definition first.

First, the formula is symmetric. The symmetry can be
seen In the fact that Slerp(q,, d,; t) = Slerp(d,, qp; 1 - 1).

In the limit as 8 — 0O, this formula reduces to the
corresponding symmetric formula for linear
iInterpolation,

Sle"'p(qo 41> :r) = (l_r)qo = rql

A Slerp path is, in fact, the spherical geometry
equivalent of a path along a line segment in the plane;
a great circle is a spherical geodesic.

CS Dept, UK


http://en.wikipedia.org/wiki/Geodesic

Next, we show the|correctness (or, derivation) of (*). ‘

The interpolation between g0 and
g+ In 4D space can be written as

q(t) = ¢, ()q, + ¢, (1)q,

where ¢,(¢) and ¢,(f) are real-
valued functions for O<=1t <=1
with ¢,(0)=1, ¢(0)=0, ¢,(1)=0, and ¢,(1) =1.

As t uniformly varies between 0 and 1, the values q(1)
are required to uniformly vary along the circular arc from
go to g+. That is, the angle between g(t) and qo IS

CS Dept, UK



t@ and the angle between q(f) and gq+1s (1-1)6.
Taking the inner product of q(t) with go, we get

cos(z@) = c,(t) +cos(O)c, (¢) (1)
Taking the inner product of g(t) with g+, we get
cos((1—-12)8) = cos(O)c, (7) +c,(7) (2)

Solving (1) and (2), we get

sin((1-1)6)
sin @

co(t) =

Thus, the correctness of (*) has been proven.



Interpolation of rotations

reﬁresented bx ﬁuaternions

Show that‘slerp(ql, Jz2; U) IS Indeed a unit guaternion

Slerp(q. q,: )

sin((1 — 1)0) sin(u0) J
— [ . Wy + . Wil

sim((1 —uw)o) si(ué)
, Xy +
__smé sin @
sim((1 —uw)od) 5111(119)

YV 1 -+
Sin @ ' Sin @

si((1 — u)()) 3111(119)
sin @ sin @ = M. &> 4

.7.




Interpolation of rotations
represented b |

Since 1 and g2 are unit gy/aternions, we have

\Slerp(ql, ds; u)\2 =W’ + X7+ y° +2°

=C0Ss0O
SinZg (w + X, +y1+z) / ‘
23|n((1 u)H)sm(uH)k

W1W2 + X1X2 + y1y2 + 2122)‘

sin“ @

sm “(u6)
5 I(w + X5+ s + 2 )4—

Sl N CS Dept, UK

=1




Interpolation of rotations

reﬁresented bx ﬁuaternions

S0, = AS02((1 = 0))
| Slerp(qy. q2iu) |7 £ ——— J
,,,,,, - P ) || g g
2 a2 N R e s . G
/ 5111“(1193‘\ 2lcos @;sm(ud) sm((1l —u)é)
t—— 0+ == —
N SUL €
sin® @ cos* (16 )= "cos® @ sin*(u8) + sin’(udy»
— “=--.__ e —— ______——--’—’
sin’ @ AN
o) - 2 2
_smte 1 =sin (uH)(l—cos 6’)
_ . 2 _ ; .
sin” @ =sin’(ud)sin’ 4

—_ CSDept, UK



Interpolation of rotations

reﬁresented bx ﬁuaternions

Show that

. 0, + 0, 0, +0,
Slerp(a,, g,;1/2) = —
MG G 1/2) 9,+0,| 2cos@/2)

Question: Does the 2nd approach generate the
same curve as the 1st approach?

CS Dept, UK



Interpolation of rotations

reﬁresented bx ﬁuaternions

Show that

. 0, +0, 0, + 0,
Slerp(a,, g,;1/2) = —
PG, Gz:1/2) 9,+0,] 2cos@/2)

Proof:
. g, + 0,
Sler . 0,:1/2) |=

g, +0,| =2cos(6/2)

=1

Hence,

CS Dept, UK



Interpolation of rotations

reﬁresented bx ﬁuaternions

(1) Third approach
q1= (cosB,sin6, V)
g,= (cos0,,sinf, U,)

Define ¥V =

Define

q(t) = [cos (te) , Sin ( »

2
A to
|0, sin0,7,] * [cos (?




Interpolation of rotations

reﬁresented bx ﬁuaternions

(I11) Third approach

Actually instead of considering
g, and g, in S® we can just

consider ¥, and 7, in S° D,

Define 1’5=v51§;2 and then define

v(t) = [cos (g),sin (g) D] *

10, 71] * [cos (?), —sin (?) 7]




Interpolation of rotations

reﬁresented bx ﬁuaternions

(II1) Third approach

It can be shown that

sin((1 —1¢t)6 sin(t6@
(( ) )1’7‘1 + .( ) D
sin@

D(t) = {0,

sin@

Now compare it with

sin((1-t)6) sin(t0)
q +

d>

Slerp(q4, qz; t) — <ing sinB



How to interpolate between a
series of orientations?

Problem with slerping between points: first order
discontinuity

CS Dept, UK



gree 3

C(1) = (1-t°P, + 3t (1-t)°P, + 3t°(1-1)P, + t°P,

er Curve Segment of

C(t)

Matrix form:

Ct)=[1,¢.1% 1]

T T
-3 3 0 0O
3 =63 0

=] 23 =30

CS Dept, UK




Review: Bezier Curve Segment of
Degree 3

® P, =(x.y,) are called|control points |

e The polygon ppp.p, is called the [control |
polygon |

e The weights (1-+)’, 3r(1-1)*, 3¢°(1-t), and ¢

are called[blending functions |

1 & (l—l‘)3 TS

Notes:

« Blending functions are
N - ) always non-negative
AL whalia - Blending functions
- always sumto 1

CS Dept, UK



Review: Bezier Curve Segment of
Degree 3

A Bezier curve always starts at PO and ends at P3

@ - ABezier curve is tangent to the control polygon at the
endpoints

« Bezier curve segments satisfy convex hull property
« Bezier curves have intuitive appeal for interactive users

convex
hull




eral Bezier Curve
gments

n n (n . ;
C(t)=73 B,,()P;= 3 U FL—1) P
i=0 i=0

n} n! B
| = ) = Af) A€
1) il (n—i)! (")

again called blending functions and P, con-
trol points.

where o<r<1 and




Review: General Bezier Curve
Segments

e All the properties mentioned on page 5 hold for general

A recurrance relation:

n—1
Z Bi.n—l(f) Pi
i=0

o

(n—1
+ Z Bi.n—l(r) Pi+l}

\i:O

n—1 "7‘1- : .
a—of | x| ., {Fa-F e

1
L 7=0

/ n—l’ i (] — Y-l p
+ Y| |t A-1) i+1

| =0



eral Bezier Curve

173 P2
1/3
c(1/3)
P
1 21 2]1]2 ] 1 |2 ]
co | = |[=p,+ —P|| +— | [FP, + —P,
3" I3 |3 |]3 3 3 (|13 3
(2 12, . 1, L, L1,
H— | — | P, + P+ — [P, +—
g 1318 * 34 318 = 3 2




Review: Composite Bezier Curves

¢ e Bezier curve segments can be joined together to form
complicated shapes

PO, P1, P2, and P3 are control points of the 15t segment
P3, P4, P5, and P6 are control points of the 2" segment
P2, P3, and P4 are collinear (to guarantee smooth joint)

CS Dept, UK



view: Composite Bezier Curves

e Smoothness (continuity) at Join Points:

C° : the endpoints coincide

G’ : tangents have the same slope

C!: first derivatives on both segments match at join point




view: Composite Bezier Curves

e G1l-continuity:
P2, P3, and P4
are collinear

e C1-continuity:
P2, P3, and P4
are collinear and
P3 Is the midpoint
of P2P4

CS Dept, UK



Shoemake’s approach

Foreachsetof 3

q;
consecutive key & 9i-1
quaternions gi-1, Qi %“"
and gi+1, construct "¢, qi1
aiand bi as:

a; = Bisect(Double(q;_1. q:). qi+1)

b; = Double(a;. q;)

where [ Double(p.q)=2(p-q)q—p:
pPTq
lp + 4] CS Dept, UK

Bisect(p.q) =

30



Double(p.q)=2(p-q)q—p
ptq

P +q
What do they mean?

Bisect(p.q) =

Let D =Double(p,q) . Then g is the midpoint of the
Circular arc from p to D, I.e.,

q= p+D p+D p+D
p+D| 2cosfé 2(p-q)
Hence, D=2(p-q)g—p

CS Dept, UK



h I
a; = Bisect(q;. Bisect(Double(q._;. q;). 4;+1))

b; = Double(a;. q;)

bi qi a; —
. qi-1

dia qi+1

a;_1 b,

Then, use Qi-1, ai-1, bi d ;
and gi as the control C.(u)
points of segment | g

qi-1




of the segment Ci(u)

a1

qi / C,; ()

Use De Casteljau algorithm
eg., | C(13)=2

1 = sler; ('i—l> i1, 1/3)
p3 = slerp(a,_y, b;. 1/3)

q;

qi-1

p} = slerp(b,. q,. 1/3)

p3 = slerp(py. p;. 1/3)
p3 = slerp(p;. p3. 1/3)

p3 = slerp(p3. p3. 1/3)




Path Following

Issues: orientation handling, path
smoothing, path along a surface

Orientation Handling:
- define a local coordinate system (u, v, w) for the
camera (as it travels along a path)

_______
- S

(, T \ \, Frenet Frame:
\ X, = /
/“<:“>" ______ > w=P/(s)
u=P'(s)xP"(s)

\ V=WXU
_ CS Dept, UK



olution for
() when P"(s)=0 for a segment

Vb
AV, o /
1h
0, o \

Y WP

N 3 P(b
P(a) P *N

If P"(s)=0 fora <s <bthen how should a local
coordinate system (ue, ve, we) for P(c), a <s <b,
be defined?

Wc — Wa — Wb

Interpolate v, and v, to get V.| cs oept, uk




Solution for
(i) when P”(s) Is not continuous at a point

Change v, to —v, when $2k &

CS Dept, UK



Main problem with using the Frenet frame as the
local coordinate frame to define the orientation of
the camera or object following the path is:

the resulting motions are too extreme and not
natural looking

Using the w-axis (tangent vector) as the view
direction of a camera can be undesirable. Why?

Often, the tangent vector does not appear to
correspond to the direction of “where it's going”
even though it is in the instantaneous (analytic)
SENse. CS Dept, UK



The more natural orientation, for someone riding In
a car or riding a bike, would be to look further ahead
along the curve rather than to look tangential to the

curve.

Solution for

(1) the resulting motions are too extreme and not
natural looking

Define view vector as COIl - POS g pep ux



Smoothing a Path

- to remove the jerkiness of a path whose
points are generated by a digitizing process

- usually, local methods are used

CS Dept, UK



Smoothing a Path

() Smoothing with linear interpolation of adjacent
points

repeated applications would flatten out the curve

CS Dept, UK



ubic interpolation of adjacent points

P;
©)
bP,j Pi+l P
i+2
C(1/2) C(3/4)
C(1/4) C(1)

C(0)
Construct |C(t)=ar® +bt* + et +d |

such that C(0)=P,,, C(1/49)=P,,
C(3/4) =Py, C(1)=Pip

C(1/2) + P,

Compute C(1/2) ; define P’; = 5

C{2)=2

i Py 5Py +Pi—l-Pi—2 +Pi+1—Pi+2
2 6 6 _CSDept,UK




| Slide 41 |

Let C(1/2)=x-C(0)+y-C(L/4)+2-C(3/4)+w-C(l)
( xd + yd +zd +wd =d

(y/64)a+(27z2/64)a+wa=(1/8)a
wehave %1630+ (92/16 )b+ wb = (1/4 )b

(y/4)c+(3z/4)c+wec=(1/2)c
X+y+z+w=1

or < y/64 +272/64 +w=1/8
y/16 +92/16 + w=1/4

y/4+3z/4+w=1/2
Solving for X,y,zand w, we get
x=-1/6, y=2/3, z=2/3, w=-1/6
Hence, C(1/2) =—C(0)/6+2C(1/4)/3+2C(3/4)/3-C(1)/6
=-P ,/6+2P_,/3+2P,,/3-P,,/6

1+1 i+2




C(1/2) = xC(0) + yC(1/4) + zC(3/4) + wC(1)
.

a/8

b/4

c/2

xa - ( ya/64 27za /64
+ + +
xb - 0 yb/16 9zb/16
+ + +
xc -0 yc/4 3zc/4
+ + +
xd yd Zg Dept, UK

wa

_I_
wb

+
wc

_I_
wd



P
2 P,

0/2:(71/3) 32/3)\'\

C(0) C(1)

Construct| C(¢) = at* + bt + ¢ | such that

C0) =Py, C(2/3)=P,, C(1)=P;
C(1/3) + P,

Compute C(1/3) defineg P =

2

C(1/3) = ?
=P2+(PO—P3)/3

Question: how should P, be adjusted?

Lamal

UK




| Slide 43 |

Let C(1/3)=x-C(0)+y-C(2/3)+z-C(1)
[ Xc+yc+zc=cC

(4y/9)a+za =(1/9)a
@ vehae o0 7b = (1/3)b

-

X+y+z=1

4y/9+z =1/9

of 1 2yi3+z=1/3

.

Solving for x,y and z, we get
x=1/3,y=1, z=-1/3
Hence, C(1/3)=C(0)/3+C(2/3)-C(1)/3
=R, /3+P,-PR,/3



At left end: | Question: how should P, be adjusted?
<

1. This point can be left alone if it represents hard
constraint

2. Parabolic interpolation can be used to generate
estimate for this point

Forexample: P/ =P, +3(P,—P,)

Po’ CS Dept, UK



When the data to be smoothed can be viewed as the
value of a function, I.e., yi=f(xi)

(1) Smoothing with convolution kernels

- new point is generated by applying a smoothing kernel
to the data points viewed as a step function

J(x)

/" a smoothing

oA \_ kernel & (’ )
1+t/ 1-t\,

-1 l
Step function defined

by original data points

CS Dept, UK



(1) Smoothing with convolution kernels

- new point is generated by applying a smoothing kernel
to the data points viewed as a step function

Poozj:faxux—odt

(1—x+i)?

P(X) — (V1 _Vz)

+ (V3 _Vz

Vs |
V3
"l -
|

7\

o1 u LIS :
x-1 | X |x+1
| i+1

A 4 IJ\.:'.IL’ A AN



Determining a Path along a Surface:
o]

(1) along a polygonal surface mesh

a. plane intersection g

b. greedy algorithm 5

c. shortest path e i
\\ T D

CS Dept, UK



Determining a Path along a Surface:
o]

(1) along a polygonal surface mesh

a. plane intersection =

Determine a plane that ST o

contains the start point |
and the destination e

point and is generally
: Average of the two

surface CS Dept, UK




How to improve this linitially the start vertex |
algorithm?

iIng a Path along a/Surface:

D. greedyalgorithm

For each edge emanating from the current vertex,
calculate the projection of the edge onto the straight
line between the current vertex and the destination
vertex.

Divide this distance by the length of the edge to get the
cosine of the angle between the edge and the straight
line. The edge with the largest cosine is the edge most
IN the direction of the straight line; choose this edge to
add to the path &5 bept, UK



Determining a Path along a Surface:
o]

(1) along a polygonal surface mesh

c. shortest path

b TR
Unfold the faces of the mesh to \S\\ g,
be on a plane. P
The shortest path is a straight D

line between the start vertex
and the destination vertex that
lies within the unfolded mesh. CS Dept, UK



Determining a Path along a Surface:
o]

(1) along a polygonal surface mesh

c. shortest path

Jingdon Chen, Yijie Han, -

Shortest Path on a Polyhedron, e D
Part I: Computing Shortest Path,
International Journal of Computational Geometry
and Applications, 6, 2 (1992), 127-144.

CS Dept, UK



Determining a Path along a Surface:
o]

(1) along a polygonal surface mesh

c. shortest path

Basic idea:

1. Triangulate all the faces

2. Triangulate the face that contains S
so that S becomes a vertex

3. Unfolding, using the following approach

CS Dept, UK



Determining a Path along a Surface:

(1) along a polygonal surface mesh

c. shortest path

Unfolding strategy:

1. Avoid situation such as the one
shown on the right

2. Use geodesic path




Determining a Path along a Surface:

(1) along a polygonal surface mesh

Unfolding strategy:




Determining a Path along a Surface:

(1) along a high-order parametric surface

d .-. I y".li.-.‘
\ < o 5

construct a line in parameter space and transfer
to the surface.
(Question: how to find d and s?) CS Dept, UK



Determining a Path along a Surface:

(1) along a high-order parametric surface

\ S Stu,v)

1. Use midpoint subdivision technigue to refine
the surface
2. Use convex hull concept to find d and s




Path Finding:

finding a collision-free path in a given environment
o]

A topic usually addressed in the robotics literature.

Complexity of the problem increases when the
environment is not stationary, and the problem
pbecomes more complex if the obstacles’ movement
IS not predictable.

No good solutions to this problem have been found
yet, even though some (computation intensive) greedy
algorithms have been proposed. CS Dept, UK



Path Finding:
finding a collision-free path in a given environment

Recently,
also considered |
In graphics,
such as walk
through a plaza *®
or a room with
a lot of people
moving around.



End of
Interpolation Il



