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3.2 Controlling Motion Along
Space Curve

 constant speed

 speeding up

 speeding down
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Constant speed

To ensure constant speed, must parametrize by arc 

length (constant distance-time function)

Why?
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Constant speed

To ensure constant speed, must parametrize by arc 

length (constant distance-time function)

Why?

5      4      3      2      1      0

t : original 

parameter

space

C(t)

S : arc length
G(t) )(G -1 s speedconstant  has   ))(C(G-1 s
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Constant speed

However, calculating arc length

is too difficult (sometimes, impossible)

WHY?
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Constant speed

Sometime

impossible

to compute
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Constant speed

Remedy I: estimate arc length by forward 

differencing
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Forward Differencing
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Forward Differencing

To compute a new point, only 4 additions are needed. Why?
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Forward Differencing

We have
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Forward Differencing

Hence, if we know

then 

Disadvantage: large 

numerical error

Error would propagate all 

the way from the start to 

the last point
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Constant Speed

Let  LENGTH(t1, t2)  be the length of the space curve 

from C(t1) to C(t2)

Need to solve two problems:

1.  Given t1 and t2, find  LENGTH(t1, t2)

2.  Given the arc length s and a parameter value

t1, find t2 so that LENGTH(t1, t2) = s
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APPROACH II: estimate arc length by 
adaptive subdivision

(uniform forward differencing is easy, fast and intuitive, 

but generates large numerical error)  and

More points should

be computed
Less points should

be computed

Uniform forward differencing

can not handle this case
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APPROACH II: estimate arc length by 
adaptive subdivision

Idea: using chordal deviation to determine if a region 

should be further subdivided

If  Length(A) + Length(B) - Length(C) > 

further subdivide the segment

otherwise

stop subdivision of the segment
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APPROACH II: estimate arc length by 
adaptive subdivision

Algorithm:

i = 0; s = 0;

ArcLengthTable[ i ] (0, s) ;

STACK       Push [0, 1] ;

while (STACK not empty) {

[a, b] Pop STACK;

m      (a + b)/2 ;

L1      Length(C(a), C(m));

L2      Length(C(m), C(b));

L3      Length(C(a), C(b));
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C(a)

C(m)

C(b)
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APPROACH II: estimate arc length by 
adaptive subdivision

if (L1 + L2 - L3 >      )  {

STACK       Push [m, b];

STACK       Puch [a, m];

}

else {

s = s + L1;

ArcLengthTable[i + +] (m, s);

s = s + L2;

ArcLengthTable[i + +] (b, s);

}

}










C(m)

a            m            b                         

C(b)

C(a)



CS Dept, UK16

APPROACH II: estimate arc length by 
adaptive subdivision

Potential Problem: can not detect the following 

situation

Possible solution: force the subdivision down to a 

certain level then embark the adaptive subdivision
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APPROACH III: computing arc length 
numerically

ix : Gaussian nodes

t(u) = ((b-a)/2)u + (b+a)/2 

iw : Gaussian weights
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APPROACH III: computing arc length 
numerically

If
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APPROACH III: computing arc length 
numerically

we have

Then
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APPROACH III: computing arc length 
numerically

where
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APPROACH III: computing arc length 
numerically

How to build an arc length table?

• uniform Gaussian integration

• adaptive Gaussian integration

similar to adaptive subdivision except
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APPROACH III: computing arc length 
numerically

Once the arc length table is created, then

1) for given t1 and t2, how to find Length(t1, t2) ?

2) for given t1 and s, how to find t2 so that

s = Length(t1, t2) ?

For (ii), use Newton-Raphson method

Let  f(t) = s - Length(t1, t),  construct a sequence of 

points  { pn } as follows
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APPROACH III: computing arc length 
numerically
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Speed Control: general idea

Time is always uniformly 

subdivided.

For each ti, if we know

s(ti), then use the arc

length table to find the 

corresponding u, then

compute C(u) to find

the location of the object

at time ti
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Speed Control: general idea

The core of speed control is the construction

of the distance-time function, s(t).

Constraints:
1. s(t) is monotonic in t

2. s(t) is continuous            

Possible Choices:
1. constant speed

2. ease-in/ease-out

3. constant acceleration

4. general distance-time functions

No jumps

Strictly increasing

start slowly, be fastest at the middle of 

the animation, then finish slowly
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Speed Control

1. Constant speed
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Speed Control

2. Easy-in/easy-out

Example:

Movement of a pendulum
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Speed Control

Using Sinusoidal pieces

acceleration deceleration

Constant speed

How to design a distance-time

function for this case?

(3 pieces: sine [- /2, 0],

straight line segment,

sine [0,    /2])
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(normalization)

11

 that     note
ktkt dt

dT

dt

dl







CS Dept, UK30

Hence, 

Speed Control
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(iii)  Constant acceleration
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(iii)  Constant acceleration

Why?
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End of

Interpolation II
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