
CS Dept, UK1

3.2 Controlling Motion Along
Space Curve

 constant speed

 speeding up

 speeding down

CS Dept, UK2

Constant speed

To ensure constant speed, must parametrize by arc

length (constant distance-time function)

Why?

5 4 3 2 1 0

Original

Parameter

space

Lower

speed

Higher

speed

CS Dept, UK3

Constant speed

To ensure constant speed, must parametrize by arc

length (constant distance-time function)

Why?

5 4 3 2 1 0

t : original

parameter

space

C(t)

S : arc length
G(t))(G -1 s speedconstant has))(C(G-1 s

CS Dept, UK4

Constant speed

However, calculating arc length

is too difficult (sometimes, impossible)

WHY?

CS Dept, UK5

Constant speed

Sometime

impossible

to compute

CS Dept, UK6

Constant speed

Remedy I: estimate arc length by forward

differencing

CS Dept, UK7

Forward Differencing

)(tC

)()()(

)(234

tCtCtC

edtctbtattC

=)(

)(

)(

)(

)(

4

3

2

C

C

C

C

C

= =

)2(

)2(

)2(

)2(

)2(

4

3

2

C

C

C

C

C

)0(

)0(

)0(

)0(

)0(

4

3

2

C

C

C

C

C

Given

CS Dept, UK8

Forward Differencing

To compute a new point, only 4 additions are needed. Why?

)()C()C(tCtt

)(C(t))C(t 2 tC

)dcb(a

)t2c3b(4a

)3b(6a)(4a

)()()(

234

23

223

tt

tCtCtC

)26(14a

)624()(12a

)()()(

234

2322

2

cb

tbat

tCtCtC

CS Dept, UK9

Forward Differencing

We have

)(C(t))C(t 322 tC

)636()(24a

)()()(

343

223

bat

tCtCtC

4

334

24

)()()(

a

tCtCtC

)(C(t))C(t 433 tC

)()C()C(

)()C()C(

)()C()C(

)()C()C(

433

322

2

tCtt

tCtt

tCtt

tCtt

constant

)()(

)()(

)()(

)()(

)(

44

33

22

tCtC

tCtC

tCtC

tCtC

δ)C(ttC

=

CS Dept, UK10

Forward Differencing

Hence, if we know

then

Disadvantage: large

numerical error

Error would propagate all

the way from the start to

the last point

)0(),0(),0(),0(),0(432 CCCCC

)0(

)0(

)0(

)0(

)0(

4

3

2

C

C

C

C

C

)(

)(

)(

)(

)(

4

3

2

C

C

C

C

C

=

CS Dept, UK11

Constant Speed

Let LENGTH(t1, t2) be the length of the space curve

from C(t1) to C(t2)

Need to solve two problems:

1. Given t1 and t2, find LENGTH(t1, t2)

2. Given the arc length s and a parameter value

t1, find t2 so that LENGTH(t1, t2) = s

CS Dept, UK12

APPROACH II: estimate arc length by
adaptive subdivision

(uniform forward differencing is easy, fast and intuitive,

but generates large numerical error) and

More points should

be computed
Less points should

be computed

Uniform forward differencing

can not handle this case

CS Dept, UK13

APPROACH II: estimate arc length by
adaptive subdivision

Idea: using chordal deviation to determine if a region

should be further subdivided

If Length(A) + Length(B) - Length(C) >

further subdivide the segment

otherwise

stop subdivision of the segment

CS Dept, UK14

APPROACH II: estimate arc length by
adaptive subdivision

Algorithm:

i = 0; s = 0;

ArcLengthTable[i] (0, s) ;

STACK Push [0, 1] ;

while (STACK not empty) {

[a, b] Pop STACK;

m (a + b)/2 ;

L1 Length(C(a), C(m));

L2 Length(C(m), C(b));

L3 Length(C(a), C(b));

a m b

C(a)

C(m)

C(b)

CS Dept, UK15

APPROACH II: estimate arc length by
adaptive subdivision

if (L1 + L2 - L3 >) {

STACK Push [m, b];

STACK Puch [a, m];

}

else {

s = s + L1;

ArcLengthTable[i + +] (m, s);

s = s + L2;

ArcLengthTable[i + +] (b, s);

}

}

C(m)

a m b

C(b)

C(a)

CS Dept, UK16

APPROACH II: estimate arc length by
adaptive subdivision

Potential Problem: can not detect the following

situation

Possible solution: force the subdivision down to a

certain level then embark the adaptive subdivision

CS Dept, UK17

APPROACH III: computing arc length
numerically

ix : Gaussian nodes

t(u) = ((b-a)/2)u + (b+a)/2

iw : Gaussian weights

CS Dept, UK18

APPROACH III: computing arc length
numerically

If

z

y

x

dtctbta

dtctbta

dtctbta

d

d

d

t

c

c

c

t

b

b

b

t

a

a

a

dctbtattC

zzzz

yyyy

xxxx

z

y

x

z

y

x

z

y

x

z

y

x

23

23

23

23

23

)(

CS Dept, UK19

APPROACH III: computing arc length
numerically

we have

Then

2

2234

22

2

4

)46(129

23

xxx

xxxxxx

xxx

ctcb

tbcatbata

ctbta
dt

dx

CS Dept, UK20

APPROACH III: computing arc length
numerically

where

CS Dept, UK21

APPROACH III: computing arc length
numerically

How to build an arc length table?

• uniform Gaussian integration

• adaptive Gaussian integration

similar to adaptive subdivision except

CS Dept, UK22

APPROACH III: computing arc length
numerically

Once the arc length table is created, then

1) for given t1 and t2, how to find Length(t1, t2) ?

2) for given t1 and s, how to find t2 so that

s = Length(t1, t2) ?

For (ii), use Newton-Raphson method

Let f(t) = s - Length(t1, t), construct a sequence of

points { pn } as follows

CS Dept, UK23

APPROACH III: computing arc length
numerically

nn

n
n

pp

pf
pf

1

1
1

)(
)(

the limit point of { pn }

is the t2 that we are looking

for.

However, at any point, if

or is very close

to zero, use binary

subdivision to find t2.

0)(1
npf

CS Dept, UK24

Speed Control: general idea

Time is always uniformly

subdivided.

For each ti, if we know

s(ti), then use the arc

length table to find the

corresponding u, then

compute C(u) to find

the location of the object

at time ti

CS Dept, UK25

Speed Control: general idea

The core of speed control is the construction

of the distance-time function, s(t).

Constraints:
1. s(t) is monotonic in t

2. s(t) is continuous

Possible Choices:
1. constant speed

2. ease-in/ease-out

3. constant acceleration

4. general distance-time functions

No jumps

Strictly increasing

start slowly, be fastest at the middle of

the animation, then finish slowly

CS Dept, UK26

Speed Control

1. Constant speed

CS Dept, UK27

Speed Control

2. Easy-in/easy-out

Example:

Movement of a pendulum

CS Dept, UK28

Speed Control

Using Sinusoidal pieces

acceleration deceleration

Constant speed

How to design a distance-time

function for this case?

(3 pieces: sine [- /2, 0],

straight line segment,

sine [0, /2])

CS Dept, UK29

(normalization)

11

 that note
ktkt dt

dT

dt

dl

CS Dept, UK30

Hence,

Speed Control

1
12

2 212 k
kk

k
f

 f
k

kkkt
k

k
/

2

12
sin

12 1
122

2

2

CS Dept, UK31

(iii) Constant acceleration

1

0

t

v
a

a

2/10tv

-b

2/)(10120 tvttv

CS Dept, UK32

(iii) Constant acceleration

Why?

0

2/)(10120 tvttv

2/2at

CS Dept, UK33

0

2/)(10120 tvttv

2
)(

)1(2
1)(v

2
)(

2

)1(

)1(2

)1(
)(

2
)(

2

)1(

)1(2

)1(
)(

)1/()1()1(:]1,[for Speed

10
120

2

2
20

10
120

20

2

2

0
3

10
120

20

2

2

0
3

2022

tv
ttv

t

tt
tt

tv
ttv

tv

t

tv
ts

tv
ttv

tv
d

d
t

tv
ts

ttvtbt

End of

Interpolation II

CS Dept, UK34

