3. Interpolating Values

- Methods for precisely specifying the motion of objects

 Animator uses these techniques to directly control how the objects will move

3. Interpolating Values

Interpolation

- Foundation of most animation
 - path curve (space curve) construction
 - motion control

Space curve: path to be followed by object

• **Given:** position-time pairs constraining the motion

• Want: a curve interpolating these position-time pairs

How to find the appropriate function:

- Interpolation vs approximation
- Complexity (computational complexity)
 - piecewise, polynomial
- Continuity
 C1, C2

Independent of shape complexity

Global vs local control

Affect local shape only

Typical space curve generation technique :

uniform cubic B-spline curve interpolation

5

A uniform cubic B-spline curve:

CS Dept, UK

A uniform cubic B-spline curve:

Reverse process:

Given : $D_0, D_1, ..., D_5$

Find $P_0, P_1, ..., P_7$ so that the corresponding uniform cubic B-spline curve would interpolate $D_0, D_1, ..., D_5$.

Reverse process:

Given : $D_0, D_1, ..., D_5$

Find $P_0, P_1, ..., P_7$ so that the corresponding uniform cubic B-spline curve would interpolate $D_0, D_1, ..., D_5$.

Given data points $D_i = (x_i, y_i), i = 0, 1, ..., n, (n \ge 3), D_0 = D_n,$

CS Dept, UK

Given data points $D_i = (x_i, y_i)$, $i = 0, 1, ..., n, (n \ge 3)$, $D_0 = D_n$, how can a cubic B-spline curve S(u) that interpolates these points be constructed? $D_0 = D_9$

Given data points $D_i = (x_i, y_i)$, $i = 0, 1, ..., n, (n \ge 3)$, $D_0 = D_n$, how can a cubic B-spline curve S(u) that interpolates $C_1(t)$ these points be constructed? $D_0 = D_9$ $C_9(t)$

The cubic B-spline curve has *n* segments $C_1(t), C_2(t), ..., C_n(t)$ with D_{i-1} and D_i being the start and end points of $C_i(t)$

The curve must have n+3 control points P_i , i = 0, 1, ..., n+2,

with $\mathbf{P}_2 = \mathbf{P}_{n+2}$ P_3 D D_{2} $\mathbf{P}_0 = \mathbf{P}_n \; ,$ $C_1(t)$ $\mathbf{P}_1 = \mathbf{P}_{n+1} ,$ $\mathbf{P}_1 = \mathbf{P}_{n+1}$ $C_{4}(t)$ $P_2 = P_{n+2}$ to ensure C2- $P_0 = P_n$ continuity at $D_0 = D_n$. P_{n-1} 13 CS Dept, UK

Parameter space : [0, n]

14

We have

 $S(0) = D_0$ $S(1) = D_1$

 $P_0 + 4P_1 + P_2 = 6D_0$ $P_1 + 4P_2 + P_3 = 6D_1$

In matrix form

16

Given data points $D_i = (x_i, y_i), i = 0, 1, ..., n, (n \ge 3)$, how can an open cubic B-spline curve S(u) that interpolates these points be built?

The cubic B-spline curve has *n* segments $C_1(t)$, $C_2(t)$, ..., $C_n(t)$ 17with D_{i-1} and D_i being the start and end points of $C_i(t)$

To get the curve constructed, how many control points are needed? Consider the following case:

n+3 control points: P_i , i = 0, 1, 2, ..., n + 2

18

We have

- $S(0) = D_0$ $S(1) = D_1$
 - $P_0 + 4P_1 + P_2 = 6D_0$ $P_1 + 4P_2 + P_3 = 6D_1$

 $\mathbf{S}(n-1) = \mathbf{D}_{n-1}$ $P_{n-1} + 4P_n + P_{n+1} = 6D_{n-1}$ $S(n) = D_n$ $P_n + 4P_{n+1} + P_{n+2} = 6D_n$

Need two more conditions. We set S''(0) = 0, S''(n) = 0

we get

$$P_0 - 2P_1 + P_2 = 0$$
 and $P_1 = D_0$
 $P_n - 2P_{n+1} + P_{n+2} = 0$ and $P_{n+1} = D_n$

Relationship between data points and control points:

We have

$$4P_{2} + P_{3} = 6D_{1} - D_{0}$$

$$P_{2} + 4P_{3} + P_{4} = 6D_{2}$$

$$\vdots$$

$$P_{n-2} + 4P_{n-1} + P_{n} = 6D_{n-2}$$

$$P_{n-1} + 4P_{n} = 6D_{n-1} - D_{n}$$

The matrix form of this system is:

This system of equations can be solved using 2Gaussian elimination without pivoting. CS Dept, UK

End of Interpolation I