3. Interpolating Values

- Methods for precisely specifying the motion of objects
- Animator uses these techniques to directly control how the objects will move

3. Interpolating Values

Interpolation

- Foundation of most animation
- path curve (space curve) construction
- motion control

3.1 Space Curve Construction

Space curve: path to be followed by object

- Given: position-time pairs constraining the motion

- Want: a curve interpolating these position-time pairs

3.1 Space Curve Construction

How to find the appropriate function:

> Interpolation vs approximation
Complexity (computational complexity)
> piecewise _ polynomial
$>$ Continuity \quad Independent of shape complexity
> C1, C2
> Global vs local control

3.1 Space Curve Construction

Typical space curve generation technique :

> uniform cubic B-spline curve interpolation

$C(t)=\frac{(1-t)^{3}}{6} \mathrm{P}_{0}+\frac{4-6 t^{2}+3 t^{3}}{6} \mathrm{P}_{1}+\frac{1+3 t+3 t^{2}-3 t^{3}}{6} \mathrm{P}_{2}+\frac{t^{3}}{6} \mathrm{P}_{3}$ $0 \leq t \leq 1$

3.1 Space Curve Construction

A uniform cubic B-spline curve:

$\mathrm{P}_{0}, \mathrm{P}_{1}, \ldots, \mathrm{P}_{7}$
are given

CS Dept, UK

3.1 Space Curve Construction

A uniform cubic B-spline curve:

$\mathrm{P}_{0}, \mathrm{P}_{1}, \ldots, \mathrm{P}_{7}$
are given

7

CS Dept, UK

3.1 Space Curve Construction

Reverse process:

Find $\mathrm{P}_{0}, \mathrm{P}_{1}, \ldots, \mathrm{P}_{7}$ so that the corresponding uniform cubic B-spline curve would interpolate $\mathrm{D}_{0}, \mathrm{D}_{1}, \ldots, \mathrm{D}_{5}$.

3.1 Space Curve Construction

Reverse process:

Find $\mathrm{P}_{0}, \mathrm{P}_{1}, \ldots, \mathrm{P}_{7}$ so that the corresponding uniform cubic B-spline curve would interpolate $\mathrm{D}_{0}, \mathrm{D}_{1}, \ldots, \mathrm{D}_{5}$.

Closed Curve Fitting using Uniform Cubic B-spline Curves

Given data points $\mathrm{D}_{\mathrm{i}}=\left(x_{i}, y_{i}\right), i=0,1, \ldots, n,(n \geq 3), \mathrm{D}_{0}=\mathrm{D}_{\mathrm{n}}$,

$$
\begin{array}{r}
\quad \stackrel{D}{1}^{\mathrm{D}_{2}} \\
\mathrm{D}_{0}=\mathrm{D}_{9}
\end{array}
$$

- D_{8}

Closed Curve Fitting using Uniform Cubic B-spline Curves

Given data points $\mathrm{D}_{\mathrm{i}}=\left(x_{i}, y_{i}\right), i=0,1, \ldots, n,(n \geq 3), \mathrm{D}_{0}=\mathrm{D}_{\mathrm{n}}$, how can a cubic B-spline curve $S(u)$ that interpolates these points be constructed?

Closed Curve Fitting using Uniform Cubic B-spline Curves

Given data points $\mathrm{D}_{\mathrm{i}}=\left(x_{i}, y_{i}\right), i=0,1, \ldots, n,(n \geq 3), \mathrm{D}_{0}=\mathrm{D}_{\mathrm{n}}$, how can a cubic B-spline curve $S(u)$ that interpolates these points be constructed?

The cubic B-spline curve has n segments $\mathrm{C}_{1}(t), C_{2}(t), \ldots, C_{n}(t)$ 12 with D_{i-1} and D_{i} being the start and end points of $C_{i S}(t)$

Closed Curve Fitting using Uniform Cubic B-spline Curves

The curve must have $n+3$ control points $P_{i}, i=0,1, \ldots, n+2$, with
$\mathrm{P}_{0}=\mathrm{P}_{\mathrm{n}}$,
$\mathrm{P}_{1}=\mathrm{P}_{\mathrm{n}+1}$,
$\mathrm{P}_{2}=\mathrm{P}_{\mathrm{n}+2}$
to ensure C2-
continuity at $D_{0}=D_{n}$.

Closed Curve Fitting using Uniform Cubic B-spline Curves

Parameter space : [0, n]

For $\mathrm{i} \leq \mathrm{u} \leq \mathrm{i}+1$,
$\mathrm{S}(\mathrm{u})=\mathrm{C}_{\mathrm{i}+1}(u-i)$

In particular,
$\mathrm{S}(\mathrm{i})=\mathrm{D}_{\mathrm{i}}$,
$\mathrm{i}=0,1,2, \ldots, \mathrm{n}$

Closed Curve Fitting using Uniform Cubic B-spline Curves

We have

$$
\begin{array}{ll}
S(0)=D_{0} & P_{0}+4 P_{1}+P_{2}=6 D_{0} \\
S(1)=D_{1} & P_{1}+4 P_{2}+P_{3}=6 D_{1} \\
\vdots & \\
S(n-1)=D_{n-1} & P_{n-1}+4 P_{n}+P_{n+1}=6 D_{n-1} \\
S(n)=D_{n} & P_{n}+4 P_{n+1}+P_{n+2}=6 D_{n}
\end{array}
$$

Closed Curve Fitting using Uniform Cubic B-spline Curves

In matrix form
$16\left[\begin{array}{ccccccccc}4 & 1 & & & & & & & 1 \\ 1 & 4 & 1 & & & & & & \\ & 1 & 4 & 1 & & & & & \\ & & & \cdot & & & & \\ & & & & \cdot & & & & \\ & & & & 1 & 4 & 1 & \\ & & & & & & 1 & 4 & 1 \\ 1 & & & & & & 1 & 4\end{array}\right]\left[\begin{array}{c}P_{1} \\ P_{2} \\ P_{3} \\ \cdot \\ \cdot \\ P_{n-2} \\ P_{n-1} \\ P_{n}\end{array}\right]=\left[\begin{array}{c}6 D_{0} \\ 6 D_{1} \\ 6 D_{2} \\ \cdot \\ \cdot \\ 6 D_{n-3} \\ 6 D_{n-2} \\ 6 D_{n-1}\end{array}\right]$

Open Curve Fitting using Uniform Cubic B-spline Curves

Given data points $\mathrm{D}_{\mathrm{i}}=\left(x_{i}, y_{i}\right), i=0,1, \ldots, n,(n \geq 3)$, how can an open cubic B -spline curve $\mathrm{S}(\mathrm{u})$ that interpolates these points be built?

The cubic B-spline curve has n segments $\mathrm{C}_{1}(t), C_{2}(t), \ldots, C_{n}(t)$ ${ }_{1}$ with $\mathrm{D}_{\mathrm{i}-1}$ and D_{i} being the start and end points of $\mathrm{C}_{\mathrm{i}}(t)$

Open Curve Fitting using Uniform Cubic B-spline Curves

To get the curve constructed, how many control points are needed? Consider the following case:

$\mathrm{n}+3$ control points: $\mathrm{P}_{\mathrm{i}}, \mathrm{i}=0,1,2, \ldots, \mathrm{n}+2$

Open Curve Fitting using Uniform Cubic B-spline Curves

Parameter space: [0, n]

$$
\begin{aligned}
& \text { For } \mathrm{i} \leq \mathrm{u} \leq \mathrm{i}+1, \\
& \mathrm{~S}(\mathrm{u})=\mathrm{C}_{\mathrm{i}+1}(u-i) \\
& \\
& \text { In particular, } \\
& \mathrm{S}(\mathrm{i})=\mathrm{D}_{\mathrm{i}}, \\
& \mathrm{i}=0,1,2, \ldots, \mathrm{n}
\end{aligned}
$$

Open Curve Fitting using Uniform Cubic B-spline Curves

We have
$\mathrm{S}(0)=\mathrm{D}_{0}$
$\mathrm{S}(1)=\mathrm{D}_{1}$
$\mathrm{S}(\mathrm{n}-1)=\mathrm{D}_{\mathrm{n}-1}$
$\mathrm{S}(\mathrm{n})=\mathrm{D}_{\mathrm{n}}$

$$
\begin{gathered}
\mathrm{P}_{0}+4 \mathrm{P}_{1}+\mathrm{P}_{2}=6 \mathrm{D}_{0} \\
\mathrm{P}_{1}+4 \mathrm{P}_{2}+\mathrm{P}_{3}=6 \mathrm{D}_{1}
\end{gathered}
$$

$$
P_{n-1}+4 P_{n}+P_{n+1}=6 D_{n-1}
$$

$$
P_{n}+4 P_{n+1}+P_{n+2}=6 D_{n}
$$

Open Curve Fitting using Uniform Cubic B-spline Curves

Need two more conditions. We set $\mathrm{S}^{\prime \prime}(0)=0, \mathrm{~S}^{\prime \prime}(\mathrm{n})=0$

$$
\begin{aligned}
& \text { we get } \\
& P_{0}-2 P_{1}+P_{2}=0 \quad \text { and } P_{1}=D_{0} \\
& P_{n}-2 P_{n+1}+P_{n+2}=0 \quad \text { and } \quad P_{n+1}=D_{n}
\end{aligned}
$$

Open Curve Fitting using Uniform Cubic B-spline Curves

Relationship between data points and control points:

Open Curve Fitting using Uniform Cubic B-spline Curves

We have

$$
\begin{aligned}
& 4 P_{2}+P_{3}=6 D_{1}-D_{0} \\
& P_{2}+4 P_{3}+P_{4}=6 D_{2} \\
& \quad \vdots \\
& P_{n-2}+4 P_{n-1}+P_{n}=6 D_{n-2} \\
& P_{n-1}+4 P_{n}=6 D_{n-1}-D_{n}
\end{aligned}
$$

The matrix form of this svstem is:

$$
\left[\begin{array}{ccccccccc}
4 & 1 & & & & & & & \\
1 & 4 & 1 & & & & & & \\
& 1 & 4 & 1 & & & & & \\
& & & & & & & & \\
& & & & & \cdot & & & \\
& & & & & 1 & 4 & & 1 \\
& & & & & & 1 & 4 & \\
& & & & & & & 1 & 1
\end{array}\right]\left[\begin{array}{c}
P_{2} \\
P_{3} \\
P_{4} \\
\cdot \\
\cdot \\
P_{n-2} \\
P_{n-1} \\
P_{n}
\end{array}\right]=\left[\begin{array}{c}
6 D_{1}-D_{0} \\
6 D_{2} \\
6 D_{3} \\
\cdot \\
\cdot \\
6 D_{n-3} \\
6 D_{n-2} \\
6 D_{n-1}-D_{n}
\end{array}\right]
$$

This system of equations can be solved using
2Gaussian elimination without pivoting. cs Dept, uk

End of Interpolation I

