CS633 3D Computer Animation Solution Set - HW 5 (40 points)
 Due: 4/5/2018

1. Use a drawing to show the "reachable workspace" of the following robot arm. Here we assume $\left|L_{2}\right|=2\left|L_{3}\right|=\left|L_{1}\right| / 2, \theta_{2}$ and θ_{3} can be any value, and $-\pi / 2 \leq \theta_{1} \leq \pi / 2$. (5 points)

Sol.

2. When solving a kinematic modeling problem (such as moving the end effector of a robotic manipulator from one point to another point), we prefer iterative numeric method to analytic method. Why? If necessary, use an example to justify your answer. (5 points)

Sol.

Because analytic solutions are not tractable in many cases. Sometime it is not even possible to find analytic solution for a three-link arm. On the other hand, iterative numeric method can always provide us with a solution, no matter how complicated the system is, as long as the desired new location is reachable.
3. One possible way to find a solution to an underdetermined system like the following one

$$
\mathrm{M} X=Y
$$

(M is an $m \times n$ matrix with $n>m, \mathbf{X}$ is an unknown vector of dimension n and \mathbf{Y} is a constant vector of dimension m) is to solve the following system for \mathbf{X}. Why?

$$
\left(\mathrm{M}^{\mathrm{T}} \mathrm{M}\right) \mathbf{X}=\mathrm{M}^{\mathrm{T}} \mathbf{Y}
$$

Note that here $\mathrm{M}^{\mathrm{T}} \mathrm{M}$ is a square matrix of dimension $n \times n$ and $\mathrm{M}^{\mathrm{T}} \mathrm{Y}$ is a constant vector of dimension n. This is a very important technique in solving an underdetermined system (of course, important for us as well). (10 points)

Sol.

Note that if we define $F(\mathbf{X})$ as follows:

$$
F(\mathbf{X}) \equiv(M \mathbf{X}-\mathbf{Y})^{T}(M \mathbf{X}-\mathbf{Y}),
$$

we get a non-negative function whose minimum occurs at a point \mathbf{X} where Eq. (*) is satisfied (why?).
Hence, to find a solution for (*), we simply compute the derivative of $F(\mathbf{X})$ with respect to \mathbf{X}, set it to zero, and solve for \mathbf{X}. Note that

$$
\begin{aligned}
F(\mathbf{X}) & =\left(\mathbf{X}^{T} M^{T}-\mathbf{Y}^{T}\right)(M \mathbf{X}-\mathbf{Y}) \\
& =\mathbf{X}^{T} M^{T} M \mathbf{X}-\mathbf{X}^{T} M^{T} \mathbf{Y}-\mathbf{Y}^{T} M \mathbf{X}+\mathbf{Y}^{T} \mathbf{Y} .
\end{aligned}
$$

Since $X^{T} M^{T} Y=Y^{T} M X$, we have

$$
F(\mathbf{X})=\mathbf{X}^{T} M^{T} M \mathbf{X}-2 \mathbf{X}^{T} M^{T} \mathbf{Y}+\mathbf{Y}^{T} \mathbf{Y}
$$

By differentiating $F(\mathbf{X})$ with respect to \mathbf{X} and setting it to zero,

$$
\frac{d F(\mathbf{X})}{d \mathbf{X}}=2 M^{T} M \mathbf{X}-2 M^{T} \mathbf{Y}=0
$$

we get (${ }^{* *}$). Hence, solving (${ }^{*}$) is equivalent to solving (${ }^{* *}$) for \mathbf{X}.
4. For a robotic manipulator with four joints (see the following figure), what is the corresponding $\mathrm{V}=\mathrm{J} \cdot \dot{\theta}$ if we want to move the end effector \mathbf{E} to the global location \mathbf{G}. The origin of the coordinate system is at \mathbf{O} and orientation of the end effector is of no concern. (5 points)

Sol.

$\left[\begin{array}{c}(\mathbf{G}-\mathbf{E})_{x} \\ (\mathbf{G}-\mathbf{E})_{y} \\ (\mathbf{G}-\mathbf{E})_{z}\end{array}\right]=\left[\begin{array}{lll}(\mathbf{Z} \times \mathbf{E})_{x} & \left(\mathbf{Z} \times\left(\mathbf{E}-\mathbf{P}_{1}\right)\right)_{x} & \left(\mathbf{Z} \times\left(\mathbf{E}-\mathbf{P}_{2}\right)\right)_{x} \\ \left(\mathbf{Z} \times\left(\mathbf{E}-\mathbf{P}_{3}\right)\right)_{x} \\ (\mathbf{Z} \times \mathbf{E})_{y} & \left(\mathbf{Z} \times\left(\mathbf{E}-\mathbf{P}_{1}\right)\right)_{y} & \left(\mathbf{Z} \times\left(\mathbf{E}-\mathbf{P}_{2}\right)\right)_{y} \\ (\mathbf{Z} \times \mathbf{E})_{z} & \left(\mathbf{Z} \times\left(\mathbf{Z} \times\left(\mathbf{E}-\mathbf{P}_{1}\right)\right)_{z}\right) & \left(\mathbf{Z} \times\left(\mathbf{E}-\mathbf{P}_{2}\right)\right)_{y} \\ \left(\mathbf{Z} \times\left(\mathbf{E}-\mathbf{P}_{3}\right)\right)_{z}\end{array}\right] \cdot\left[\begin{array}{cc}\dot{\theta}_{1} \\ \dot{\theta}_{2} \\ \dot{\theta}_{3}\end{array}\right]$
where $\mathbf{Z}=(0,0,1)$.
5. The purpose of adding a "control expression" to a pseudo-inverse Jacobian solution is to better control the kinematic model. In the above example, if we want to move the end effector (\mathbf{E}) to a new location \mathbf{G}, and if we would like the rotation to be performed mostly on the third joint $\mathbf{P}_{\mathbf{2}}$, then how should the "control expression" be defined in this case? (5 points)

Sol.

Choose relatively small α_{3} and relatively large α_{1} and α_{2} in the following control expression:

$$
H=\alpha_{1}\left(\theta_{1}-\theta_{c 1}\right)^{2}+\alpha_{2}\left(\theta_{2}-\theta_{c 2}\right)^{2}+\alpha_{3}\left(\theta_{3}-\theta_{c 3}\right)^{2}
$$

6. In the paper "Surface Simplification Using Quadric Metrics", the squared distance (error) of a point $\mathbf{v}=(x, y, z)$ to a plane can be defined as $\Delta(v)=\mathrm{VQv}^{\mathrm{T}}$ for a symmetric matrix \mathbf{Q} (slide 13 of notes: Special Models for Animation I). Why? (10 points)

Sol.

The distance between a point $\mathbf{v}=(x, y, z)$ and a plane (a, b, c, d) is:

$$
\frac{|a x+b y+c z+d|}{\sqrt{a^{2}+b^{2}+c^{2}}}
$$

If the normal of the plane is normalized, i.e., $\sqrt{a^{2}+b^{2}+c^{2}}=1$, then this distance can be expressed as

$$
\begin{aligned}
\frac{|a x+b y+c z+d|}{\sqrt{a^{2}+b^{2}+c^{2}}} & =|a x+b y+c z+d| \\
& =\left|[a, b, c, d] \cdot\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]\right| \\
& =\left|\mathbf{p}^{T} \cdot \mathbf{v}\right|
\end{aligned}
$$

$\mathbf{p}^{T} \cdot \mathbf{v}$ is a number. We have $\left(\mathbf{p}^{T} \cdot \mathbf{v}\right)^{T}=\mathbf{p}^{T} \cdot \mathbf{v}$. Hence, the squared distance can be expressed as

$$
\begin{aligned}
\Delta & \equiv\left|\mathbf{p}^{T} \cdot \mathbf{v}\right|^{2}=\left(\mathbf{p}^{T} \cdot \mathbf{v}\right) \cdot\left(\mathbf{p}^{T} \cdot \mathbf{v}\right)=\left(\mathbf{p}^{T} \cdot \mathbf{v}\right)^{T} \cdot\left(\mathbf{p}^{T} \cdot \mathbf{v}\right)=\mathbf{v}^{T} \mathbf{p p}^{T} \mathbf{v} \\
& =\mathbf{v}^{T} \mathbf{Q} \mathbf{v}
\end{aligned}
$$

where $\mathbf{Q} \equiv \mathbf{p p} \mathbf{p}^{T}$ is a 4×4 matrix. Q is a symmetric matrix because $\mathbf{Q}^{T}=\left(\mathbf{p} \mathbf{p}^{T}\right)^{T}=\mathbf{p p}^{T}=\mathbf{Q}$.

