
CS 633 3D Computer Animation 

Solution Set - HW 3 (40 points) 

 

1. "Cubic interpolation" is a popular path smoothing technique (slides 38-39 of notes: Interpolating 

Values III). The approach is as follows: for each point Pi, construct a cubic curve P(t) to interpolate 

Pi-2, Pi-1, Pi+1 and Pi+2  at P(0), P(1/4), P(3/4) and P(1), and then use the value of P(1/2) to adjust Pi. 

The new location of Pi is defined as 

PiP(1/2) Pi )/2. 

Why wouldn’t we use P(1/2) as the new location of Pi directly?  (10 points) 

 

Sol. 

Since Pi-2, Pi-1, Pi+1 and Pi+2 all carry some error, P(1/2) computed from these points carries error 

as well. Therefore, it makes no sense to replace Pi with P(1/2), especially when the error carried 

by P(1/2) might even be bigger than that of Pi. Using the average of Pi and P(1/2) as the new 

location of Pi, in the best case, can cancel out the errors carried by these terms and, in the worst 

case, would still reduce by one half of the difference of their errors. 

 

2. Using the "Shortest path" approach to find a path from a start point (S) to a destination point (D) 

on a polygonal surface mesh, one needs to check that, after unfolding of all the faces, if the line 

segment that connects S and D lies completely inside the unfolded faces. How should this (the 

unfolding process) be done efficiently?  (10 points) 

 

Sol. 

Exhaustively testing all possible unfolding combinations is certainly possible. But this is a very 

costly approach. A better approach is to run a greedy algorithm to find an approximation of the 

optimal path (called the greedy path) first, and then unfold the polygonal surface mesh as follows. 

The idea is that if a shortest path exists, then edges of the shortest path must be inside the faces 

adjacent to the greedy path. 

1. Sort the edges of the greedy path and name them 𝐸𝑖, i = 1, 2, . . . , n. Each 𝐸𝑖 is considered 

a directed edge (Pi , Pi+1) with P1 = S and Pn+1 = D. 

2. For each 𝐸𝑖  in the list, cut the polygonal mesh along edges adjacent to 𝐸𝑖  (include 𝐸𝑖 

itself) in the following fashion: 

2.1 For 𝐸1 (𝐸𝑛), cut each edge adjacent to the start point S (end point D) from S (D) to 

the other endpoint;  // see Fig. 1 

2.2 For each of the remaining 𝐸𝑖, i = 2, 3, . . . , n - 1, cut 𝐸𝑖 from Pi to Pi+1;  // see Fig. 2 

2.3 For an edge not adjacent to any 𝐸𝑖 (excluding edges added during the triangulation 

process), cut the edge from one endpoint to the other endpoint. 



3. Unfold the faces of the polygonal mesh as follows: 

3.1 For 𝐸1  (𝐸𝑛 ), unfold each face that contains 𝐸1  (𝐸𝑛 ) about the edge that is not 

adjacent to the start point S (the destination point D) so that it is co-planar with a face 

that contains 𝐸2 or adjacent to 𝐸2. In the second case, repeat this process until a 

face that contains 𝐸2 is reached;  // see Fig. 3 

3.2 For each of the remaining 𝐸𝑖, i = 2, 3, . . . , n - 1, unfold the face that contains 𝐸𝑖 

about an edge adjacent to Pi+1 so that it is co-planar with a face that contains 𝐸𝑖+1 or 

adjacent to 𝐸𝑖+1. In the second case, repeat the same process as in 3.1. Note that all 

the faces considered here do not have dangling adjacent faces.  // see Fig. 4 

 

  

 

  

 

3. A = (x, y, z) and B = (a, b, c) are two points of a bicubic Bezier surface patch S(u, v), 0 ≤ u, v ≤1. 

A path along the surface S(u, v) from A to B can be constructed as follows: find the points (s, t) 

and (p, q) in the parameter space of S(u, v) such that A = S(s, t) and B = S(p, q), then map the 

line segment that connects (s, t) and (p, q) onto the surface. The resulting curve is a good path 

from A to B. How would you find (s, t) and (p, q)?  (10 points) 

 

Sol. 

Using midpoint subdivision method. The idea is as follows. We will illustrate the process for point 

A only. The process for point B is similar. 

Let P = {Pi, j | 0 ≤ i, j ≤ 3 } be the control point set of S and let  



a = 0;  b = 1;  c = 0;  d = 1. 

(𝑎 and 𝑏 ℎ𝑒𝑟𝑒 have nothing to do with the coordinates of B. Then use the following algorithm 

to find the parameters (s, t) of A. 

 

while ((b - a > 𝜖) and (d - c > 𝜖)) do { 

perform midpoint subdivision on P to get 

E = { Ei, j | 0 ≤ i, j ≤ 3 }    /* c-pts for [a, (a + b)/2] × [c, (c + d)/2]*/ 

F = { Fi, j | 0 ≤ i, j ≤ 3 }    /* c-pts for [(a + b)/2, b] × [c, (c + d)/2]*/ 

G = { Gi, j | 0 ≤ i, j ≤ 3 }    /* c-pts for [a, (a + b)/2] × [c + d)/2, d]*/ 

H = { Hi, j | 0 ≤ i, j ≤ 3 }    /* c-pts for [(a + b)/2, b] × [(c + d)/2, d]*/ 

if A is in the convex hull of E { // how do we know? 

b ← (a + b)/2;  d ← (c + d)/2;   P ← E; } 

else if A is in the convex hull of F {  

a ← (a + b)/2;  d ← (c + d)/2;   P ← F; } 

else if A is in the convex hull of G { 

b ← (a + b)/2;  c ← (c + d)/2;   P ← G; } 

else { 

a ← (a + b)/2;  c ← (c + d)/2;   P ← H; } 

} 

s ← (a + b)/2;   t ← (c + d)/2; 

 

Note:  

(1) The convex hull of a set of given points is the smallest convex set that contains the given 

points. If the number of given points is finite, then the convex hull is basically the set of all 

linear combinations of the given points. See the following figure for a 2D example of the 

convex hulls of five control points. 

 

 

(2) For the definition of midpoint curve subdivision, please see slide 59 of “Cubic Bezier Curves 

and De Casteljau algorithm (recurrence formula)” on the left side of course website “Related 

Course Materials”. Midpoint subdivision of bi-cubic surface patch is a simple extension of the 

curve case. 

 

4. In 3D free-form deformation, after the manipulation of the 3D coordinate grid, the deformed 



position of a vertex of the object is determined through a trivariate Bezier interpolation process. 

What is the reason in doing so (in your opinion) ?  (10 points) 

 

Sol. 

Note that the shape of a Bezier curve reflects the shape of its control polygon and the shape of a 

Bezier surface patch reflects the shape of its control mesh. Similarly, the shape of a 3D Bezier 

solid reflects the shape of its control grid. 

 

In our case, the initial shape of the trivariate Bezier solid coincides with the coordinate control 

grid (including all the interior points) because vertices of the coordinate grid are co-linear. Hence 

the trivariate Bezier solid contains the given object as a subset. 

 

After the manipulation of the 3D coordinate grid, the trivariate Bezier solid has a new shape 

because the coordinate grid, acting as its control grid, changed. As pointed out above, the new 

shape of the trivariate Bezier solid reflects the new shape of the coordinate grid. Hence the new 

shape of the object whose vertices are points of the new trivariate Bezier solid would also reflect 

the new shape of the coordinate grid. 

 


