CS633 3D Computer Animation
 Homework Assignment 5 (40 points)

Due: 4/5/2018

1. Use a drawing to show the "reachable workspace" of the following robot arm. Here we assume $\left|L_{2}\right|=2\left|L_{3}\right|=\left|L_{1}\right| / 2, \theta_{2}$ and θ_{3} can be any value, and $-\pi / 2 \leq \theta_{1} \leq \pi / 2$. (5 points)

2. When solving a kinematic modeling problem (such as moving the end effector of a robotic manipulator from one point to another point), we prefer iterative numeric method to analytic method. Why? If necessary, use an example to justify your answer. (5 points)
3. One possible way to find a solution to an underdetermined system like the following one

$$
\mathrm{M} \mathrm{X}=\mathrm{Y}
$$

(\mathbf{M} is an $m \times n$ matrix with $n>m, \mathbf{X}$ is an unknown vector of dimension n and \mathbf{Y} is a constant vector of dimension m) is to solve the following system for \mathbf{X}. Why?

$$
\left(M^{T} M\right) X=M^{T} Y
$$

Note that here $\mathrm{M}^{\mathrm{T}} \mathrm{M}$ is a square matrix of dimension $n \times n$ and $\mathrm{M}^{\mathrm{T}} \mathbf{Y}$ is a constant vector of dimension n. This is a very important technique in solving an underdetermined system (of course, important for us as well). (10 points)
4. For a robotic manipulator with three joints (see the following figure), what is the corresponding $\mathrm{V}=\mathrm{J} \cdot \dot{\theta}$ if we want to move the end effector \mathbf{E} to the global location G. The origin of the coordinate system is at \mathbf{O} and orientation of the end effector is of no concern. (5 points)

5. The purpose of adding a "control expression" to a pseudo-inverse Jacobian solution is to better control the kinematic model. In the above example, if we want to move the end effector (\mathbf{E}) to a new location \mathbf{G}, and if we would like the rotation to be performed mostly on the second joint \mathbf{P}_{1}, then how should the "control expression" be defined in this case? (5 points)
6. In the paper "Surface Simplification Using Quadric Metrics", the squared distance (error) of a point $\mathbf{v}=(x, y, z)$ to a plane can be defined as $\Delta(v)=\mathrm{vQv}^{\mathrm{T}}$ for a symmetric matrix \mathbf{Q} (slide 13 of notes: Special Models for Animation I). Why? (10 points)

