Homework Assignment 3 (40 points)

Due: 2/27/2018

1. "Cubic interpolation" is a popular path smoothing technique (slides 38-39 of the notes: Interpolating Values III). The approach is as follows: for each point P i, construct a cubic curve $P(t)$ to interpolate $P_{i-2}, P_{i-1}, P_{i+1}$ and P^{i+2} at $P(0), P(1 / 4), P(3 / 4)$ and $P(1)$, and then use the value of $P(1 / 2)$ to adjust P^{i}. The new location of P_{i} is defined as

$$
P_{i}^{\prime}=P(1 / 2)+P_{i}
$$

Why wouldn't we use $P(1 / 2)$ as the new location of P idirectly? (10 points)
2. Using the "Shortest path" approach to find a path from a start point (S) to a destination point (D) on a polygonal surface mesh, one needs to check that, after unfolding of all the faces, if the line segment that connects S and D lies completely inside the unfolded faces. Design an algorithm to do this work. The input to this algorithm is a polygonal surface mesh (polyhedron) and two points on the polygonal surface mesh. Use the data structure introduced in CS535 to represent the input polygonal surface mesh. (10 points)
3. $A=(x, y, z)$ and $B=(a, b, c)$ are two points of a bicubic Bezier surface patch $S(u, v), 0 \leq u, v \leq 1$. A path along the surface $S(u, v)$ from A to B can be constructed as follows: find the points (s, t) and (p, q) in the parameter space of $S(u, v)$ such that $A=S(s, t)$ and $B=S(p, q)$, then map the line segment that connects (s, t) and (p, q) to the surface. The resulting curve is a good path from A to B. How would you find (s, t) and (p, q)? (10 points)
4. In 3D free-form deformation, after the manipulation of the 3D coordinate grid, the deformed position of a vertex of the object is determined through a trivariate Bezier interpolation process. What is the reason in doing so (in your opinion)? (10 points)

