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3.1.3 Cubic Uniform B-Spline Curves

A curve representation with local property

A Cubic Uniform B-Spline Curve segment

For four given control points P0, P1, P2 and P3, a cubic
uniform B-spline curve segment is defined as follows:

Cbs (t ) =
6

(1−t )3

P0 +
6

(4−6t 2+3t 3)
P1 +

6

(1+3t +3t 2−3t 3)
P2 +

6

t 3

P3

0 ≤ t ≤ 1

Cbs (t )

P3

P2
P1

P0
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Matrix form

Cbs (t ) = [1, t , t 2, t 3 ]
6

1

−1

3

−3

1

3

−6

0

4

−3

3

3

1

1

0

0

0

P3

P2

P1

P0

= T . Mbs
. G

Blending functions

6

1
t 3

6

1
(1−t )3

6

1
(1+3t +3t 2−3t 3)

6

1
(4−6t 2+3t 3)

0 1

1
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Properties of B-spline blending fuunctions

Non-negative

Sum = 1

Hence, again, a B-spline curve segment is
always contained in the convex hull of its
control points.

However, Cbs (0) ≠ P0 and Cbs (1) ≠ P3. Actually

Cbs (0) =
6

1
P0 +

3

2
P1 +

6

1
P2

Cbs (1) =
6

1
P1 +

3

2
P2 +

6

1
P3
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A Cubic Uniform B-Spline Curve

Given a set of n control points, one can define a cubic
(uniform) B-spline curve with (n −3) segments.

The first segment, C1(t ), is defined by the first four control
points: P0, P1, P2, P3.

The second segment, C2(t ), is defined by the second four
control points: P1, P2, P3, P4. ...

The last one, Cn −3(t ), by Pn −3, Pn −2, Pn −1, Pn .

C2(t )
C1(t ) P7

P6

P5
P4

P3

P2
P1

P0
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Properties/Advantages of a B-spline curve

Local property (changing one control point
will affect at most four segments)

C 2 continuity at the joints

Compact form for multiple segments

Can use multiple control points to achieve
exact point interpolation

P6 = P7 = P8

P0 = P1 = P2

P5

P4

P3
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3.1.4 Composite Bezier Curves

Bezier curve segments can be joined together
to form complicated shapes

P6

P5

P4

P3

P2

P1

P0

P0, P1, P2, and P3 are control points of the 1st
segment

P3, P4, P5, and P6 are control points of the 2nd
segment

P2, P3, and P4 are collinear (to guarantee
smooth joint)
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Smoothness (continuity) at Join Points:

C 0: the endpoints coincide

G 1: tangents have the same slope

C 1: the first derivatives on both segments
match at join point

C 2: nth derivatives on both segments match at
join point

C 0 C 1

G 1
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P0, P1, P2, and P3: control points of the 1st seg-
ment

P3, P4, P5, and P6: control points of the 2nd seg-
ment

P6

P5

P4

P3

P2

P1

P0

G 1-continuity: P2, P3, and P4 are collinear
(See the above example)

C 1-continuity: P2, P3, and P4 are collinear and
P3 is the midpoint of P2P4

P5

P6

P4

P3

P2

P1

P0
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C 2-continuity:

* P2, P3, and P4 are collinear

* P3 is the midpoint of P2P4

* P5 = P1 + 4(P3 − P2)

P0

P1 P2

P3

P5 P6

P4
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3.1.5 Curve Fitting using Composite Bezier
Curves

Give a set of data points D0, D1, ..., Dn

( n ≥ 2 ), how can a composite cubic Bezier
curve that interpolates these points be con-
structed?

Cn

C3

C2

C1 Dn

Dn −1
D3

D2
D1

D0

The composite cubic Bezier curve has n seg-
ments C1(t ), C2(t ), ..., Cn (t ) with Di −1 and Di

being the start and end points of Ci (t )

The composite cubic Bezier curve is C 2-
continuous
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An analysis of the problem:

To get the curve constructed, how many con-
trol points are needed?

But how many of them are known to us now?

Dn

Dn −1

D3

D2
D1

D0

So, how many of them remain to be com-
puted?

And how should they be computed?

(How should the C 1- and C 2-continuity condi-
tions be used?)
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Let Pi ,0, Pi ,1, Pi ,2, Pi ,3 be the control points of the
Ci (t ).

Then for each two adjacent Bezier segments
Ci (t ) and Ci +1(t ), we have

Pi ,3 = Di = Pi +1,0

Pi +1,1 − Di = Di − Pi ,2

Pi +1,2 − Pi ,1 = 2( Pi +1,1 − Pi ,2 )

Pi +1,0

Pi ,3
Di

Di −1

Pi +1,1

Pi +1,1

Pi ,1 Pi ,2

Ci +1(t )

Ci (t )
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Hence, we have a system of 2(n −1) equations in

2n unknows Pi ,1, Pi ,2
i =1

n

Pi ,1 − 2Pi ,2 + 2Pi +1,1 − Pi +1,2 = 0

Pi ,2 + Pi +1,1 = 2Di

i = 1, 2, ..., n −1(7.1)

Two extra conditions can be given as follows:

1. P1,1 and Pn ,2 are specified by the user, or

2. requiring the composite Bezier curve to have
zero 2nd derivative at D0 and Dn .

Cn ′′ (1) = 6 (Pn ,3 − 2Pn ,2 + Pn ,1 ) = 0

C1′′ (0) = 6 (P1,2 − 2P1,1 + P1,0 ) = 0

(7.2)
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For instance, using the 2nd approach for the
extra conditions, (7.2), together with (7.1), we
get a system of 2n equations in 2n unknowns,
as follows:

1

0

2

−2

1

−1

2

1

−1

1

0

.

.

−2

1

−1

2

1

2

−1

Pn ,2

Pn ,1

Pn −1,2

.

.

P2,1

P1,2

P1,1

=

Dn

0

2Dn −1

.

.

0

2D1

D0

This system of equations can be solved using
Gaussian elimination without pivoting.
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3.1.6 Bicubic Bezier surface patches

S(u ,v ) =
i =0
Σ
3

j =0
Σ
3

Bi ,3(u ) Bj ,3(v ) Pi ,j

where

Bk ,3(t ) =
k

3
t k (1−t )3−k , 0 ≤ u ,v ≤ 1

P3,3

P0,3

P3,0P0,0
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Matrix form

S(u ,v ) = [ 1, u , u 2, u 3 ]

−1

3

−3

1

3

−6

3

0

−3

3

0

0

1

0

0

0

.

P3,0

P2,0

P1,0

P0,0

P3,1

P2,1

P1,1

P0,1

P3,2

P2,2

P1,2

P0,2

P3,3

P2,3

P1,3

P0,3

0

0

0

1

0

0

3

−3

0

3

−6

3

1

−3

3

−1

v 3

v 2

v

1

= U . Mb
. G . Mb

t . V t
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Satisfies convex hull property

Subdivision process

- Subdivide in u and then subdivide in v

Rendering techniques

Wire frame: generate iso-parametric curves
in both directions

Shaded images:

Ray tracing

Scan convert approximating polygons:
approximate the surface patch by a set
of fine polygons (triangles or quadri-
terals) and then shade the polygons

Patches can be joined together to form com-
plicated shapes
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3.1.7 Subdivision Techniques for Piecewise
Surfaces

1. Midpoint subdivision
(see previous section)

2. Adaptive subdivision
(Cheng et al.)

Adaptive subdivision:

input: a piecewise surface P and a subdivision level
assignment S

output: a triangular linear approximaiton P** of P

Three phases:

Phase 1: define a label for each vertec of P

Phase 2: generate a gradrilateral subdivision mesh P* of
P

Phase 3: convert P* to a triangular linear approximation
P** of P .
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Phase 1:

/* F ≡ { f | f is a patch of P } */

for each vertex v of P do

L (v ) := max ( {1} ∪ { S ( f ) | f ∈ F ,

v is a vertex of f } )

0

1
4

4
4

4

2

22

2

3

3

3

3

3

3

4 11

02

2
2

3

3
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Phase 2:

1. for each vertex v of P do

LABEL(v ) := L (v );

2. for each patch f of P do

Subdivide( f );

Subdivide(f: quadrilateral surface patch);

if (LABEL(v ) > 0 for more than one vertex of
f ) then

balanced_sub(f , f 1, f 2, f 3, f 4);

for i :=1 to 4 do
subdivide( f i );

else if (LABEL(v ) > 0 for only one vertex of
f ) then

unbalanced_sub(f , f 1, f 2, f 3);

for i :=1 to 3 do
subdivide( f i );
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q 3

q 2

q 4

q 1

t 4
t 3

t 2t 1s 4 s 3

s 2
s 1

r 3r 4

r 2r 1v 2
v 1

v 4 v 3

balanced_sub(f ):

Perform mid-point subdibision on f to get
four new subpatches: r 1r 2r 3r 4, s 1s 2s 3s 4, t 1t 2t 3t 4,
q 1q 2q 3q 4, and assign new labels as follows:

LABEL(r 1) = max{0, LABEL(v 1) − 1}

LABEL(s 2) = max{0, LABEL(v 2) − 1}

LABEL(t 3) = max{0, LABEL(v 3) − 1}

LABEL(q 4) = max{0, LABEL(v 4) − 1}

LABEL(r 2) = LABEL(s 1) = min{LABEL(r 1), LABEL(s 2)}

LABEL(s 3) = LABEL(t 2) = min{LABEL(s 2), LABEL(t 3)}

LABEL(t 4) = LABEL(q 3) = min{LABEL(t 3), LABEL(q 4)}

LABEL(q 1) = LABEL(r 4) = min{LABEL(q 4), LABEL(r 1)}
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LABEL(r 3) = LABEL(s 4) = LABEL(t 1) = LABEL(q 2)

=
min{LABEL(v ) | v ∈ {r 2,t 3,t 4,q 1}, LABEL (v ) > 0}, otherwise

0, if r 2, s 3, t 4, and q 1 are assigned zero label

LABEL(v 1) > 0

t 4
t 3

t 2t 1 s 4

s 3

r 3

s 2
s 1

r 4

r 2r 1v 2
v 1

v 4 v 3

unbalanced_sub(f ):

If LABEL(v 1) > 0, subdivide f as above to get
three new subpatches: r 1r 2r 3r 4, s 1s 2s 3s 4,
t 1t 2t 3t 4, and assign new labels as follows:

LABEL(r 1) = LABEL(v 1) − 1

LABEL(ri ) = 0, i = 2,3,4; LABEL(si ) = 0, i = 1,2,3,4

LABEL(ti ) = 0, i = 1,2,3,4.
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The above algorithm guarantees that adjacent
patches will generate the same vertices on the
common edge. Hence, no cracks will be gen-
erated between adjacent patches. This follows
from the following theorem:

Theorem: Let e be an edge of some patch and
labels of the vertices of e be i and j , respec-
tively. Let V (i ,j ) denote the number of vertices
created by the algorithm between these ver-
tices. Then V (i ,j ) depends on i and j only.
Actually, if j ≥ i then V (i ,j ) = 2i +j −i −1.

For a proof, see "A Parallel mesh Generation
Algorithm Based on the Vertex Label Assign-
ment Scheme", International Journal for
Numerical Methods in Engineering, Vol 28
(1989), 1429-1448.
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3.1.8 Non-Uniform B-Spline Curves

Definition: Let { ti } be an infinite sequence
of points (called knots) on the real axis. The
B-spline basis function Ni ,n (t ) of degree n

with support [ti , ti +m +1] is defined by the fol-
lowing recursive procedure:

Ni ,0 =
0, otherwise

1, ti ≤ t < ti +1

and for m ≥ 1

Ni ,m (t ) =
ti +m −ti

t −ti
Ni ,m −1(t ) +

ti +m +1−ti +1

ti +m +1−t
Ni +1,m −1(t )

Intuitively, B-splines of degree n ( order
n +1) are piecewise polynomial curves that
are zero at all subintervals but n +1 of them
and have continuous (n −1)st derivative. The
following are examples of b-splines of
degree 0, 1, 2, and 3.
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n =0

ti

ti

ti

ti

n =3

n =2

n =1
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Explicit forms of low degree B-splines:

1. Linear B-splines:

Ni ,1(t ) =

0, elsewhere

ti +2−ti +1

ti +2−t
, ti +1 ≤ t < ti +2

ti +1−ti

t −ti
, ti ≤ t < ti +1

2. Quadratic B-splines:

Ni ,2(t ) =

0, elsewhere

(ti +3−ti +1)(ti +3−ti +2)

(ti +3−t )2

, ti +2 ≤ t < ti +3

(ti +2−ti )(ti +2−ti +1)

(t −ti )(ti +2−t )
+

(ti +3−ti +1)(ti +2−ti +1)

(ti +3−t )(t −ti +1)
, ti +1 ≤ t < ti +2

(ti +1−ti )(ti +2−ti )

(t −ti )2

, ti ≤ t < ti +1
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3. Cubic B-splines:

Ni ,3(t ) =
(ti +1−ti )(ti +2−ti )(ti +3−ti )

(t −ti )3

, ti ≤ t < ti +1

=
(ti +2−ti )(ti +2−ti +1)(ti +3−ti )

(t −ti )2(ti +2−t )
+

(ti +2−ti +1)(ti +3−ti +1)(ti +3−ti )

(t −ti )(ti +3−t )(t −ti +1)

+
(ti +4−ti +1)(ti +3−ti +1)(ti +2−ti +1)

(ti +4−t )(t −ti +1)2

, ti +1 ≤ t < ti +2

=
(ti +3−ti )(ti +3−ti +1)(ti +3−ti +2)

(t −ti )(ti +3−t )2

+
(ti +4−ti +1)(ti +3−ti +1)(ti +3−ti +2)

(t 4−t )(ti +3−t )(t −ti +1)

+
(ti +4−ti +1)(ti +4−ti +2)(ti +3−ti +2)

(ti +4−t )2(t −ti +2)
, ti +2 ≤ t < ti +3

=
(ti +4−ti +1)(ti +4−ti +2)(ti +4−ti +3)

(ti +4−t )3

, ti +3 ≤ t < ti +4

= 0, elsewhere
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What happens if the knots are uniformly distri-
buted, for instance, ti =i for all i ?

In this case, we have

1. Uniform Linear B-splines:

Ni ,1(t ) =

0, elsewhere

i +2−t , i +1 ≤ t < i +2

t −i , i ≤ t < i +1

2. Uniform Quadratic B-splines:

Ni ,2(t ) =

0, elsewhere

2

(i +3−t )2

, i +2 ≤ t < i +3

2

(t −i )(i +2−t )
+

2

(i +3−t )(t −i −1)
, i +1 ≤ t < i +2

2,

(t −i )2

i ≤ t < i +1
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3. Uniform cubic B-splines:

Ni ,3(t ) =

0, elsewhere

6,

(i +4−t )3

i +3 ≤ t < i +4

+
6

(i +4−t )2(t −i −2)
, i +2 ≤ t < i +3

6

(t −i )(i +3−t )2

+
6

(i +4−t )(i +3−t )(t −i −1)

+
6

(i +4−t )(t −i −1)2

, i +1 ≤ t < i +2

6

(t −i )2(i +2−t )
+

6

(t −i )(i +3−t )(t −i −1)

6

(t −i )3

, i ≤ t < i +1

What are the relationship between the uniform
cubic B-splines defined here and the cubic B-
spline blending functions defined on page 60?
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Definition: A B-spline curve of degree k is
defined as follows

C (t ) =
i =0
Σ
n

Ni ,k (t ) Pi

where Ni ,k (t ) are B-spline basis functions of
degree k defined by the knot vector
{ ti | 0 ≤ i ≤ n +k +1 } and Pi , 0 ≤ i ≤ n , are 2D or 3D
control points. The parameter space of this
curve is the interval between tk and tn +1 .

Nn ,3N 3,3N 0,3
(k = 3)

tn +4tn +1t 3t 0

PnP3P0

. . . . .

. . . . .

Each interval [ti ,ti +1], of the parameter space
[tk ,tn +1] is called a span. The portion of the
curve defined by a span is called a segment.
So, C (t ) is a curve with n −k +1 segments
defined by n +1 control points.
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Example of a cubic B-spline curve:

t 12t 9t 3

N 8,3N 0,3 N 3,3

t 0

P3P0 P8

C6(t )

P8

C2(t )
C1(t )

P7

P6

P5
P4

P3

P2
P1

P0

If knot ti = i for all i then we get a uniform
cubic B-spline curve. In that case, would the
curve defined the above way be the same as
the one given on page 63?
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Questions:

1. Would a non-uniform cubic B-spline curve
satisfy convex hull property?

2. What would happen if t 0 = t 1 = t 2 = t 3 and
tn +1 = tn +2 = tn +3 = tn +4?

3. What is the relationship between a composite
cubic Bezier curve and a cubic B-spline
curve?

Theorem: Let { ti } be an infinite sequence of
knots on the real axis and Ni ,n (t ) be the
corresponding B-spline basis functions of
degree n . Then the summation of Ni ,n (t ) for any t

of the real axis is always equal to 1, i.e.,

i
Σ Ni ,n (t ) = 1, t ∈ R

It is okay that the bounds of the index are not
given explicitly because the sum has only n +1
non-zero terms for each value of t .
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Proof. If t ∈ [tk ,tk +1), then

i
Σ Ni ,n (t ) =

i =k −n
Σ
k

Ni ,n (t ).

The definition of the B-spline basis functions
shows that

Ni −1,n (t ) =
ti +n −1−ti −1

t −ti −1
Ni −1,n −1(t ) +

ti +n −ti

ti +n −t
Ni ,n −1(t )

and

Ni −1,n (t ) + Ni ,n (t ) =
ti +n −1−ti −1

t −ti −1
Ni −1,n −1(t )

+ Ni ,n −1(t ) +
ti +n +1−ti +1

ti +n +1−t
Ni +1,n −1(t )

Hence,

i
Σ Ni ,n (t ) =

tk −tk −n

t −tk −n
Nk −n ,n −1(t ) +

i =k −n +1
Σ
k

Ni ,n −1(t )
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+
tk +n +1−tk +1

tk +n +1−t
Nk +1,n −1(t )

=
i =k −n +1

Σ
k

Ni ,n −1(t )

since Nk −n ,n −1 and Nk +1,n −1 are both zero on [tk ,tk +1).
Iteratively repeat this process, we get

i
Σ Ni ,n (t ) =

i =k −n
Σ
k

Ni ,n (t )

=
i =k −n +1

Σ
k

Ni ,n −1(t )

=
i =k −n +2

Σ
k

Ni ,n −2(t )

......

=
i =k
Σ
k

Ni ,0(t )

= Nk ,0(t )

= 1.
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Answer to Question 1:

The above theorem shows that a cubic B-
spline curve satisfies a stronger convex hull
property: each segment of a (non-uniform)
cubic B-spline curve is contained in the con-
vex hull of the four control points that deter-
mine the segment.

Answer to Question 2:

The resulting cubic B-spline curve interpolate
the first and last control points.

Why?

When t 0 = t 1 = t 2 = t 3, the first three cubic B-
spline basis functions are of the following
forms:

N 0,3(t ) =
0, elsewhere

(t 4−t 3)3

(t 4−t )3

, t 3 ≤ t < t 4
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t 7t 0=t 1=t 2=t 3

N 1,3

N 0,3

N 2,3
N 3,3

1

N 1,3(t ) =

0, elsewhere

(t 5−t 3)2(t 5−t 4)

(t 5−t )3

, t 4 ≤ t < t 5

t 3 ≤ t < t 4

(t −t 3)[
(t 4−t 3)3

(t 4−t )2

+
(t 5−t 3)(t 4−t 3)2

(t 5−t )(t 4−t )
+

(t 5−t 3)2(t 4−t 3)

(t 5−t )2

],
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N 2,3(t ) =
(t 5−t 3)(t 4−t 3)2

(t 4−t )(t −t 3)2

+
(t 5−t 3)2(t 4−t 3)

(t 5−t )(t −t 3)2

+
(t 6−t 3)(t 5−t 3)(t 4

−t 3)

(t 6−t )(t −t 3)2

, t 3 ≤ t < t 4

=
(t 5−t 3)2(t 5−t 4)

(t 5−t )2(t −t 3)
+

(t 6−t 3)(t 5−t 3)(t 5−t 4)

(t 6−t )(t −t 3)(t 5−t )

+
(t 6−t 3)(t 6−t 4)(t 5

−t 4)

(t 6−t )2(t −t 4)
, t 4 ≤ t < t 5

=
(t 6−t 3)(t 6−t 4)(t 6−t 5)

(t 6−t )3

, t 5 ≤ t < t 6

= 0, elsewhere

Hence, when t = t 3, we have C (t 3) = N 0,3(t 3)P0 = P0.

Similarly, C (tn +1) = Nn ,3(tn +1)Pn = Pn .
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How are N 0,3, N 1,3, and N 2,3 computed?

The Cox-de Boor recurrence formula shows that
Ni ,3 may be computed using the following chart:

.

.

.

Ni +1,3

Ni ,3

Ni +2,2

Ni +1,2

Ni ,2

Ni +3,1

Ni +2,1

Ni +1,1

Ni ,1

Ni +4,0

Ni +3,0

Ni +2,0

Ni +1,0

Ni ,0

The above chart can be simplified if one
observes that on any given interval, [ti ,ti +1), there
are only n +1 B-splines of degree n that are non-
zero. On that interval, Ni ,n depends on Ni ,n −1
only, while Ni −l ,n , 0 < l ≤ n , depends on both
Ni −l +1,n −1 and Ni −l ,n −1. Therefore, for t ∈ [ti ,ti +1), we
have the following chart:



- 98 -

.

.

.

Ni −3,3

Ni −2,3

Ni −1,3

Ni −2,2

Ni −1,2

Ni −1,1

Ni ,3

Ni ,2

Ni ,1

Ni ,0

This chart will be used in the solution for ques-
tion 3.
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To answer Quesiton 3, we need to study the fol-
lowing problem:

If a cubic B-spline curve has only one seg-
ment, and its knots satisfy the condition:
t 0 = t 1 = t 2 = t 3 and t 4 = t 5 = t 6 = t 7, then what
would happen ?

For simplicity, we shall consider the simple case
t 0 = t 1 = t 2 = t 3=0 and t 4 = t 5 = t 6 = t 7=1 first. The
corresponding cubic B-spline basis functions
will be denoted N

_

i ,k , 0 ≤ k ≤ 3.

This special cubic B-spline curve segment,
denoted C

_
(t ), is defined as follows:

C
_

(t ) =
i =0
Σ
3

N
_

i ,3(t ) P
_

i , t ∈ [t 3, t 4] = [0, 1]

where t 0 = t 1 = t 2 = t 3=0 and t 4 = t 5 = t 6 = t 7=1, and P
_

i

are the control points of the curve segment.
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The property of a parametric curve depends on
the definition of its blending functions. For
C
_

(t ), N
_

i ,3(t ) can be computed using the chart on
page 98. When t ∈ [t 3, t 4) = [0, 1), we have

N
_

3,3

N
_

2,3

N
_

1,3

N
_

0,3

N
_

3,2

N
_

2,2

N
_

1,2

N
_

3,1

N
_

2,1
N
_

3,0

t 3

3t 2(1−t )

3t (1−t )2

(1−t )3

t 2

2t (1−t )

(1−t )2

t

(1−t )
1



- 101 -

Hence, when t 0 = t 1 = t 2 = t 3=0 and t 4 = t 5 = t 6 = t 7=1,
the corresponding cubic B-spline curve segment
defined on page 100 is a cubic Bezier curve seg-
ment with control points P

_

i :

C
_

(t ) =
i =0
Σ
3

N
_

i ,3(t ) P
_

i =
i =0
Σ
3

Bi ,3(t )P
_

i

P
_

3

N 1,3=3t (1−t )2

N 0,3=(1−t )3

N 2,3=3t 2(1−t )

N 3,3=t 3

P
_

2P
_

1

P
_

0

0 1

1
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On the other hand, let C (t ) be a cubic B-spline
curve with one segment too

C (t ) =
i =0
Σ
3

Ni ,3(t ) Pi , t ∈ [t 3, t 4)

but the knots are all distinct and ti = i −3, for
i = 0,1,...,7. (Hence, [t 3, t 4] = [0, 1] )

t 4=1 t 7=4t 0=−3
= 0
t 3

N 0,3 N 3,3

P3P0

C1(t )

P3

P2
P1

P0
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If C
_

(t ) and C (t ) represent the same cueve, then
what is the relationship between control points
of C (t ), Pi , and control points of C

_
(t ), P

_

i ?

Solution:

P
_

1 = P1+ 3

1
(P2−P1), P

_

2 = P1+ 3

2
(P2−P1),

P
_

0 =
2

[ P0+ 3

2
(P1−P0) ] + P

_

1

=
6

1
P0 +

6

4
P1 +

6

1
P2,

P
_

3 =
2

P
_

2 + [ P2+ 3

1
(P3−P2) ]

=
6

1
P1 +

6

4
P2 +

6

1
P3.
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This means a uniform cubic B-spline curve seg-
ment can be converted to a cubic Bezier curve
segment, and vice versa.

The relationship between there control points is
as follows:

1/2
1/2

1/2
1/2

1/31/3

1/31/31/3

P
_

i : Bezier control points

Pi : B-spline control points

P
_

3

P
_

2P
_

1

P
_

0

P3

P2
P1

P0

Why?
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If the cubic Bezier curve C
_

(t ) defined on page
100 is the same as the uniform cubic B-spline
curve segement defined on page 102 are the
same,

C
_

(t ) =
i =0
Σ
3

Bi ,3(t ) P
_

i = C (t ) =
i =0
Σ
3

Ni ,3(t ) Pi ,

t ∈ [0, 1],

then we must have

C
_

(0) = C (0), C
_

(1) = C (1)

C
_

′(0) = C ′(0), C
_

′(1) = C ′(1)

i.e.,

P
_

0 =
6

1
P0 +

6

4
P1 +

6

1
P2, P

_

3 =
6

1
P1 +

6

4
P2 +

6

1
P3

3(P
_

1 − P
_

0) = −
2

1
P0 +

2

1
P2, 3(P

_

3 − P
_

2) = −
2

1
P1 +

2

1
P3

equivalent to the conditons on page 102.
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Now, consider the general case.

Let C
_

(s ) be a cubic Bezier curve defined as fol-
lows:

C
_

(s ) =
i =0
Σ
3

Bi ,3(s )P
_

i , s ∈ [0, 1]

where Bi ,3(s ) are Bezier blending functions and
P
_

i are control points of the curve.

Let C (t ) be a non-uniform cubic B-spline curve
segment defined as follows:

C (t ) =
i =0
Σ
3

Ni ,3(t ) Pi , t ∈ [ t 3, t 4 ]

where Ni ,3(t ) are cubic B-spline basis functions
defined by the knot sequence { ti | 0 ≤ i ≤ 7 } and Pi

are contrl points of the curve.

If C
_

(s ) and C (t ) represent the same curve, then
what is the relationship between the control
points of C

_
(s ) and the control points of C (t )?
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Solutions:

P
_

1 =
t 5−t 2

t 5−t 3
P1 +

t 5−t 2

t 3−t 2
P2, P

_

2 =
t 5−t 2

t 5−t 4
P1 +

t 5−t 2

t 4−t 2
P2,

P
_

0 =
t 4−t 2

t 4−t 3
A +

t 4−t 2

t 3−t 2
P
_

1, P
_

3 =
t 5−t 3

t 5−t 4
P
_

2 +
t 5−t 3

t 4−t 3
B

where

A =
t 4−t 1

t 4−t 3
P0 +

t 4−t 1

t 3−t 1
P1, B =

t 6−t 3

t 6−t 4
P2 +

t 6−t 3

t 4−t 3
P3,

i.e.,

∆4∆3∆3∆2
∆5∆1

∆2

∆3
∆3

∆4

∆4∆3∆2

BA P
_

3

P
_

2P
_

1

P
_

0

P3

P2
P1

P0

where ∆i ≡ ti +1 − ti . Why?
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We need the following Lemma first.

Lemma: The derivative of a B-spline basis
function of degree m ≥ 1 is the linear difference
of two B-spline basis functions of degree m −1, as
follows:

Ni ,m ′(t ) = m
ti +m − ti

Ni ,m −1(t )
−

ti +m +1 − ti +1

Ni +1,m −1(t )

Proof: By induction.

First, show that

Ni ,1′(t ) = 1
ti +1 − ti

Ni ,0(t )
−

ti +2 − ti +1

Ni +1,0(t )
.

Then prove that if the formula is true for all
degrees ≤ m −1 then the above formula would
hold for degree m too.
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Now the proof of the results on page 107.

First, define a map from [t 3 , t 4] to [0, 1]

s (t ) =
t 4−t 3

t −t 3
=

∆3

t −t 3
, t ∈ [t 3, t 4]

so C
_

(s (t )) is a function defined on [t 3, t 4] too.

s (t ) =
t 4−t 3

t −t 3

C
_

(s )
10

P
_

0

P
_

1 P
_

2

P
_

3

t 4=1 t 7=4t 0=−3
= 0
t 3
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Since C
_

(s (t )) = C (t ), we have

C
_

(s (t 3)) = C
_

(0) = C (t 3), C
_

(s (t 4)) = C
_

(1) = C (t 4)

C
_

′(s (t 3)) =
∆3

C
_

′(0)
= C ′(t 3), C

_
′(s (t 4)) =

∆3

C
_

′(1)
= C ′(t 4)

or

P
_

0 = N 0,3(t 3)P0 + N 1,3(t 3)P1 + N 2,3(t 3)P2 (B1)

P
_

3 = N 1,3(t 4)P1 + N 2,3(t 4)P2 + N 3,3(t 4)P3 (B2)

∆3

3(P
_

1−P
_

0)
= N 0,3′(t 3)P0 + N 1,3′(t 3)P1 + N 2,3′(t 3)P2 (B3)

∆3

3(P
_

3−P
_

2)
= N 1,3′(t 4)P1 + N 2,3′(t 4)P2 + N 3,3′(t 4)P3 (B4)
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Using the recursive formulas for B-spline basis
functions and their derivatives, we have from
(B1), (B2), (B3) and (B4) the following rela-
tions:

P
_

0 =
t 4−t 1

N 1,2(t 3)
(t 4−t 3)P0 + (t 3−t 1)P1

+
t 5−t 2

N 2,2(t 3)
(t 5−t 3)P1 + (t 3−t 2)P2 (B5)

P
_

3 =
t 5−t 2

N 2,2(t 4)
(t 5−t 4)P1 + (t 4−t 2)P2

+
t 6−t 3

N 3,2(t 4)
(t 6−t 4)P2 + (t 4−t 3)P3 (B6)

P
_

1−P
_

0 = (t 4−t 3)
t 4−t 1

N 1,2(t 3)
(P1 − P0) +

t 5−t 2

N 2,2(t 3)
(P2 − P1) (B7)

P
_

3−P
_

2 = (t 4−t 3)
t 5−t 2

N 2,2(t 4)
(P2 − P1) +

t 6−t 3

N 3,2(t 4)
(P3 − P2) (B8)
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From (B5) and (B7), we have

P
_

1 = N 1,2(t 3) +
t 5−t 2

t 5−t 4
N 2,2(t 3) P1 +

t 5−t 2

t 4−t 2
N 2,2(t 3) P2

From the definition of Ni ,2(t ) (page 85), we have

N 1,2(t 3) =
t 4−t 2

t 4−t 3
; N 2,2(t 3) =

t 4−t 2

t 3−t 2

Substituting these expressions for N 1,2(t 3) and
N 2,2(t 3) into the above equation, we get

P
_

1 =
t 5−t 2

t 5−t 3
P1 +

t 5−t 2

t 3−t 2
P2

= P1 + (P2−P1)
t 5−t 2

t 3−t 2
(B9)



- 113 -

Similarly, From (B6) and (B8), we have

P
_

2 =
t 5−t 2

t 5−t 3
N 2,2(t 4) P1 + N 3,2(t 4) +

t 5−t 2

t 3−t 2
N 2,2(t 4) P2

From the definition of Ni ,2(t ) (page 85), we have

N 2,2(t 4) =
t 5−t 3

t 5−t 4
; N 3,2(t 4) =

t 5−t 3

t 4−t 3

Substituting these expressions for N 2,2(t 4) and
N 3,2(t 4) into the above equation, we get

P
_

2 =
t 5−t 2

t 5−t 4
P1 +

t 5−t 2

t 4−t 2
P2

= P1 + (P2−P1)
t 5−t 2

t 4−t 2
(B10)
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Finally, if we set

A =
t 4−t 1

t 4−t 3
P0 +

t 4−t 1

t 3−t 1
P1, B =

t 6−t 3

t 6−t 4
P2 +

t 6−t 3

t 4−t 3
P3,

then from (B5) and (B9), we have

P
_

0 = N 1,2(t 3)A + N 2,2(t 3)P
_

1

=
t 4−t 2

t 4−t 3
A +

t 4−t 2

t 3−t 2
P
_

1 (B11)

and from (B6) and (B10), we have

P
_

3 = N 2,2(t 4)P
_

2 + N 3,2(t 4)B

=
t 5−t 3

t 5−t 4
P
_

2 +
t 5−t 3

t 4−t 3
B. (B12)

So the proof is completed.
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In general, we have the following relationship
between cubic B-spline curves and composite
cubic Bezier curves:

Let C (t ) be a non-uniform cubic B-spline curve

C (t ) =
i =0
Σ
n

Ni ,3(t ) Pi t ∈ [t 3, tn +1)

with control points { Pi | 0 ≤ i ≤ n } and knot
sequence { ti | 0 ≤ i ≤ n +4 }

First, for each leg of the control polygon, Pi Pi +1,
divide it into three subsegments at the points
Q3i −2 and Q3i −1 in the ratio ∆i +1 : ∆i +2 : ∆i +3 with
∆i ≡ ti +1 − ti . Next split the line segment Q3i −4Q3i −2
into two subsegments at the point Q3(i −1) in the
ratio ∆i +1 : ∆i +2. Then {Q3(i −1), Q3i −2, Q3i −1, Q3i } are
the Bezier control points of the ith segment of
the B-spline curve.
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3.1.9 Curve Fitting using Uniform Cubic B-
Spline Curves

Given a set of data points Di = (xi , yi ),
i = 0, 1, . . . ,n , ( n ≥ 2 ), how can a cubic B-
spline curve that interpolates these points be
constructed?

Cn

C3

C2

C1 Dn

Dn −1
D3

D2
D1

D0

The cubic B-spline curve has n segments
C1(t ), C2(t ), ..., Cn (t ) with Di −1 and Di being
the start and end points of Ci (t )
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An analysis of the problem:

To get the curve constructed, how many
knots are needed?
Consider the following case:

t 8t 7t 6t 5t 4t 3

D5

D4
D3

D2
D1

D0
C 4(t )

C 5(t )

C 3(t )
C 2(t )

C 1(t )

So, to interpolate (n +1) data points, one needs
(n +7) knots, t 0, t 1, ..., tn +6, for a uniform cubic
B-spline interpolating curve.
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To get the curve constructed, how many con-
trol points are needed?
Consider the following case:

P7

P6

P5
P4

P3P2

P1

P0

t 8t 7t 6t 5t 4t 3

C 4(t )

C 5(t )
C 3(t )

C 2(t )
C 1(t )

So, to interpolate (n +1) data points, one needs
(n +3) control points, P0, P1, ..., Pn +2, for a uni-
form cubic B-spline interpolating curve.
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To make things easier, we shall assume that

ti = i −3, i = 3,4,...,n +3

with t 0 = t 1 = t 2 = t 3 and tn +3 = tn +4 = tn +5 = tn +6.

Consequently, we have P0 = D0 and Pn +2 = Dn .

=5=0

t 11

t 10
t 9

t 2

t 1
t 0

P1

P6

P7 = D5

P0 = D0 P5
P4

P3P2

t 8t 7t 6t 5t 4t 3

C 4(t )

C 5(t )
C 3(t )

C 2(t )
C 1(t )

Still, we need to find P1, P2, ... Pn +1. How?
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The interpolating curve to be constructed must
be of the following form:

C (t ) =
i =0
Σ

n +2
Ni ,3(t ) Pi , t ∈ [0, n ]

and satisfies the following conditions:

C ( j ) =
i =0
Σ

n +2
Ni ,3( j ) Pi = Dj , j =0,1,...,n (*)

t 0=t 1=t 2=t 3 t 8=t 9=t 10=t 11
=5=4=3=2=1

D4
D3

D2D1

=0

P1

P6

P7 = D5

P0 = D0 P5
P4

P3P2

t 7t 6t 5t 4
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Note that at each knot there are at most 3 cubic
B-spline basis functions which are non-zero.
Therefore, equations in (*) are of the following
form:

Ni ,3(i )Pi + Ni +1,3(i )Pi +1 + Ni +2,3(i )Pi +2 = Di , i =0,1,...,n

or

P0 = D0

#
4

1
P1 +

12

7
P2 +

6

1
P3 = D1

#
6

1
P2 +

3

2
P3 +

6

1
P4 = D2

# ...

#
6

1
Pn −2 +

3

2
Pn −1 +

6

1
Pn = Dn −2

#
6

1
Pn −1 +

12

7
Pn +

4

1
Pn +1 = Dn −1

Pn +2 = Dn
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So, actually, only P1, P2, ..., Pn +1 are unknown.
By ignoring the first and the last equations, we
have a system of n −1 equations (those marked
with "#") in n +1 unknowns. We need two extra
conditions to get this system solved.

One option is to set the second derivative of the
curve at the start and end points to zero:

C ′′ (0) = N 0,3′′ (0)P0 + N 1,3′′ (0)P1 + N 2,3′′ (0)P2 = 0

C ′′ (n ) = Nn ,3′′ (n )Pn + Nn +1,3′′ (n )Pn + Nn +2,3′′ (n )Pn +2 = 0

or
6P0 − 9P1 + 3P2 = 0

3Pn − 9Pn +1 + 6Pn +2 = 0

Note that P0 and Pn +2 are known to us (P0 = D0 and
Pn +2 = Dn ). Hence, the above equations can be
written as:

3P1 − P2 = 2D0

−Pn + 3Pn +1 = 2Dn
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By combining these two equations with the
equations on page 121 marked with #, we have a
system of n +1 equations in n +1 unknows:

3P1 − P2 = 2D0

4

1
P1 +

12

7
P2 +

6

1
P3 = D1

6

1
P2 +

3

2
P3 +

6

1
P4 = D2

...

6

1
Pn −2 +

3

2
Pn −1 +

6

1
Pn = Dn −2

6

1
Pn −1 +

12

7
Pn +

4

1
Pn +1 = Dn −1

−Pn + 3Pn +1 = 2Dn
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The matrix form of this system is:

1/4

3

1/6

7/12

−1

2/3

1/6

1/6

1/6

.

.

1/6

2/3

−1

7/12

1/6

3

1/4

Pn +1

Pn

Pn −1

.

.

P3

P2

P1

=

2Dn

Dn −1

Dn −2

.

.

D2

D1

2D0

This system of equaitons can be solved using
Gaussian elimination without pivoting.

Most of the curve drawing programs in 2D
drawing software packages (such as Gremlin,
xfig, ...) are implemented using this approach.
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Question:

What should we do to generate smooth,
closed interpolating curves?

For instance, give a set of data points
Di = (xi , yi ), i = 0, 1, . . . ,n , ( n ≥ 2 ), with D0 = Dn ,
how can a closed, smooth (C 2 continuous)
cubic B-spline curve that interpolates these
points be constructed?

C 9

C 2

C 1

D8 D7
D6

D5

D4

D3

D2D1

D0 = D9

The closed cubic B-spline curve has n seg-
ments C1(t ), C2(t ), ..., Cn (t ) with Di −1 and Di

being the start and end points of Ci (t )
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From previous discussion, we know such a
curve must have (n +3) control points: P0, P1, ...,
Pn +2.

C 9

C 1

P2 = P11

P1 = P10

P0 = P9

D8 D7
D6

D2D1

D0 = D9

To guarantee C 2 continuity at C0 = Cn , control
points must satisfy the following conditions:

Pn = P0, Pn +1 = P1, Pn +2 = P2
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Such a curve needs (n +7) knots: t 0, t 1, ..., tn +6.

To make things easier, we shall assume that

ti = i −3, i = 0,1,...,n +6

Such a (cyclic) curve can be defined as fol-
lows:

C (t ) =
i =0
Σ

n +2
Ni ,3(t ) P(i mod n ) , t ∈ [t 3, tn +3] = [0, n ]

such that

C (ti +3) = C (i ) =
i =0
Σ

n +2
Ni ,3(i ) P(i mod n ) = Di , (C1)

i =0,1,...,n
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There are n unknows and n equations in the
above system (C1):

6

1
P0 +

3

2
P1 +

6

1
P2 = D0

6

1
P1 +

3

2
P2 +

6

1
P3 = D1

...

6

1
Pn −2 +

3

2
Pn −1 +

6

1
Pn = Dn −2

6

1
Pn −1 +

3

2
Pn +

6

1
Pn +1 = Dn −1

6

1
Pn +

3

2
Pn +1 +

6

1
Pn +2 = Dn

(The last equation is the same as the first equa-
tion and, hence, can be ignored.)
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The matrix form of this system is:

1/6

1/6

2/3

1/6

2/3

1/6

2/3

1/6

1/6

1/6

.

.

1/6

2/3

1/6

2/3

1/6

2/3

1/6

1/6

Pn

Pn −1

.

.

P3

P2

P1

=

Dn −1

Dn −2

.

.

D2

D1

D0

This system of equaitons can be solved using
Gaussian elimination without pivoting as well.


