- 53 -

3.1.1 Bezier Curve Segments of Degree 3

$$
\begin{gathered}
\mathbf{C}(t)=(1-t)^{3} \mathbf{P}_{0}+3 t(1-t)^{2} \mathbf{P}_{1}+3 t^{2}(1-t) \mathbf{P}_{2}+t^{3} \mathbf{P}_{3} \\
0 \leq t \leq 1
\end{gathered}
$$

Matrix form:

$$
\begin{gathered}
\mathbf{C}(t)=\left[1, t, t^{2}, t^{3}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-3 & 3 & 0 & 0 \\
3 & -6 & 3 & 0 \\
-1 & 3 & -3 & 1
\end{array}\right]\left[\begin{array}{l}
\mathbf{P}_{0} \\
\mathbf{P}_{1} \\
\mathbf{P}_{2} \\
\mathbf{P}_{3}
\end{array}\right] \\
=\mathbf{T} \cdot \mathbf{M}_{b} \cdot \mathbf{G}
\end{gathered}
$$

- 54 -
- $\mathbf{P}_{i}=\left(x_{i}, y_{i}\right)$ are called control points
- The polygon $\mathbf{P}_{0} \mathbf{P}_{1} \mathbf{P}_{2} \mathbf{P}_{3}$ is called the control polygon
- The weights $(1-t)^{3}, 3 t(1-t)^{2}, 3 t^{2}(1-t)$, and t^{3} are called blending functions

Notes:

- Blending functions are always non-negative
- Blending functions always sum to 1
- $\quad C(0)=\mathbf{P}_{0} ; \quad C(1)=\mathbf{P}_{3}$
(A Bezier curve always starts at \mathbf{P}_{0} and ends at \mathbf{P}_{3}.
- $C^{\prime}(0)=3\left(\mathbf{P}_{1}-\mathbf{P}_{0}\right) ; \quad C^{\prime}(1)=3\left(\mathbf{P}_{3}-\mathbf{P}_{2}\right)$
(A Bezier curve is tangent to the control polygon at the endpoints)
- $C^{\prime \prime}(0)=6\left(\mathbf{P}_{2}-2 \mathbf{P}_{1}+\mathbf{P}_{0}\right) ; \quad C^{\prime \prime}(1)=6\left(\mathbf{P}_{3}-2 \mathbf{P}_{2}+\mathbf{P}_{1}\right)$
- Bezier curve segments satisfy convex hull property
ie., a Bezier curve segment is always containe in the convex hull of its control points

$$
\text { - } 56-
$$

- Bezier curves have intuitive appeal for interactive users

3.1.2 General Bezier Curves

$$
C(t)=\sum_{i=0}^{n} B_{i, n}(t) \mathbf{P}_{i}=\sum_{i=0}^{n}\binom{n}{i} t^{i}(1-t)^{n-i} \mathbf{P}_{i},
$$

where $0 \leq t \leq 1$ and $\binom{n}{i} \equiv \frac{n!}{i!(n-i)!} . B_{i, n}(t)$ are again called blending functions and \mathbf{P}_{i} control points.

- 57 -
- All the properties mentioned on pages 54 and 55 hold for general Bezier curves.

A recurrance relation:

$$
C(t)=(1-t)\left[\sum_{i=0}^{n-1} B_{i, n-1}(t) \mathbf{P}_{i}\right)+t\left(\sum_{i=0}^{n-1} B_{i, n-1}(t) \mathbf{P}_{i+1}\right)
$$

$$
\left.=(1-t) \cdot\left[\begin{array}{c}
n-1 \\
\sum_{i=0}^{n}
\end{array} \begin{array}{c}
n-1 \\
i
\end{array}\right] t^{i}(1-t)^{n-1-i} \mathbf{P}_{i}\right]
$$

$$
+t \cdot\left[\sum_{i=0}^{n-1}\left[\begin{array}{c}
n-1 \\
i
\end{array}\right] t^{i}(1-t)^{n-1-i} \mathbf{P}_{i+1}\right]
$$

- 58 -
- Curve computation

If degree $=3$ then

$$
\begin{aligned}
C\left(\frac{1}{3}\right) & =\frac{2}{3}\left[\frac{2}{3}\left(\frac{2}{3} \mathbf{P}_{0}+\frac{1}{3} \mathbf{P}_{1}\right)+\frac{1}{3}\left(\frac{2}{3} \mathbf{P}_{1}+\frac{1}{3} \mathbf{P}_{2}\right)\right] \\
& +\frac{1}{3}\left[\frac{2}{3}\left(\frac{2}{3} \mathbf{P}_{1}+\frac{1}{3} \mathbf{P}_{2}\right)+\frac{1}{3}\left(\frac{2}{3} \mathbf{P}_{2}+\frac{1}{3} \mathbf{P}_{3}\right)\right]
\end{aligned}
$$

- 59 -
- Midpoint Curve Subdivision

\mathbf{P}_{0}, M, N, O are control points of $C(t), 0 \leq t \leq 1 / 2$, and O, P, Q, \mathbf{P}_{3} are control points of $C(t)$, $1 / 2 \leq t \leq 1$.
- Recursively subdivide the control polygons at the midpoints, we can divide the curve into many small segments, each with its own control points.
- These control points, when connected, form a good linear approximation of the curve $\mathbf{C}(t)$. (This linear approximation is usually used to to find the intersection points of two Bezier curves)

