Polygon Clipping

Can not simply use a line clipper since it may generate a series of unconnected line segments

Polygon Clipping

A polygon clipper should generate one or more closed areas

Sutherland-Hodgman Algorithm

 clip polygon boundary against the four edges of the window separately

• For each edge of the window, traverse (directed) edges of the polygon and output vertices according to the following rules:

An Example (clipping against the right edge of the window)

Start with v_0v_1 Output: v_1

Process v_1v_2 Output: v_1v_1'

Start with v_0v_1 Output: v_1

Process v_1v_2 Output: v_1v_1'

Process v_2v_3 Output: $v_1v_1'v_2'v_3$

Process v_3v_4 Output: $v_1v_1'v_2'v_3v_3'$

Example (con't)

Process v_4v_5 Output: $v_1v_1'v_2'v_3v_3'$

Process v_5v_0

Output: $v_1v_1'v_2'v_3v_3'v_5'v_0$

Process v_4v_5 Output: $v_1v_1'v_2'v_3v_3'$

Process v_5v_0 Output: $v_1v_1'v_2'v_3v_3'v_5'v_0$

Disadvantage of S-H algorithm:

Output is always a connected area

Remedy: using Weiler-Atherton's approach

Remedy: using Weiler-Atherton's approach

For clockwise processing of polygon vertices in S-H clipping algorithm:

- For an outside-to-inside pair of vertices, follow the polygon boundary
- For an inside-to-outside pair of vertices, follow the window coundary in a clockwise direction

Start with edge v_0v_1 :

End of Polygon Clipping

Can any of these algorithms be extended to a 3D algorithm?

Cyrus-Beck algorithm?

Sutherland-Hodgman algorithm?

Wiler-Atherton algorithm?