
11/24/2024 1

CS375:

Logic and Theory of Computing

Fuhua (Frank) Cheng

Department of Computer Science

University of Kentucky

University of Kentucky

11/24/2024 2

Table of Contents:

◼ Week 1: Preliminaries (set algebra, relations,

 functions) (read Chapters 1-4)

◼ Weeks 2-5: Regular Languages, Finite

 Automata (Chapter 11)

◼ Weeks 6-8: Context-Free Languages,

Pushdown Automata (Chapters 12)

◼ Weeks 9-11: Turing Machines (Chapter 13)

University of Kentucky

11/24/2024 3

Table of Contents (conti):

▪ Weeks 12-13: Propositional Logic (Chapter

6), Predicate Logic (Chapter 7),

Computational Logic (Chapter 9),

Algebraic Structures (Chapter 10)

University of Kentucky

11/24/2024 4University of Kentucky

8. Turing Machines and Equivalent

Models – The Church-Turing Thesis

The foundation of modern day computers

(Turing machines) originally was not

developed for the construction of a

computing device, but to formalise

(define/represent) algorithms.

11/24/2024 5

The Church-Turing Thesis:

A problem can be solved by an algorithm iff it

can be solved by a Turing machine.

University of Kentucky

The Church-Turing Thesis – version 1

We know the definition of a Turing machine.

What is an algorithm?

11/24/2024 6University of Kentucky

The Church-Turing Thesis – version 1

What is an algorithm?

11/24/2024 7University of Kentucky

The Church-Turing Thesis – version 1

Let’s see what the dictionaries say about algorithm:

“a rule for solving a mathematical problem in a

finite number of steps”

 …Chambers’ Dictionary

“process or rules for (esp. machine) calculation”

 … Oxford dictionary

11/24/2024 8University of Kentucky

The Church-Turing Thesis – version 1

Are these definitions

 precise and unambiguous?

 simple?

 general?

Besides, why would they relate Turing

machines to algorithms?

11/24/2024 9University of Kentucky

The Church-Turing Thesis – version 1

A little history …

11/24/2024 10University of Kentucky

The Church-Turing Thesis – version 1

◼ In the late 19th Century, a problem exercising

mathematicians was one of those posed by Hilbert:

…so perhaps there isn’t one ...

…can we prove there is no universal algorithm?

...we need to be able to define an algorithm precisely

 so as to prove properties of algorithms

“Is there a Universal Algorithm which can solve all

Mathematical problems?”

 ... attempts to find one failed ...

11/24/2024 11University of Kentucky

Formalism for algorithms

By the 1930s the emphasis was on formalising

algorithms

Alan Turing, at Cambridge, devised an abstract

machine now called a Turing Machine to define/

represent algorithms

Alonso Church, at Princeton, devised the Lambda

Calculus which formalises algorithms as functions
(more in the course ‘computability and complexity’)

11/24/2024 12University of Kentucky

Formalism for algorithms

neither knew of the other’s work in progress …both

published in 1936

the demonstrated equivalence of their formalisms

strengthened both their claims to validity, expressed

as the Church-Turing Thesis

11/24/2024 13

The Church-Turing Thesis:

A problem can be solved by an algorithm iff it can

be solved by a Turing machine.

University of Kentucky

The Church-Turing Thesis – version 1

Turing machines implement algorithms

all algorithmically solvable problems can be solved by a Turing

Machine

11/24/2024 14

The Church-Turing Thesis:

A problem can be solved by an algorithm iff it can

be solved by a Turing machine.

University of Kentucky

The Church-Turing Thesis – version 1

“a function is computable iff it can be solved

by a Turing Machine”

“ an algorithm is what a Turing Machine

implements”

11/24/2024 15University of Kentucky

The Church-Turing Thesis – version 1

This is what an algorithm should really be defined:

An algorithm is a step-by-step

procedure to solve logical and

mathematical problems

with instructions to define/specify

how each step should be carried out

(or, implemented)

11/24/2024 16University of Kentucky

The Church-Turing Thesis – version 1

This is what an algorithm should really be defined:

The steps and instructions might not

be unique, but must be precise

i.e., if the same procedure is

repeated again, you should get

exactly the same result

11/24/2024 17

The Church-Turing Thesis:

A problem can be solved by an algorithm iff it can

be solved by a Turing machine.

University of Kentucky

The Church-Turing Thesis – version 1

Does the Church-Turing Thesis make clear sense now?

11/24/2024 18

The Church-Turing Thesis:

A problem can be solved by an algorithm iff it can

be solved by a Turing machine.

University of Kentucky

The Church-Turing Thesis – version 1

First, can the function of a TM be described

as an algorithm?

If the answer is YES, then this direction of

the Church-Turing Thesis is true.

11/24/2024 19

The Church-Turing Thesis:

A problem can be solved by an algorithm iff it can

be solved by a Turing machine.

University of Kentucky

The Church-Turing Thesis – version 1

Can any algorithm (defined the above way)

be implemented by a TM?

If the answer is YES, then this direction of

the Church-Turing Thesis is true.

11/24/2024 20

The Church-Turing Thesis:

A problem can be solved by an algorithm iff it can

be solved by a Turing machine.

University of Kentucky

The Church-Turing Thesis – version 1

Turing machines implement algorithms

So we would have:

11/24/2024 21University of Kentucky

The Church-Turing Thesis – version 1

Can any algorithm (defined the above way)

be implemented by a TM?

So, eventually, this is all we have to answer:

11/24/2024 22

Important information here

University of Kentucky

The Church-Turing Thesis – version 1

Thesis not Theorem

because we cannot prove this...

with a counter example we could disprove it

(but this has not been done).

we can show supporting evidence for the validity of the thesis

11/24/2024 23

The Church-Turing Thesis:

Anything that is intuitively computable can be computed

by a Turing machine.

University of Kentucky

The Church-Turing Thesis – version 2

Intuitive computable: algorithmically solvable

(a detailed algorithm for manual calculation can

be developed)

11/24/2024 24University of Kentucky

The Church-Turing Thesis – version 2

It is a thesis rather than a theorem because it

relates the informal notion of intuitively

computable to the formal notion of a Turing

machine.

11/24/2024 25

Computational Models
A computational model is a characterization of a computing

process that describes the form of a program and describes

how the instructions are executed.

University of Kentucky

The Church-Turing Thesis – version 2

Example. The Turing machine computational model describes

the form of TM instructions and how to execute them.

Example. If X is a programming language, the X computational

model describes the form of a program and how each

instruction is executed.

11/24/2024 26

Equivalence of Computational Models

Two computational models are equivalent in power if

they solve the same class of problems.

University of Kentucky

The Church-Turing Thesis – version 2

Any piece of data for a program can be represented by a string

of symbols and any string of symbols can be represented by

a natural number.

So even though computational models may process different

kinds of data, they can still be compared with respect to how

they process natural numbers.

11/24/2024 University of Kentucky 36

References:

https://plato.stanford.edu/entries/church-turing/

http://www.doc.ic.ac.uk/~mrc/Computability%20&%20C

omplexity/Lectures/C240Lecture2.pdf

https://plato.stanford.edu/entries/church-turing/
http://www.doc.ic.ac.uk/~mrc/Computability%20&%20Complexity/Lectures/C240Lecture2.pdf
http://www.doc.ic.ac.uk/~mrc/Computability%20&%20Complexity/Lectures/C240Lecture2.pdf

11/24/2024 37

End of Turing

Machines III

University of Kentucky

	Slide 1: CS375: Logic and Theory of Computing
	Slide 2: Table of Contents:
	Slide 3: Table of Contents (conti):
	Slide 4: 8. Turing Machines and Equivalent Models – The Church-Turing Thesis
	Slide 5: The Church-Turing Thesis – version 1
	Slide 6: The Church-Turing Thesis – version 1
	Slide 7: The Church-Turing Thesis – version 1
	Slide 8: The Church-Turing Thesis – version 1
	Slide 9: The Church-Turing Thesis – version 1
	Slide 10: The Church-Turing Thesis – version 1
	Slide 11: Formalism for algorithms
	Slide 12: Formalism for algorithms
	Slide 13: The Church-Turing Thesis – version 1
	Slide 14: The Church-Turing Thesis – version 1
	Slide 15: The Church-Turing Thesis – version 1
	Slide 16: The Church-Turing Thesis – version 1
	Slide 17: The Church-Turing Thesis – version 1
	Slide 18: The Church-Turing Thesis – version 1
	Slide 19: The Church-Turing Thesis – version 1
	Slide 20: The Church-Turing Thesis – version 1
	Slide 21: The Church-Turing Thesis – version 1
	Slide 22: The Church-Turing Thesis – version 1
	Slide 23: The Church-Turing Thesis – version 2
	Slide 24: The Church-Turing Thesis – version 2
	Slide 25: The Church-Turing Thesis – version 2
	Slide 26: The Church-Turing Thesis – version 2
	Slide 36
	Slide 37

