CS375:
 Logic and Theory of Computing

Fuhua (Frank) Cheng

Department of Computer Science
University of Kentucky

Table of Contents:

Week 1: Preliminaries (set algebra, relations, functions) (read Chapters 1-4)
Weeks 2-5: Regular Languages, Finite Automata (Chapter 11)
Weeks 6-8: Context-Free Languages, Pushdown Automata (Chapters 12)

- Weeks 9-11: Turing Machines (Chapter 13)

Table of Contents (conti):

Weeks 12-13: Propositional Logic (Chapter 6), Predicate Logic (Chapter 7), Computational Logic (Chapter 9), Algebraic Structures (Chapter 10)

8. Turing Machines and Equivalent

Models - The Church-Turing Thesis
Goal: to show you construction of Turing Machines that can perform:
the addition function,
the subtraction function,
the multiplication function, and the division function
for unary numbers

TM for the addition function for the unary number system

Notations:

The unary number is made up of only one character, i.e. The number 5 can be written in unary number system as 11111. In this TM, we are going to perform the addition of two unary numbers.

For example:
$2+3$
i.e., $11+111=11111$

Solution:

If you observe this process of addition, you will find the resemblance with string concatenation function.

In this case, we simply replace ' + ' by ' 1 ' and move right to search for the right most ' 1 ' and convert that ' 1 ' to ' Λ '.

Input: 4+2

The simulation for $111+11 \Lambda$ can be shown as below:

Move right up to the + sign:

Convert + to 1 and move right:

Conti.

Keep moving right:

Until we reach \wedge :

Move left :

Conti.

Convert 1 to Λ, move left and stop:

\section*{| 1 | 1 | 1 | 1 | 1 | 1 | Λ | Λ | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 个State=halt}

Such a TM would look like the one below :

Input: 4+2

The simulation for $111+11 \Lambda$ can be shown as below:

Conti.

Note:

Would the following TM work as well?

Can it handle the following input?

Would the following TM work?

What if the input is like the one below?

Question:

Can the above TM be modified to do addition of three numbers, four numbers, ..., n numbers in unary form directly?

TM for the subtraction function for the unary number system

Notations and Assumption:

For example:
4-2
i.e., $1111-11=11$

Develop a TM for the subtraction of two unary numbers $f(a-b)=c$ where ' a ' is greater than or equal to 'b'.

Solution:

If there are n 1 's in the unary representation of b and m 1's in the unary representation of a, the process is to reduct n 1's from the unary representation of a.

The reduction will be perform from the right side of the unary representation of a.

So the input tape will look like:

Input: 4-2

Move right to the ' - ' symbol:

Move right and convert 1 to '*' as:

Move left:

Conti.

Again move left:

Convert 1 to ${ }^{\text {(*) }}$ and move right:

Keep moving right until a ' 1 ' is reached:

Conti.

Convert 1 to * and move left:

Keep moving left until a 1 is reached:

Convert 1 to * and move right

Conti.

Keep moving, ignore all *'s and ' - ' until we reach an ' 1 ' or a ' Λ '

Find a ' Λ '. Turn left, ignore *'s and the ' - ', until an ' 1 ' is reached

Change the state to 'halt' and stop.

The TM will look like the one below (when $\mathrm{n}<\mathrm{m}$):

The TM will look like the one below (when $\mathrm{n}<=\mathrm{m}$):

Note that in case $m=n$, the read/write head, at the end, will point at the left most ' $*$ '

Question 1:

Can the above TM be modified to do subtraction $f(a-b)=c$ even when b is bigger than a ?

$\boldsymbol{\tau}_{\text {State=halt }}$

Question 2:

Given three non-zero positive unary numbers a, b and c, can a TM be built to carry out this function $f(a+b-c)$?

$$
a+b-c=3
$$

TM for the multiplication function for the unary number system

Input:

Output:

Basic concept: repeatedly attach m 1's to the

 end of the $2^{\text {nd }}$ string until n iterations have been done
What is multiplication?

Extended addition. Why?

Basic concept: repeatedly attach m 1's to the end of the $2^{\text {nd }}$ string until n iterations have been done

What is multiplication?

Extended addition. Why?

$$
+\frac{1111}{4}
$$

Basic concept: repeatedly attach m 1's to the end of the $2^{\text {nd }}$ string until n iterations have been done

What is multiplication?

Extended addition. Why?

$$
\begin{aligned}
& 111111111111 \\
& 11111111111111111111
\end{aligned}
$$

Implementation:

Input:

Step 1: move right, ignore all the 1's and *, to find the first Λ, convert it to * and turn left

Step 2: move left, ignore all the 1's, until a * is found, then turn right

The portion of the TM for step 1 and step 2:

Step 3: move right, mark the first 1 reached with' I _an_ X^{\prime} ' and turn left.If no ' 1 ' found but '*' is

- reached, convert it to ' Λ ', move one unit to the right and stop.

Step 3: move right, mark the first 1 reached with an ' X^{\prime} ' and turn left. If no '1' found but '*' is Iright and stop.

The TM will look like as follows :

Step 4: move left, mark the first 1 reached with i an ' Y ' and turn right. 'If no ' $\overline{1}$ ' $\overline{\text { found }} \overline{\text { but }}{ }^{-} \overline{{ }^{\prime}} \bar{\Lambda}$ ' is

- $\overline{\text { reached }} \bar{d}$, keep that ' Λ ', turn right and change all the Y's to 1, when we reach the '*', keep that '*', move one unit to the right and go to Step 3.

Step 4: move left, mark the first 1 reached with
 rrēācћēđ, kēēp-tЋ̄̄̄t' Λ ', turn right and change all the Y's to 1, when we reach the '*', keep that '*', imove one unit to the right and go to Step 3.

The TM will look like as follows :

Step 5.1: move right, ignore all the Y's, the first '*' , all the X 's, all the 1's, the second '*', all the 1's

- until we reach a ' Λ '. Convert that Λ to a 1 and then turn left.

Step 5.2: Move left, ignore the first '*', all the 1's, all the X's, until the second '*' is reached. Keep that '*' and move one unit to the left and go to Step 4.

From slide 33

The TM will look like as follows :

Question:

Can the above TM be modified to do multiplication of three numbers, four numbers, ..., n numbers in unary form directly?

Solution:

Step 1

Solution:

Step 2

Solution:

Step 3

TM for the division function for the unary number system

Develop a TM for the division of two unary numbers m and n such that $f(m / n)=q+r$ where q is the quotient and r is the remainder.

Input:

Output:

Basic concept: divide the unary representation of m into subgroups of length n; the number of subgroups is the quotient and the excess part is the remainder.

1111

1111111111

If $n<$ (current) m do

- create a subgroup of length n
- add 1 to Q
- erase this subgroup from m

Otherwise, set the current m to be R

1111

(Create a subgroup of length 4)
(Increment
Q by 1)

1111
(erase this subgroup from m)

current m

$$
\begin{aligned}
& \mathrm{Q}=-2 \\
& \mathrm{Q}=2 \\
& \mathrm{IR}=\Lambda
\end{aligned}
$$

$4>(2$, so

(set this part as R)

And then stop

Implementation:

Input:

Step 1.1: move right, ignore all the 1's and 0 , to find the first Λ, convert it to Q and turn left

Step 1.2: move left, ignore all the 1's, X's and 0 until a Λ is found, then turn right

The portion of the TM for Step 1.1 and Step 1.2:

Step 2 (test if $\mathrm{n}>$ (current) m)
Repeat the following process: mark a 1 in n with a B then mark an available 1 in m with an A.

If all the available 1 's in m are marked before all the 1's in n are marked (i.e., $n>$ (current) m), then go to Step 4 (to format an output and then stop).

Otherwise (i.e., n <= (current) m), go to Step 3.

Initially,

Current m

No more 1's in n to mark, but there are still some unmarked 1's in m (i.e., n <= current m), so go to Step 3

After a while,

No available 1 in current m to mark/match for the 1 just marked in n (i.e., $n>$ (current) m), so go to Step 4.

The portion of the TM for Step 1 and Step 2 is as

 follows :

Step 3: This step marks n 1's of m with X's (so the next 'current m ' has n less available 1's than the

- current 'current m') and adds 1 to the quotient and then go to Step 2 (to perform the next ($\mathrm{n}>$ (current) m) test).

From (*) in Step 2 :

The portion of the TM that does Step 3 :

Step 4:

This step formats the output by using the number of 1 's put behind Q as the quotient and the number of available 1's in current m as the remainder, then terminates.

From (**) in Step 2 (slide 58):

The portion of the TM that performs Step 4 :

End of Turing Machines II

