CS375: Logic and Theory of Computing

Fuhua (Frank) Cheng

Department of Computer Science
University of Kentucky
Table of Contents:

- **Week 1: Preliminaries** (set algebra, relations, functions) (read Chapters 1-4)
- **Weeks 2&3: Propositional Logic** (Chapter 6)
- **Weeks 4&5: Predicate Logic** (Chapter 7)
- **Weeks 6&7: Computing with Logic** (Chapter 9)
- **Week 8: Algebraic Structures** (Chapter 10)
- **Weeks 9&10: Regular Languages, Finite Automata** (Chapter 11)
Table of Contents (conti):

- Weeks 11&12: Context-Free Languages, Pushdown Automata (Chapters 12)
- Weeks 13&14: Turing Machines (Chapter 13)
2. Propositional Logic — Formal reasoning

Using IP \(\rightarrow \) Indirect proof

To prove \(A \),
assume \(\neg A \) is true \((\text{premise}) \)
If we can prove \(\neg A \rightarrow \text{False} \)
Then since \(A \equiv \neg A \rightarrow \text{False} \) so we have \(A \).
This is the IP rule.

Ex Prove \(\neg (A \land \neg A) \) is a tautology

1. \(\neg \neg (A \land \neg A) \) \(P \) [for \(\neg (A \land \neg A) \)]
2. \(A \land \neg A \) \(1, \text{DN} \)
3. \(A \) \(2, \text{Simp} \)
4. \(\neg A \) \(2, \text{Simp} \)
5. \(\text{False} \) \(3, 4, \text{Contr} \)
QED \(1-5, \text{IP} \)

(Double Negation)
IP is most often used in a subproof setting when proving a conditional of the form \(V \rightarrow W \).

Start with \(V \) as a premise for a CP proof. Then start an IP subproof with premise \(\neg W \). When a contradiction is reached, we obtain \(W \) by IP. Then CP gives the result \(V \rightarrow W \).

As with CP subproofs, result of IP is written with no indentation.

Example. Prove the tautology \((A \rightarrow B) \land (A \lor B) \rightarrow B\).
Example. prove that the converse of \((A \lor B) \rightarrow (\neg B \rightarrow A)\).

Proof of \((\neg B \rightarrow A) \rightarrow (A \lor B)\):

1. \(\neg B \rightarrow A\) \hspace{1cm} P
2. \(\neg (A \lor B)\) \hspace{1cm} P \ [for A \lor B]
3. \(\neg B\) \hspace{1cm} P \ [for B]
4. \(A\) \hspace{1cm} 1, 3, MP
5. \(A \lor B\) \hspace{1cm} 4, Add
6. \(\text{False}\) \hspace{1cm} 2, 5, Contr
7. \(B\) \hspace{1cm} 3–6, IP
8. \(A \lor B\) \hspace{1cm} 7, Add
9. \(\text{False}\) \hspace{1cm} 2, 8, Contr
10. \(A \lor B\) \hspace{1cm} 2, 7–9, IP

\begin{align*}
\text{QED} & \quad 1, 4, CP.
\end{align*}
2. Propositional Logic — Formal reasoning

Derived Rules (they follow from the original rules)

- **Modus Tollens (MT)**
 \[A \rightarrow B, \neg B \]
 \[\neg A \]

- **Hypothetical Syllogism (HS)**
 \[A \rightarrow B, B \rightarrow C \]
 \[A \rightarrow C \]

- **Proof by Cases (Cases)**
 \[A \lor B, A \rightarrow C, B \rightarrow C \]
 \[C \]

- **Constructive Dilemma (CD)**
 \[A \lor B, A \rightarrow C, B \rightarrow D \]
 \[C \lor D \]

Example. prove the tautology \((A \rightarrow C) \land (B \rightarrow C) \rightarrow (A \lor B \rightarrow C)\).

1. \(A \rightarrow C\)
2. \(B \rightarrow C\)
3. \(A \lor B\)
4. \(C\)
5. \(A \lor B \rightarrow C\)

QED
2. Propositional Logic — Formal reasoning

Derived Rules (they follow from the original rules)

- **Modus Tollens (MT)**

 \[\frac{A \rightarrow B, \neg B}{\neg A} \]

- **Hypothetical Syllogism (HS)**

 \[\frac{A \rightarrow B, B \rightarrow C}{A \rightarrow C} \]

Proof by Cases (Cases)

\[\frac{A \lor B, A \rightarrow C, B \rightarrow C}{C} \]

Constructive Dilemma (CD)

\[\frac{A \lor B, A \rightarrow C, B \rightarrow D}{C \lor D} \]

Proof

1. \(A \rightarrow B \) \(P \)
2. \(\neg B \) \(P \)
3. \(A \) \(P \) [for \(\neg A \)]
4. \(B \) \(1, 3, \text{MP} \)
5. \(\text{False} \) \(2, 4, \text{Contr} \)
6. \(\neg A \) \(3, 5, \text{IP} \)

QED \(1-6, \text{CP} \)
2. Propositional Logic — Formal reasoning

Derived Rules (they follow from the original rules)

- **Modus Tollens (MT)**
 \[
 \frac{A \rightarrow B, \neg B}{\neg A}
 \]

- **Hypothetical Syllogism (HS)**
 \[
 \frac{A \rightarrow B, B \rightarrow C}{A \rightarrow C}
 \]

- **Proof by Cases (Cases)**
 \[
 \frac{A \lor B, A \rightarrow C, B \rightarrow C}{C}
 \]

- **Constructive Dilemma (CD)**
 \[
 \frac{A \lor B, A \rightarrow C, B \rightarrow D}{C \lor D}
 \]

\[(A \rightarrow B) \land (B \rightarrow C) \rightarrow (A \rightarrow C)\]

proof

- **A → B** \(P \)
- **B → C** \(P \)
- **A** \(P \) [for **A → C**]
- **B** \(MP \)
- **C** \(MP \)
- **A → C** \(CP \)
- **QED** \(CP \)
2. Propositional Logic — Formal reasoning

Derived Rules (they follow from the original rules)

Modus Tollens (MT)
\[
A \rightarrow B, \neg B \\
\neg A
\]

Hypothetical Syllogism (HS)
\[
A \rightarrow B, B \rightarrow C \\
A \rightarrow C
\]

Proof by Cases (Cases)
\[
A \lor B, A \rightarrow C, B \rightarrow C \\
C
\]

Constructive Dilemma (CD)
\[
A \lor B, A \rightarrow C, B \rightarrow D \\
C \lor D
\]

(A \lor B) \land (A \rightarrow C) \land (B \rightarrow C) \\
\rightarrow C

proof

<table>
<thead>
<tr>
<th>A \lor B</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>A \rightarrow C</td>
<td>P</td>
</tr>
<tr>
<td>B \rightarrow C</td>
<td>P</td>
</tr>
<tr>
<td>\neg C</td>
<td>P [for C]</td>
</tr>
<tr>
<td>\neg A</td>
<td>MT</td>
</tr>
<tr>
<td>\neg B</td>
<td>MT</td>
</tr>
<tr>
<td>\neg A \land \neg B</td>
<td>Conj</td>
</tr>
<tr>
<td>\neg (A \lor B)</td>
<td>DM</td>
</tr>
<tr>
<td>False</td>
<td>Contra</td>
</tr>
<tr>
<td>C</td>
<td>IP</td>
</tr>
<tr>
<td>QED</td>
<td>CP</td>
</tr>
<tr>
<td>QED</td>
<td>CP</td>
</tr>
</tbody>
</table>

University of Kentucky
2. Propositional Logic — Formal reasoning

Derived Rules (they follow from the original rules)

<table>
<thead>
<tr>
<th>Rule</th>
<th>Proof</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modus Tollens (MT)</td>
<td></td>
</tr>
<tr>
<td>[A \rightarrow B, \neg B]</td>
<td>\neg A</td>
</tr>
<tr>
<td>Hypothetical Syllogism (HS)</td>
<td></td>
</tr>
<tr>
<td>[A \rightarrow B, B \rightarrow C]</td>
<td>[\neg (C \lor D)]</td>
</tr>
<tr>
<td>[A \rightarrow C]</td>
<td></td>
</tr>
<tr>
<td>[B \rightarrow D]</td>
<td></td>
</tr>
<tr>
<td>[\neg (C \lor D) \rightarrow \neg A \rightarrow \neg B \rightarrow \neg C \rightarrow \neg D \rightarrow \neg (A \lor B) \rightarrow False]</td>
<td></td>
</tr>
</tbody>
</table>

Proof by Cases (Cases)

\[\frac{A \lor B, A \rightarrow C, B \rightarrow C}{C} \]

Constructive Dilemma (CD)

\[\frac{A \lor B, A \rightarrow C, B \rightarrow D}{C \lor D} \]

\[(A \lor B) \land (A \rightarrow C) \land (B \rightarrow D) \rightarrow (C \lor D) \]
Derived Rules (they follow from the original rules)

- **Modus Tollens (MT)**
 \[
 \frac{A \rightarrow B, \neg B}{\neg A}
 \]

- **Hypothetical Syllogism (HS)**
 \[
 \frac{A \rightarrow B, B \rightarrow C}{A \rightarrow C}
 \]

- **Proof by Cases (Cases)**
 \[
 \frac{A \lor B, A \rightarrow C, B \rightarrow C}{C}
 \]

- **Constructive Dilemma (CD)**
 \[
 \frac{A \lor B, A \rightarrow C, B \rightarrow D}{C \lor D}
 \]

Example. Prove the tautology \((A \rightarrow C) \land (B \rightarrow C) \rightarrow (A \lor B \rightarrow C)\)

1. \(A \rightarrow C\)
2. \(B \rightarrow C\)
3. \(A \lor B\)
4. \(C\)
5. \(A \lor B \rightarrow C\)

QED
2. Propositional Logic — Formal reasoning

Second proof of the tautology

\[(A \rightarrow C) \land (B \rightarrow C) \rightarrow (A \lor B \rightarrow C).\]

\[
\begin{align*}
1. & \quad A \rightarrow C \\
2. & \quad B \rightarrow C \\
3. & \quad A \lor B \\
4. & \quad \neg C \\
5. & \quad \neg A \\
6. & \quad B \\
7. & \quad \neg B \\
8. & \quad \text{False} \\
9. & \quad C \\
10. & \quad A \lor B \rightarrow C
\end{align*}
\]

QED
2. Propositional Logic — Formal reasoning

Example. Prove \((A \rightarrow C) \land \neg (A \rightarrow B) \rightarrow \neg (C \rightarrow B)\) with IP somewhere.

Example. Consider the following argument:
I eat spinach (S) or ice cream (I). If I study logic (L) then I will pass the exam (P). If I eat ice cream then I will study logic. If I eat spinach then I will play golf (G). I failed the exam. Therefore, I played golf.
Example. Consider the following argument:

I eat spinach (S) or ice cream (I). If I study logic (L) then I will pass the exam (P). If I eat ice cream then I will study logic. If I eat spinach then I will play golf (G). I failed the exam. Therefore, I played golf.

The argument has five premises

\{S \lor I, L \rightarrow P, I \rightarrow L, S \rightarrow G, \neg P\} and conclusion G.

Prove that the argument is valid.
Premises: \(S \lor I, L \rightarrow P, I \rightarrow L, S \rightarrow G, \neg P \)

Conclusion: \(G \)

Prove:

1. \(S \lor I \)
2. \(L \rightarrow P \)
3. \(I \rightarrow L \)
4. \(S \rightarrow G \)
5. \(\neg P \)
6. \(\neg L \)
7. \(\neg I \)
8. \(S \)
9. \(G \)

\[2, 5, \text{MT} \]
\[3, 6, \text{MT} \]
\[1, 7, \text{DS} \]
\[4, 8, \text{MP} \]

QED.
Alternative Proof:

6. \(I \rightarrow P \)
7. \(\neg I \)
8. \(S \)
9. \(G \)

QED.

Alternative Proof:

6. \(G \vee L \)
7. \(\neg L \)
8. \(G \)

QED.

Alternative Proof:

6. \(I \rightarrow P \)
7. \(G \vee L \)
8. \(G \)

QED.
2. Propositional Logic — Formal axiom systems

By a **formal axiom system** we mean a specific set of axioms (a fixed set of premises) and **proof rules**. The aims of a formal axiom system are **soundness and completeness**:

- **Soundness**: All proofs yield theorems that are tautologies.
- **Completeness**: All tautologies are provable as theorems.

Frege-Lukasiewicz (F-L) Axiom System

- **Axiom 1**: $A \rightarrow (B \rightarrow A)$.
- **Axiom 2**: $(A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))$.
- **Axiom 3**: $(\neg A \rightarrow \neg B) \rightarrow (B \rightarrow A)$.
- **Proof Rule**: MP.
2. Propositional Logic — Formal axiom systems

By a formal axiom system we mean a specific set of axioms (a fixed set of premises) and proof rules. The aims of a formal axiom system are soundness and completeness:

- **Soundness**: All proofs yield theorems that are tautologies.
- **Completeness**: All tautologies are provable as theorems.

Frege-Lukasiewicz (F-L) Axiom System

- **Axiom 1**: $A \rightarrow (B \rightarrow A)$.
- **Axiom 2**: $(A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))$.
- **Axiom 3**: $(\neg A \rightarrow \neg B) \rightarrow (B \rightarrow A)$.
- **Proof Rule**: MP.

1. A
2. $\neg(B \rightarrow A)$
3. $B \land \neg A$
4. $\neg A$
5. False
6. $B \rightarrow A$
 QED
2. Propositional Logic — Formal axiom systems

Since the axioms of F-L are tautologies and MP maps tautologies to a tautology, the F-L system is sound. The F-L system is also complete, but that takes a bit of proof (see the text).

Example (Lemma). Use the F-L system to prove $A \to A$.

Proof:
1. $A \to ((A \to A) \to A)$
 \hspace{1cm} Axiom 1
2. $(A \to ((A \to A) \to A)) \to ((A \to (A \to A)) \to (A \to A))$
 \hspace{1cm} Axiom 2
3. $(A \to (A \to A)) \to (A \to A)$
 \hspace{1cm} 1, 2, MP
4. $A \to (A \to A)$
 \hspace{1cm} Axiom 1
5. $A \to A$
 \hspace{1cm} 3, 4, MP

QED.

We did not use A as premise to prove $A \to A$
Deduction Theorem (The CP Rule)

If \(A \) is a premise in a proof of \(B \), then there is a proof of \(A \rightarrow B \) that does not use \(A \) as a premise.

Proof Idea: Assume the proof has the form
\[
A = B_0, \ldots, B_n = B.
\]
If \(n = 0 \), then \(A = B \). So we must find a proof of
\[
A \rightarrow B = A \rightarrow A
\]
that does not use \(A \) as a premise. A proof was given in the previous example (lemma). Let \(n > 0 \) and assume that for each \(k \) in the range \(0 \leq k < n \) there is a proof of \(A \rightarrow B_k \) that does not use \(A \) as a premise.

This theorem justifies the conditional proof technique.
2. Propositional Logic — Formal axiom systems

Proof Idea (conti):
Show that there is a proof of $A \rightarrow B_n$ that does not use A as a premise. If B_n is a premise or an axiom, then we have the following proof that does not use A as a premise:

1. B_n
 Premise or Axiom
2. $B_n \rightarrow (A \rightarrow B_n)$
 Axiom 1
3. $A \rightarrow B_n$
 1, 2, MP
 QED.

If B_n is neither a premise nor an axiom, then it is inferred by MP from B_i and $B_j = B_i \rightarrow B_n$, where $i < n$ and $j < n$. So we obtain the following proof that does not use A as a premise:
2. Propositional Logic — Formal axiom systems

Proof Idea (conti):

1. Proof of \(A \rightarrow B_i \) not using \(A \) as a premise
 Induction assumption
2. Proof of \(A \rightarrow (B_i \rightarrow B_n) \) not using \(A \) as a premise
 Induction assumption
3. \((A \rightarrow (B_i \rightarrow B_n)) \rightarrow ((A \rightarrow B_i) \rightarrow (A \rightarrow B_n)) \)
 Axiom 2
4. \((A \rightarrow B_i) \rightarrow (A \rightarrow B_n) \)
 2, 3, MP
5. \(A \rightarrow B_n \)
 1, 4, MP

QED.

Since \(B_n = B \), we have a proof of \(A \rightarrow B \) that does not use \(A \) as a premise. QED.
End of Propositional Logic II