
3/21/2024 1

CS375:

Logic and Theory of Computing

Fuhua (Frank) Cheng

Department of Computer Science

University of Kentucky

University of Kentucky

3/21/2024 2

Table of Contents:

◼ Week 1: Preliminaries (set algebra, relations,

functions) (read Chapters 1-4)

◼ Weeks 2-5: Regular Languages, Finite

Automata (Chapter 11)

◼ Weeks 6-8: Context-Free Languages,

Pushdown Automata (Chapters 12)

◼ Weeks 9-11: Turing Machines (Chapter 13)

University of Kentucky

3/21/2024 3

Table of Contents (conti):

▪ Weeks 12-13: Propositional Logic (Chapter

6), Predicate Logic (Chapter 7),

Computational Logic (Chapter 9),

Algebraic Structures (Chapter 10)

University of Kentucky

3/21/2024 University of Kentucky 4

Factorization has two effects:

(1) changes the 1st derivation step to a

unique step (in most of the cases);

(2) it does not change the number of options

for the 2nd step, but it removes the

common factor in all the options so the

lookahead box can be a smaller box.

3/21/2024 5University of Kentucky

Another example of Grammar

Transformation:
Find an LL(k) grammar where k is as small as possible

that is equivalent to the following grammar.

S → abS | abcT | ab T → cT | c

LL(3)?

S → ab(S | cT | Ʌ)

S → abS | abcT | ab T → cT | c

T → c(T | Ʌ)

S → abR R→ S | cT | Ʌ T → cU U → T | Ʌ

LL(1) ?

3/21/2024 6University of Kentucky

Another example of Grammar

Transformation:
Find an LL(k) grammar where k is as small as possible

that is equivalent to the following grammar.

S → abS | abcT | ab T → cT | c

LL(3)?

S → abR R→ S | cT | Ʌ T → cU U → T | Ʌ

Step 1 Step 2 LL(1) ?

3/21/2024 7University of Kentucky

Find an LL(k) grammar where k is as small as possible

that is equivalent to the following grammar.

S → abS | abcT | ab T → cT | c
LL(3)?

First, the language generated by the grammar is

{ (𝑎𝑏)𝑛, (𝑎𝑏)𝑛𝑐𝑚 | n ≥ 1, m ≥ 2 }

Is this grammar LL(3)?

S ⇒ abS ⇒ ababS ⇒ ⋯ ⇒ (𝑎𝑏)𝑛−1𝑆 ⇒ (𝑎𝑏)𝑛−1𝑎𝑏 = (𝑎𝑏)𝑛

S ⇒ abS ⇒ ababS ⇒ ⋯ ⇒ (𝑎𝑏)𝑛−1𝑆 ⇒ (𝑎𝑏)𝑛−1𝑎𝑏𝑐𝑇 = (𝑎𝑏)𝑛cT

⇒ (𝑎𝑏)𝑛ccT ⇒ ⋯ ⇒ (𝑎𝑏)𝑛𝑐𝑚−1𝑇 ⇒ (𝑎𝑏)𝑛𝑐𝑚−1𝑐 = (𝑎𝑏)𝑛𝑐𝑚

3/21/2024 8University of Kentucky

Is S → abR T → cU LL(1)

R → S | cT | Ʌ U → T | Ʌ

for { (𝑎𝑏)𝑛, (𝑎𝑏)𝑛𝑐𝑚 | n ≥ 1, m ≥ 2 } ?

Convert S → abR T → cU

R → S | cT | Ʌ U → T | Ʌ

to

then prove

S → abR T → cU

R → abR | cT | Ʌ U → cU | Ʌ

YES

3/21/2024 9University of Kentucky

Convert S → abR T → cU

R → S | cT | Ʌ U → T | Ʌ

to

then prove

S → abR T → cU

R → abR | cT | Ʌ U → cU | Ʌ

Factorization has two effects:

(1)changes the 1st derivation step to a unique

step;

(2) it does not change the # of options for the

2nd step, but it removes the common factor in all

the options so lookahead box can be a smaller

box.

3/21/2024 10University of Kentucky

There is no such thing as an ambiguous language,

but an ambiguous grammar.

If the old grammar is not ambiguous, then the new

grammar would still be un-ambiguous.

If the old grammar is ambiguous, then the new

grammar would also be ambiguous.

Question: Since each string of the language

{ (𝑎𝑏)𝑛, (𝑎𝑏)𝑛𝑐𝑚 | n ≥ 1, m ≥ 2 } would have two

different parse trees now, one with respect to the old

grammar, one with respect to the new grammar,

does this mean the language is ambiguous?

Why?

3/21/2024 11University of Kentucky

For instance:

S → abS | abcT | ab T → cT | c

LL(3)?

For abccc, we have

S ⇒ abcT

⇒ abccT

⇒ abcccT

⇒ abcccɅ

S

a b c T

Tc

c

3/21/2024 12University of Kentucky

For instance: LL(1)?

For abccc, we have

S ⇒ abR

⇒ abcT

⇒ abccU

⇒ abccT

⇒ abcccU ⇒ abcccɅ

S → abR R→ S | cT | Ʌ T → cU U → T | Ʌ

If we merge R

with S and U

with T we get

the parse tree

on previous

slide.

Uc

S

a b R

Tc

T

Uc

Ʌ

3/21/2024 13University of Kentucky

For abccc, we have

S → abR R→ S | cT | Ʌ T → cU U → T | Ʌ

Uc

S

a b R

Tc

T

Uc

Ʌ

merge R with S

merge R with S

S

a b T

Uc

T

Uc

Ʌ

c

3/21/2024 14University of Kentucky

For abccc, we have

S → abR R→ S | cT | Ʌ T → cU U → T | Ʌ

merge U with T

T

Uc

Ʌ

c

S

a b Tc

S

a b T

Uc

T

Uc

Ʌ

c merge U

with T

3/21/2024 15University of Kentucky

For abccc, we have

S → abR R→ S | cT | Ʌ T → cU U → T | Ʌ

merge U with T

T

Uc

Ʌ

c

S

a b Tc

merge U

with T T

c Ʌ

c

S

a b Tc

3/21/2024 16University of Kentucky

S → abR R→ S | cT | Ʌ

T → cU U → T | Ʌ

T

c Ʌ

c

S

a b Tc

For abccc, we have

S

a b c T

Tc

c

same

After merging, we have

New grammar

S → abS | abcT | ab

T → cT | c

Old grammar

So, what does this mean? it means the parse tree of a string with

respect to the old grammar can be converted to the parse tree of

that string with respect to the new grammar (and vice versa)

3/21/2024 17University of Kentucky

If old grammar is ambiguous then the

new grammar is ambiguous too. Why?

S

S

()

S

S S

() ()

S

S

）（

S

SS

）（）（

If the old grammar is ambiguous,

find the first internal node whose

child nodes are different.

Then the corresponding internal nodes in the parse trees

generated by the new grammar would be different too.

3/21/2024 18University of Kentucky

A grammar is left-recursive if it has a derivation of the

form

A ⇒+ Ax

for some nonterminal A and sentential form x.

Example. The language { 𝑏𝑎𝑛 | n ∈ N} has a grammar

S → Sa | b

that is left-recursive.

Remove Left Recursion:

S ⇒+ S𝑎𝑛

3/21/2024 19University of Kentucky

Left-recursive grammars are not LL(k) for any k

For instance, the grammar S → Sa | b for the

language { 𝑏𝑎𝑛 | n ∈ N} is not LL(k) for any k.

Remove Left Recursion:

LL(1) case: WHY? Consider: b a

S ⇒ ?

LL(2) case: Consider: b a a

S ⇒ Sa

⇒ ?

3/21/2024 20University of Kentucky

Left-recursive grammars are not LL(k) for any k

For instance, the grammar S → Sa | b for the

language { 𝑏𝑎𝑛 | n ∈ N} is not LL(k) for any k.

Remove Left Recursion:

LL(3) case: WHY? Consider: b a a a

S ⇒ Sa

⇒ Saa

⇒ ?

3/21/2024 21University of Kentucky

S ⇒ 𝑆𝑥1 ⇒ 𝑆𝑥2𝑥1 ⇒ 𝑆𝑥3𝑥2𝑥1 ⇒ ⋯
⇒ 𝑆𝑥7 𝑥6 ⋯ 𝑥3 𝑥2 𝑥1

WHY?

Left-recursive grammars are not LL(k) for any k

Left-recursive:

Growth direction

𝑥7 𝑥6 𝑥5 𝑥4 𝑥3 𝑥2 𝑥1Input string: LL(2)

Scan/matching direction

How would you be able to tell what production(s) to

use for the generation of 𝑥7𝑥6 while we don’t have

information on 𝑥5𝑥4 yet.

3/21/2024 22University of Kentucky

S ⇒ 𝑆𝑥1 ⇒ 𝑆𝑥2𝑥1 ⇒ 𝑆𝑥3𝑥2𝑥1 ⇒ ⋯
⇒ 𝑆 𝑥7 𝑥6 ⋯ 𝑥3 𝑥2 𝑥1

WHY?

Left-recursive grammars are not LL(k) for any k

Left-recursive:

Growth direction

Input string: LL(7)

Scan/matching direction

But what if the length of the input string is 9, 10 or 20?

𝑥7 𝑥6 𝑥5 𝑥4 𝑥3 𝑥2 𝑥1

3/21/2024 23University of Kentucky

WHY?

Left-recursive grammars are bad for parsing

Left-recursive grammar:

b

aS

S a

S

aS

S → Sa | b for { ban | n ∈ N}

Input string: baaa

S ⇒ SaString

generation:
⇒ Saa

⇒ Saaa

⇒ baaa

When ‘b’ is scanned, how do

we know it is a ‘b’ from baaa

or from baa, or from ba?

3/21/2024 University of Kentucky 24

Left-recursive grammars are not LL(k) for any k

Left-recursive grammars are bad for parsing

The parse tree is supposed to be built in a top-down

fashion (or, the symbols in the input string are

supposed to be matched with the leaf nodes in a

pre-order fashion) and, yet, for a left-recursive

grammar, the order is reversed.

Root, left,

right

Bottom-up

3/21/2024 25University of Kentucky

Obtain an LL(k) grammar by removing left-recursion

Remove Direct Left Recursion:

Consider: A → Aw | Au | Av | a | b

One gets avuw through the following derivation:

A ⇒ Aw ⇒ Auw ⇒ Avuw ⇒ avuw

One can also get avuw the following way:

A ⇒ aB ⇒ avB ⇒ avuB ⇒ avuwB ⇒ avuwɅ = avuw

Since (a (v (u (w))))= ((((a) v) u) w)

So you obtain avuw this way = ((((a) v) u) w)

3/21/2024 26University of Kentucky

Algorithm for removing Direct Left Recursion:

Transform: A → Aw | Au | Av | a | b

To: A → aB | bB

B → wB | uB | vB | Ʌ

Remove Direct Left Recursion:

Left

recursion

Right

recursion
Terminating tool

Terminating tools

(Change end point to start point, change start point to end point)

3/21/2024 27University of Kentucky

Example: removing left-recursion of S → Sa | b

Transform: S → b

S → Sa

To: S → bB

B → aB | Ʌ

Remove Direct Left Recursion:

3/21/2024 28University of Kentucky

S → Sa | b is not LL(1),

but S → bB B → aB | Ʌ is LL(1)

Consider: b a a a

S ⇒ b B

⇒ b a B

⇒ b a a B

⇒ b a a a B

⇒ b a a a Ʌ

Remove Direct Left Recursion:

B

S

b

a B

Ba

Ʌ

a B

3/21/2024 29University of Kentucky

Fundamental difference between left-recursive

grammars and right-recursive grammars:

Right-recursive:

baaaa…

Growth direction

S ⇒ 𝑏𝐵

Direction of left-most derivation

⇒ 𝑏𝑎𝐵
⇒ 𝑏𝑎𝑎𝐵

3/21/2024 30University of Kentucky

Fundamental difference between left-recursive

grammars and right-recursive grammars:

Right-recursive:

baaaa

Growth direction

Direction of left-most derivation

The left-most derivation process knows all the

previous foot steps of the string growing process

3/21/2024 31University of Kentucky

Fundamental difference between left-recursive

grammars and right-recursive grammars:

Left-recursive:

baa

Growth direction

S ⇒ 𝐴 𝑎

Direction of left-most derivation

⇒ 𝐴 𝑎𝑎
⇒ 𝑏𝑎𝑎

3/21/2024 32University of Kentucky

Fundamental difference between left-recursive

grammars and right-recursive grammars:

Left-recursive:

baaaa

Growth direction

Direction of left-most derivation

The left-most derivation process does not know

the previous foot steps of the string growing

process.

3/21/2024 33University of Kentucky

Example: removing left-recursion of

S → Saa | aab |aac

Transform: S → aab | aac

S → Saa

To: S → aabB | aacB

B → aaB | Ʌ

Remove Direct Left Recursion:

Convert

productions

that are

used as

terminating

tools first

3/21/2024 34University of Kentucky

S → Saa | aab | aac is not LL(3),

but S → aabB | aacB B → aaB | Ʌ is LL(3)

Consider: a a b a a

S ⇒ a a b B

⇒ a a b a a B

⇒ a a b a a Ʌ

= a a b a a

Remove Direct Left Recursion:

a a B

B

S

a a b

Ʌ

3/21/2024 35University of Kentucky

S ⇒ 𝑥1𝑆 ⇒ 𝑥1𝑥2𝑆 ⇒ 𝑥1𝑥2𝑥3 𝑆 ⇒ ⋯
⇒ 𝑥1 𝑥2 𝑥3 ⋯ 𝑥𝑛−1 𝑥𝑛 𝑆

WHY?

A right-recursive grammar is always LL(k) for some k

Right-recursive:

So no matter how big the input

string is, one can always find a

k large enough so that if k

symbols are read each time,

one can always tell if the right

most symbol of the lookahead

box is the result of some m-th

derivation step
Ʌ

a a B

B

S

a a b

Consider: a a b a a

S → aabB | aacB B → aaB | Ʌ

3/21/2024 36University of Kentucky

Rewrite S → aabB | aacB B → aaB | Ʌ to be

LL(1)

Transform: S → aabB | aacB B → aaB | Ʌ

To: S → aaA

A → bB | cB

B → aaB | Ʌ

Show this is LL(1)

Use factorization to make a right recursive

grammar more efficient:

Note that S → aabB | aacB = S → aa(bB | cB)

3/21/2024 37University of Kentucky

Transform: S → aabB | aacB B → aaB | Ʌ

To: S → aaA

A → bB | cB

B → aaB | Ʌ
LL(1)

Use factorization to make a right recursive

grammar more efficient:

Factorization makes ‘S → aaA’ a unique first production. This

production will always be used as the first step in the

derivation step (you don’t need to scan anything), and the

common factor on the right side of this production provides

an automatic match on the first part of the input string (e.g.,

for aabaa, you automatically get a match on aa from the first

production), so you can start your first scan on the third or

fourth symbol and yet with a smaller lookahead box.

3/21/2024 38University of Kentucky

S → Ab | a A → Sa | b is left recursive

Remove Indirect Left Recursion:

(Because S ⇒ Ab ⇒ Sab)

To remove indirect left recursion:

1. Replace A in S → Ab by the right side of A → Sa | b

2. Then remove the left recursion

3/21/2024 39University of Kentucky

S → Ab | a A → Sa | b

Remove Indirect Left Recursion:

Step 1:

S → Sab | bb | a

Step 2:

S → bbB | aB

B → abB | Ʌ

3/21/2024 40University of Kentucky

Example: remove left recursion from

S → Ab | a A → SAa | b

Remove Indirect Left Recursion:

Step 1:

S → SAab | bb | a A → SAa | b

Step 2:

S → bbB | aB B → AabB | Ʌ A → SAa | b

3/21/2024 53University of Kentucky

The Picture:

Regular

LL(k)

Deterministic C-F

Context-free

Palindromes over {a, b}

{ anbn | n ϵ N }

{am,anbn | m,n ϵ N}

LL(1)

S → aSb | Ʌ

S → A | B

B → aB | Ʌ

A → aAb | Ʌ

Non-deterministic

Skip

slides

37-48

3/21/2024 54University of Kentucky

The grammar { S → aSb | Λ } for the language

{ 𝑎𝑛𝑏𝑛 | n ∈ N} is LL(1)

Consider a a b b
S

a bS

a bS

S ⇒ aSb

Ʌ

⇒ aaSbb

⇒ aaɅbb

Q.E.D.

3/21/2024 55University of Kentucky

The grammar

{ S → A | B A → aAb | Ʌ B → aB | Ʌ }

for the language { 𝑎𝑚, 𝑎𝑛𝑏𝑛 | m, n ∈ N}

is not LL(k) for any k

For k=1, consider: a

For k=2, consider: aa

For k=3, consider: aaa

...

3/21/2024 56University of Kentucky

The grammar

{ S → A | B A → aAb | Ʌ B → aB | Ʌ }

for the language { 𝑎𝑚, 𝑎𝑛𝑏𝑛 | m, n ∈ N}

is not LL(k) for any k, but is deterministic

pop

ab,
Start X

)(

,

)(

,

apush

aa

apush

Xa

pop

ab,

pop

X,

3/21/2024 57

End of Context-Free

Language and

Pushdown Automata

IV
University of Kentucky

