
3/17/2024 1

CS375:

Logic and Theory of Computing

Fuhua (Frank) Cheng

Department of Computer Science

University of Kentucky

University of Kentucky

3/17/2024 2

Table of Contents:

◼ Week 1: Preliminaries (set algebra, relations,

functions) (read Chapters 1-4)

◼ Weeks 3-6: Regular Languages, Finite

Automata (Chapter 11)

◼ Weeks 7-9: Context-Free Languages,

Pushdown Automata (Chapters 12)

◼ Weeks 10-12: Turing Machines (Chapter 13)

University of Kentucky

3/17/2024 3

Table of Contents (conti):

▪ Weeks 13-14: Propositional Logic (Chapter

6), Predicate Logic (Chapter 7),

Computational Logic (Chapter 9),

Algebraic Structures (Chapter 10)

University of Kentucky

3/17/2024 4

Goal:

➢ Declarative formalisms like CFGs, FSAs define the

legal strings of a language--but only tell you ‘this is a

legal string of the language X’

➢ Parsing algorithms specify how to recognize the

strings of a language and how to do syntactic

analysis of a string

University of Kentucky

7. Context-Free Languages & Pushdown

Automata - Context-Free Parsing

build
Strings

Recognize/

analyze

Cut open

the belly

A black box

assembly line

3/17/2024 5University of Kentucky

7. Context-Free Languages & Pushdown

Automata - Context-Free Parsing

For instance,

“I like like spaghetti” could be considered a legal

string

but not a legitimate sentence

structure-wise

3/17/2024 6University of Kentucky

◼ A CFG is called an LL(k) grammar if a parser can be

constructed to scan an input string from left to right

and build a leftmost derivation by examining next k

input symbols to determine the unique production

for each derivation step.

◼ If a language has an LL(k) grammar, it is called an

LL(k) language.

LL(k) Grammar:

3/17/2024 7University of Kentucky

LL(k) Grammar:

S ⇒ ……

⇒ ……

⇒ ……

⇒ ……

⇒ ……

⇒ ……

Leftmost derivation

CFG productionNext k input symbols

CFG productionNext k input symbols

CFG productionNext k input symbols

CFG productionNext k input symbols

CFG productionNext k input symbols

CFG productionNext k input symbols

3/17/2024 8University of Kentucky

LL(k) Grammar:

S ⇒ ……

⇒ ……

⇒ ……

⇒ ……

⇒ ……

⇒ ……

Leftmost derivation

CFG productionNext k input symbols

CFG productionNext k input symbols

CFG productionNext k input symbols

CFG production

CFG productionNext k input symbols

Okay, to determine

more than one step

3/17/2024 9University of Kentucky

First, a few things about parse tree,

parser and parsing:

Parse Trees
❑ Parse trees are trees labeled by symbols of a

particular CFG (in a particular order).

❑ Leaves: labeled by a terminal or Ʌ.

❑ Interior nodes: labeled by a non-terminal.

❑ Children are labeled by the right side of a production for the

parent.

❑ Root: must be labeled by the start symbol

X02 → a A01 X11

3/17/2024 10University of Kentucky

Example: Parse Tree

S → SS | (S) | ()

S

S

()

S

(S)

()

S → SS

S → (S)

S → ()

S → ()

3/17/2024 11University of Kentucky

Yield of a Parse Tree
❑ The concatenation of the labels of the leaves in

left-to-right order.

❑ That is, in the order of a preorder traversal.

❑ is called the yield of the parse tree.

❑ Example: yield of is (()) ()

Root-L-R

3/17/2024 12University of Kentucky

Parse Trees, Left- and

Rightmost Derivations
❑ For every parse tree, there is a unique leftmost, and a

unique rightmost derivation.

S ⇒ SS

⇒ (S)S

⇒ (())S

⇒ (())()

Derivation:

Given a grammar: G: S → SS | (S) | ()

3/17/2024 13University of Kentucky

Conclusion: (())() is a legal string in L(G)

S

⇒ SS

⇒ (S)S

⇒ (())S

⇒ (())()

(leftmost) derivation

Parsing:
Given a parse tree

3/17/2024 14University of Kentucky

Conclusion: (())() is a legal string in L(G) because

it has a valid structure

S

⇒ SS

⇒ (S)S

⇒ (())S

⇒ (())()

Parsing:
Given a parse tree

3/17/2024 15University of Kentucky

We can even tell if a grammar is an LL(1),

LL(2), … grammar

S → SS

S → (S)

S → ()

(productions)

3/17/2024 16University of Kentucky

Parsing:

Actually parsing

contains several

steps.

But for now, a conceptual

understanding is

enough

3/17/2024 17University of Kentucky

Continue on LL(k) grammar …

◼ A CFG is called an LL(k) grammar if a parser can be

constructed to scan an input string from left to right

and build a leftmost derivation by examining next k

input symbols to determine the unique production for

each derivation step.

◼ If a language has an LL(k) grammar, it is called an

LL(k) language.

(1) It has an LL(1) grammar

S → aS | b

A parser can examine one input letter to decide

whether to use S → aS or S → b for the next

derivation step.

3/17/2024 18University of Kentucky

Example. Consider the language

{ 𝑎𝑛𝑏 | n ∈ N}.

Consider: a a b

S ⇒ aS

⇒ a a S

⇒ a a b

a S

a S

S

b

(2) It has an LL(2) grammar

S → aaS | ab | b

A parser can examine two input letters to decide

whether to use S → aaS, S → ab or S → b for

the next derivation step.

3/17/2024 19University of Kentucky

Example. Consider the language

{ 𝑎𝑛𝑏 | n ∈ N}.

Consider: a a a b

S ⇒ a a S

⇒ a a a b a b

a S

S

a

(2) It has an LL(2) grammar

S → aaS | ab | b

A parser can examine two input letters to decide

whether to use S → aaS, S → ab or S → b for

the next derivation step.

3/17/2024 20University of Kentucky

Example. Consider the language

{ 𝑎𝑛𝑏 | n ∈ N}.

Question 1: Is this grammar LL(1)?

Consider aabNo.

Can not determine S → aaS or S → ab to use

(2) It has an LL(2) grammar

S → aaS | ab | b

A parser can examine two input letters to decide

whether to use S → aaS, S → ab or S → b for

the next derivation step.

3/17/2024 21University of Kentucky

Example. Consider the language

{ 𝑎𝑛𝑏 | n ∈ N}.

Question 2: can you find an LL(3) grammar

that is not LL(2)?

Answer: S → aaaS | aab | ab | b

and consider the strings aaaaab, aaaab, aaab

◼A CFG is ambiguous if there is a string in

the language that is the yield of two or

more parse trees.

3/17/2024 22University of Kentucky

Ambiguous Grammars

◼Example: S -> SS | (S) | ()

◼Two parse trees for ()()() on next slide.

Not good

3/17/2024 23University of Kentucky

Ambiguous Grammars

Example: ()()()

S

S

()

S

S S

() ()

S

S

）（

S

SS

）（）（

3/17/2024 24University of Kentucky

Facts:

▪ Most programming languages

have LL(1) grammars.

▪ LL(1) grammars are never

ambiguous.

Depending on if identifiers/symbols

are included in the languages

LL(1) grammars are

• not ambiguous and

• not left-recursive.

(What if a, aa, aaa are the names of three variables?)

3/17/2024 25University of Kentucky

LL(1) grammars are not ambiguous.

Why?

Example: ()()()

S

S

()

S

S S

() ()

S

S

）（

S

SS

）（）（

If the grammar is ambiguous, find

the first internal node whose child

nodes are different.

For that internal node, we have two different production

choices for that derivation step, a contradiction.

3/17/2024 26University of Kentucky

LL(1) grammars are not left-

recursive. Why?

If an LL(1) grammar is left-recursive, then

there is at least a production of the form

S → SA

But then there must be a production of

the form

S → B

to terminate the recursion. So when ‘S’ is

scanned, we would have two options to

choose from, a contradiction.

3/17/2024 27University of Kentucky

Questions:

Is the grammar

S → AB ; A → aAb | Λ ; B → bB | Λ

for { 𝑎𝑛𝑏𝑛+𝑘 | n, k ∈ N} an LL(1) grammar?

Consider: b b

S ⇒ AB

⇒ Ʌ B

⇒ Ʌ b B

⇒ Ʌ b bB

⇒ Ʌ b b Ʌ

Ʌ

A B

S

Ʌ

b B

b B

Then try ab

Ʌ

3/17/2024 29University of Kentucky

Questions:

Is the grammar

S → AB ; A → aAb | Λ ; B → bB | Λ

for { 𝑎𝑛𝑏𝑛+𝑘 | n, k ∈ N} an LL(1) grammar?

Yes or No

Consider: a b b

S ⇒ AB

⇒ a A b B

⇒ a Ʌ b B

⇒ a Ʌ b b B

⇒ a Ʌ b b Ʌ

a bA

A B

S

Ʌ

b B

Then try aabb

a bA

3/17/2024 30University of Kentucky

Questions:

Is the grammar

S → AB ; A → aAb | Λ ; B → bB | Λ

for { 𝑎𝑛𝑏𝑛+𝑘 | n, k ∈ N} an LL(1) grammar?

Yes or No

Consider: a a b b b

S ⇒ AB
⇒ a A b B

⇒ a a A b b B
⇒ a a Ʌ b b B

a bA

Ʌ

b B

A B

S

Ʌ

⇒ a a Ʌ b b b B

⇒ a a Ʌ b b b Ʌ

3/17/2024 31University of Kentucky

Questions:

Is the grammar

S → aSb | T ; T → bT | Λ

for { 𝑎𝑛𝑏𝑛+𝑘 | n, k ∈ N} an LL(1) grammar?

Consider: a b

S ⇒ a S b

⇒ a T b

Yes or No
It gets stuck here

a bS

S

T

3/17/2024 32University of Kentucky

Questions:

Is the grammar

S → aSb | T ; T → bT | Λ

for { 𝑎𝑛𝑏𝑛+𝑘 | n, k ∈ N} an LL(2) grammar?

Consider: a a b b

S ⇒ a S b

⇒ a a S b b

⇒ a a T b b

Yes or No It gets stuck here

a bS

a bS

S

T

3/17/2024 33University of Kentucky

Questions:

Is the grammar

S → aSb | T ; T → bT | Λ

for { 𝑎𝑛𝑏𝑛+𝑘 | n, k ∈ N} an LL(k) grammar for k>2?

Quiz on your time

For k=3, check aaabbb

For k=4, check aaaabbbb

For k=n, check 𝑎𝑛𝑏𝑛

3/17/2024 34University of Kentucky

but the grammar { S → aSb | T ; T → bT | Λ }

for the same language is not LL(k) for any k>0?

What is the difference here?

Why the grammar { S→AB ; A→aAb | Λ ; B→bB | Λ }

is LL(1) for { 𝑎𝑛𝑏𝑛+𝑘 | n, k ∈ N} ?

In the second case,

we did not give the

parsing process a

chance to look back

before it moves

forward. What does

this mean?

3/17/2024 35University of Kentucky

How to show a language is not an

LL(k) language?

The language { 𝑎𝑛𝑏 | n ∈ N} is LL(1)

The language { 𝑎𝑛𝑏𝑛+𝑘 | n, k ∈ N} is LL(1)

S → aS | b

S → AB A → aAb | Ʌ B → bB | Ʌ

3/17/2024 36University of Kentucky

How to show a language is not an

LL(k) language?

But, even with the following grammar, the

language {𝑎𝑛+𝑘𝑏𝑛| n,k ∈ N} is not LL(k) for any k

S → AB ; A → aA | Ʌ ; B → aBb | Ʌ

Consider ab when k=1

Consider aabb when k=2

Consider aaabbb when k=3

…

Why?

3/17/2024 37University of Kentucky

◼ LL(k) languages are deterministic CF languages,

LL(k) languages ≠ DCF Languages

LL(k)

Deterministic C-F

Non-deterministic C-F

◼ hence non-deterministic CF languages are not LL(k).

3/17/2024 38University of Kentucky

The language { 𝑎𝑛𝑏 | n ∈ N} is LL(1)

S → aS | b

Is the following PDA a PDA for this language?

𝑏, 𝑋

𝑝𝑜𝑝

pop

ab,

Start X

)(

,

)(

,

apush

aa

apush

Xa

Deterministic or non-deterministic?

3/17/2024 39University of Kentucky

The language { 𝑎𝑛𝑏𝑛+𝑘 | n, k ∈ N} is LL(1)

S → AB A → aAb | Ʌ B → bB | Ʌ

Is the following PDA a PDA for this language?

pop

ab,
Start X

)(

,

)(

,

apush

aa

apush

Xa

pop

ab,

pop

X, 𝑏, 𝑋

𝑝𝑜𝑝
𝑏, 𝑋

𝑝𝑜𝑝

Deterministic or non-deterministic?

Does this PDA

accept aabbbaa?

3/17/2024 40University of Kentucky

Example:

The language { 𝑎𝑛+𝑘𝑏𝑛 | k, n ∈ N} is nondeterministic

context-free. So it has no LL(k) grammar for any k.

Proof:

Any PDA for the language must keep a count of the a’s

with the stack so that when the b’s come along the stack

can be popped with each b.

But there might still be a’s on the stack (when k > 0), so

there must be a nondeterministic state transition to a

final state from the popping state. i.e., we need two

instructions like,

(i, b, a, pop, i) and (i, Λ, a, pop, final).

3/17/2024 41University of Kentucky

Illustration:

The language { 𝑎𝑛+𝑘𝑏𝑛 | k, n ∈ N} is nondeterministic

context-free. So it has no LL(k) grammar for any k.

nop

X,

pop

ab,
Start X

)(

,

)(

,

apush

aa

apush

Xa

pop

a,

nop

X,

pop

ab,

nop

X,

pop

a,

To pop the remaining

a’s off the stack

So why is it non-deterministic?

3/17/2024 42University of Kentucky

Illustration:

The language { 𝑎𝑛+𝑘𝑏𝑛 | k, n ∈ N} is nondeterministic

context-free. So it has no LL(k) grammar for any k.

pop

X,

pop

ab,
Start X

)(

,

)(

,

apush

aa

apush

Xa

pop

a,

pop

X,

pop

ab,

pop

X,

pop

a,

To pop the remaining

a’s off the stack

or

3/17/2024 43University of Kentucky

Question:

The language { 𝑎𝑛+𝑘𝑏𝑛 | k, n ∈ N} is nondeterministic

context-free. (So it has no LL(k) grammar for any k)

then

Is the language { 𝑎𝑛+𝑘𝑏𝑛𝑐𝑘 | k, n ∈ N} nondeterministic

context-free?

Keep your answer to yourself

3/17/2024 44University of Kentucky

Grammar Transformations:

“Left-factoring” an LL(k) grammar to obtain an

equivalent LL(n) grammar where n < k.

Example.

S → aaS | ab | b

S → aT T → aS | b

S → aT | b T → aS | b

factor “a” out

LL(2), not LL(1)

S → a(aS | b)

3/17/2024 45University of Kentucky

Question:

Is { S → aT | b T → aS | b } an LL(1) grammar

for the language { 𝑎𝑛𝑏 | n ϵ N} ?

Consider: a a bConsider: b Consider: a b

S ⇒ b S ⇒ a T

⇒ a b

S ⇒ a T

⇒ a a S

⇒ a a b

Yes or No

3/17/2024 University of Kentucky 46

{ S → aaS | ab | b } is an LL(2) grammar for the

language { 𝑎𝑛𝑏 | n ϵ N}

Question:

Try aaaab and get its parse trees

in both cases

{ S → aT | b T → aS | b } is an LL(1) grammar for

the language { 𝑎𝑛𝑏 | n ϵ N}

3/17/2024 47

End of Context-Free

Language and

Pushdown Automata

III
University of Kentucky

