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Transform an empty-stack PDA to a C-F grammar 

      such that

      language accepted by the PDA is the same as

      language generated by the C-F grammar

       C-F grammar

      

University of Kentucky

7. Context-Free Languages & Pushdown 

Automata- Pushdown Automata
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We know how to transform a C-F grammar to an 

empty-stack PDA 

     Idea:

     use stack to simulate the (left-most) derivation 

     of a string

      

 
University of Kentucky

7. Context-Free Languages & Pushdown 

Automata- Pushdown Automata



3/4/2025 6

Example:   Given S → aSb | Ʌ          consider aabb

     

University of Kentucky

7. Context-Free Languages & Pushdown 

Automata- Pushdown Automata

Left-most derivation:   S  ⇒  aSb  ⇒  aaSbb  ⇒  aabb

Stack simulation: 

S
⇒

a

S

b
⇒

pop 

+

push

a

S

b

b
⇒

Pop

 +

pushS

b
⇒

pop 
S

b

b
⇒

pop 
b

b
⇒

pop 

b
⇒

pop 

Ʌ

pop 

So we need these PDA transition instructions:

(0, Ʌ, S, < pop, push(b), push(S), push(a) >)

(0, a, a, pop)

(0, Ʌ, S, pop)

(0, b, b, pop)



Here is why:
         ID’s for aaab: 

University of Kentucky

S → aSb

S → aSb

S →  Λ

Λ, 𝑆

𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ 𝑏 , 𝑝𝑢𝑠ℎ 𝑆 , 𝑝𝑢𝑠ℎ(𝑎)
𝑎, 𝑎

𝑝𝑜𝑝 Λ, 𝑆

𝑝𝑜𝑝

𝑏, 𝑏

𝑝𝑜𝑝

PDA instructions:

CTG Productions:
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To transform an empty-stack PDA to a C-F grammar, 

we need to know the relationship between 

accepting a string and generating a string

❑  Accepting a symbol ‘a’ means there is an instruction  

“
𝑎,?

𝑝𝑜𝑝
 ” to execute when the input symbol ‘a’ is read

❑Generating a symbol ‘a’ means a production of the 

form “B → a(w1)” will be executed in the (leftmost) 

derivation process.  
University of Kentucky

7. Context-Free Languages & Pushdown 

Automata- Pushdown Automata

Why should the stack 

operation be a ‘pop’?

b/c in this case ‘a’ will 

be output (accepted)
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Transform an empty-stack PDA to a C-F grammar 

 Type 1:

University of Kentucky

 PDA instruction                                      Grammar Production   

aBij →

can reach an empty-

stack status 

‘a’ is the letter/symbol accepted/output

B 

⋮ ⋮
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Transform an empty-stack PDA to a C-F grammar 

 Type 1:

University of Kentucky

 PDA instruction                                      Grammar Production   

aBij →

Why there is nothing else on the righthand 

side of this production but ‘a’?

b/c this edge is either the last edge of an acceptance 

path, or the last edge of a sub-path of an accepted path 

such that the remaining portion of the accepted path is 

handled by another production (see slide 39)
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Transform an empty-stack PDA to a C-F grammar

Type 1:

 PDA instruction                                          Grammar Production

University of Kentucky

aBij →

Example:

1 2

a, B

  pop
1 2

, X

  pop



→12X aB →12

The string accepted
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Transform an empty-stack PDA to a C-F grammar

Type 2:

PDA instruction                                         Grammar Production

University of Kentucky

k

BaB jkik

 stateeach for   

→

B 

⋮
B 

⋮ ⋮

accepted string is ‘a’ 

followed by whatever is 

accepted  between state j 

and state k

same same
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Transform an empty-stack PDA to a C-F grammar

PDA instruction                                             Grammar Production

University of Kentucky

k

aBB jkik

 stateeach for   

→

Example:

321

a, B

nop

b, B

pop
4

c, B

pop

2313 aBB → 2414 aBB →
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How is  X → aX  implemented?

𝑎, 𝑎

𝑝𝑜𝑝

…

Λ, 𝑋

𝑝𝑜𝑝 < 𝑝𝑢𝑠ℎ 𝑋 , 𝑝𝑢𝑠ℎ 𝑎 >

…

X
…

a

X

…

X

𝑎, 𝑋

𝑝𝑢𝑠ℎ(𝑎)

? , 𝑋

𝑝𝑜𝑝
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Transform an empty-stack PDA to a C-F grammar

Type 3:

PDA instruction                                             Grammar Production

University of Kentucky

lk

BaCB kljkil

 and  stateeach for   

→

B B

C

B

The path has to be 

a workable path
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Transform an empty-stack PDA to a C-F grammar

PDA instruction                                             Grammar Production

University of Kentucky

lk

BaCB kljkil

 and  stateeach for   

→

Example:

321

a, B  

Push(C)

b, C

pop
4

c, B

pop

342314 BCaB →

B B
C

B
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Transform an empty-stack PDA to a C-F grammar

Type 4:

PDA instruction                                             Grammar Production

University of Kentucky

Could lead to an empty-stack status

symbol)start   is  ( 

 stateeach for   

S

j

XS ij→

X

The production that will generate the 

string accepted by the PDA between 

state i and state j
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Transform an empty-stack PDA to a C-F grammar

Type 4:

PDA instruction                                             Grammar Production

University of Kentucky

j

XS ij

 stateeach for 

→

Example:
1 2

a, X

  nopX

start
3

c, X

pop

13XS → 2313 aXX → (Type 2)
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Transform an empty-stack PDA to a C-F grammar

University of Kentucky

The order CFG productions are constructed:

                                       Type 4

                                        Type 1

                                        Type 2 

                                        Type 3

(might not exist)
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Example. Transform the following empty-stack PDA into a C-F

                 grammar.

Solution:

Type 4

The start state 0 and  
𝑎,𝑋

𝑝𝑜𝑝
  give: 

01XS →

X
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Example. Transform the following empty-stack PDA into a C-F

                 grammar.

Solution:

Type 1

The pop operation (1, a, X, pop, 1) gives

aX →11

X
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Example. Transform the following empty-stack PDA into a C-F

                 grammar.

Solution:

Type 1

The pop operation (1, a, A, pop, 1) gives

aA →11

A… …
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Example. Transform the following empty-stack PDA into a C-F

                 grammar.

Type 1

Question:  a,A/pop is not the last step of an acceptance path,

                  why the right hand side of the production has only a 

                  terminal?

aA →11

A… …

Because this part 

will be handled by 

non-terminals 

contained in 

previously defined 

production steps



𝑑, 𝐴

𝑝𝑜𝑝

𝑒, 𝑋

𝑝𝑜𝑝
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Here is why: S → 𝑋05 

𝑎, 𝑋

𝑝𝑢𝑠ℎ(𝐴)

𝑏, 𝐴

𝑝𝑢𝑠ℎ(𝐵)

X

A

X

B

A

X

Φ

X

A

X

𝑐, 𝐵

𝑝𝑜𝑝

X

→ 𝑎𝐴14𝑋45 

𝐴14→ 𝑏𝐵23𝐴34 

0

1

2
3

4

5

𝐵23→ 𝑐  

𝐴34→ 𝑑  

→ 𝑏𝑐𝑑

𝑋45→ 𝑒  

→ 𝑎𝑏𝑐𝑑𝑋45 → 𝑎𝑏𝑐𝑑𝑒
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Example. Transform the following empty-stack PDA into a C-F

                 grammar.

Solution:

Type 2

The nop operation (0, a, A, nop, 1) gives

1101 aAA →

…A… A…
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Example. Transform the following empty-stack PDA into a C-F

                 grammar.

Solution:

Type 3

The push operation (0, a, X, push(A), 0) gives

110101 XaAX →

X
A

X X
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Empty-stack PDA:

C-F Grammar:

University of Kentucky

1101 aAA →

01XS →

aX →11

110101 XaAX →

aA →11

S ⇒  𝑋01

 ⇒ 𝑎𝐴01𝑋11 

   ⇒ 𝑎𝑎𝐴11𝑋11

   ⇒ 𝑎𝑎𝑎𝑋11

  ⇒ 𝑎𝑎𝑎𝑎

Leftmost

derivation

The language accepted by this PDA 

has only one element : aaaa
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Empty-stack PDA:

C-F Grammar:

University of Kentucky

1101 aAA →

01XS →

aX →11

110101 XaAX →

aA →11

(0,  aaaa,  X)

(0,   aaa,  AX)

(1,  aa,  AX)

 (1,  a,  X)

 (1, Ʌ, Φ)

X

A

Accepted

This PDA accepts only 

one string: aaaa



Or, think this way:
         ID’s for aaaa: 

University of Kentucky

S →  𝑋01

𝐴01 → 𝑎𝐴11

𝑋11 → 𝑎

𝑎, 𝑋

𝑝𝑢𝑠ℎ(𝑎)

CTG Productions:

𝑎 𝐴

𝑝𝑜𝑝

𝑎, 𝑋

𝑝𝑜𝑝

𝑎, 𝐴

𝑛𝑜𝑝

𝐴11 → 𝑎

𝑋01 → 𝑎𝐴01𝑋11
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How to handle an empty-stack PDA of the following type:

X  

Start

𝑎, 𝑎

𝑝𝑜𝑝

𝑏, 𝑏

𝑝𝑜𝑝

Λ, 𝑋

𝑝𝑜𝑝

0 Λ, 𝑋

𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ (𝑎, 𝑋, 𝑏)

Λ, 𝑋

𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ (𝑎, 𝑎, 𝑋)

This is the one-state empty-stack acceptance PDA we got 

for the CFG 𝑆 →  Ʌ
  𝑆 → 𝑎𝑆𝑏
  𝑆 → 𝑎𝑎𝑆

How should a PDA of this form be transformed to a CFG?

Would we be able to transform it back to the original CFG?
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How to handle an empty-stack PDA of the following type:

X  

Start

𝑎, 𝑎

𝑝𝑜𝑝

𝑏, 𝑏

𝑝𝑜𝑝

Λ, 𝑋

𝑝𝑜𝑝

0 Λ, 𝑋

𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ (𝑎, 𝑋, 𝑏)

Λ, 𝑋

𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ (𝑎, 𝑎, 𝑋)

Type 4:

X ∅   

𝑆 →  𝑋00

Ʌ, 𝑋

𝑝𝑜𝑝
0 0

start

X
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What if the given empty-stack PDA is of the following type?

X  

Start

𝑎, 𝑎

𝑝𝑜𝑝

𝑏, 𝑏

𝑝𝑜𝑝

Λ, 𝑋

𝑝𝑜𝑝

0 Λ, 𝑋

𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ (𝑎, 𝑋, 𝑏)

Λ, 𝑋

𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ (𝑎, 𝑎, 𝑋)

Type 1:

Ʌ, 𝑋

𝑝𝑜𝑝
0 0

X 

Y

⋮

Y

⋮

𝑋00  →  Ʌ
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What if the given empty-stack PDA is of the following type?

X  

Start

𝑎, 𝑎

𝑝𝑜𝑝

𝑏, 𝑏

𝑝𝑜𝑝

Λ, 𝑋

𝑝𝑜𝑝

0 Λ, 𝑋

𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ (𝑎, 𝑋, 𝑏)

Λ, 𝑋

𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ (𝑎, 𝑎, 𝑋)

Type 1:

𝑎, 𝑎

𝑝𝑜𝑝
0 0

a 

Y

⋮

Y

⋮

𝐴00  →  𝑎
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What if the given empty-stack PDA is of the following type?

X  

Start

𝑎, 𝑎

𝑝𝑜𝑝

𝑏, 𝑏

𝑝𝑜𝑝

Λ, 𝑋

𝑝𝑜𝑝

0 Λ, 𝑋

𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ (𝑎, 𝑋, 𝑏)

Λ, 𝑋

𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ (𝑎, 𝑎, 𝑋)

Type 1:

𝑏, 𝑏

𝑝𝑜𝑝
0 0

b 

Y

⋮

Y

⋮

𝐵00  →  𝑏
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What if the given empty-stack PDA is of the following type?

X  

Start

𝑎, 𝑎

𝑝𝑜𝑝

𝑏, 𝑏

𝑝𝑜𝑝

Λ, 𝑋

𝑝𝑜𝑝

0 Λ, 𝑋

𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ (𝑎, 𝑋, 𝑏)

Λ, 𝑋

𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ (𝑎, 𝑎, 𝑋)

Consider the following situation (General Type 3):

0 0

Λ, 𝑋

𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ (𝑎, 𝑋, 𝑏)

X 

Y

⋮

a  

X 

b 

Y

⋮

Y

⋮

X 

b 

Y

⋮

pop

b 

Y

⋮

pop pop

A combination of one type 

1 and three type 3’s
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What if the given empty-stack PDA is of the following type?

X  

Start

𝑎, 𝑎

𝑝𝑜𝑝

𝑏, 𝑏

𝑝𝑜𝑝

Λ, 𝑋

𝑝𝑜𝑝

0
Λ, 𝑋

𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ (𝑎, 𝑋, 𝑏)

Λ, 𝑋

𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ (𝑎, 𝑎, 𝑋)

Consider the following situation (General Type 3):

0 0

X 

Y

⋮

a  

X 

b 

Y

⋮

Y

⋮

X 

b 

Y

⋮

pop

b 

Y

⋮

pop pop

0 0 0
pop

aa,

pop

X,Λ, 𝑋

𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ (𝑎, 𝑋, 𝑏)
𝑏, 𝑏

𝑝𝑜𝑝
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What if the given empty-stack PDA is of the following type?

X  

Start

𝑎, 𝑎

𝑝𝑜𝑝

𝑏, 𝑏

𝑝𝑜𝑝

Λ, 𝑋

𝑝𝑜𝑝

0
Λ, 𝑋

𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ (𝑎, 𝑋, 𝑏)

Λ, 𝑋

𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ (𝑎, 𝑎, 𝑋)

Consider the following situation (General Type 3):

𝑋00 →  𝐴00𝑋00𝐵00

000 0 0
pop

aa,

pop

X, 𝑏, 𝑏

𝑝𝑜𝑝

Λ, 𝑋

𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ (𝑎, 𝑋, 𝑏)
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What if the given empty-stack PDA is of the following type?

X  

Start

𝑎, 𝑎

𝑝𝑜𝑝

𝑏, 𝑏

𝑝𝑜𝑝

Λ, 𝑋

𝑝𝑜𝑝

0
Λ, 𝑋

𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ (𝑎, 𝑋, 𝑏)

Λ, 𝑋

𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ (𝑎, 𝑎, 𝑋)

Similarly:

𝑋00 →  𝐴00𝐴00𝑋00

0 0 0 0 0
pop

X,𝑎, 𝑎

𝑝𝑜𝑝pop

aa,Λ, 𝑋

𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ (𝑎, 𝑎, 𝑋)
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What if the given empty-stack PDA is of the following type?

X  

      Start

𝑎, 𝑎

𝑝𝑜𝑝

𝑏, 𝑏

𝑝𝑜𝑝

Λ, 𝑋

𝑝𝑜𝑝

0
Λ, 𝑋

𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ (𝑎, 𝑋, 𝑏)

Λ, 𝑋

𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ (𝑎, 𝑎, 𝑋)

So, collectively, we have:

𝑆 →  𝑋00

 𝑋00 →  Λ
     𝐴00  → 𝑎
     𝐵00  → 𝑏
     𝑋00  →  𝐴00𝑋00𝐵00

     𝑋00  →  𝐴00𝐴00𝑋00

𝑆 →  Ʌ
  𝑆 → 𝑎𝑆𝑏
  𝑆 → 𝑎𝑎𝑆



University of Kentucky

Λ, 𝑋

𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ 𝑏 , 𝑝𝑢𝑠ℎ 𝑋 , 𝑝𝑢𝑠ℎ(𝑎)
𝑎, 𝑎

𝑝𝑜𝑝

Λ, 𝑋

𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ 𝑋 , 𝑝𝑢𝑠ℎ 𝑎 , 𝑝𝑢𝑠ℎ(𝑎)
Λ, 𝑋

𝑝𝑜𝑝

𝑏, 𝑏

𝑝𝑜𝑝

CTG Productions:

Or, think this way:
         ID’s for aaab: 

S →  𝑋00

𝐵00 → 𝑏

𝐴00 → 𝑎

𝐴00 → 𝑎

𝐴00 → 𝑎

𝑋00 → Λ

𝑋00 →  𝐴00𝐴00𝑋00

𝑋00 →  𝐴00𝑋00𝐵00
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A General Question:

Given a language, how to find a 

grammar for the language?

University of Kentucky
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Example. Find a grammar for the language

                     L = {w ∈ {a, b}* | na(w) = nb(w)}

      by (1) constructing an empty-stack PDA to accept L and then 

      (2) transforming it to a C-F grammar.

Solution: (1)

University of Kentucky

To accept Ʌ and to

reach empty-stack status

To ensure

# of a’s and

# of b’s are

the same
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Note the following two PDAs are equivalent:
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Solution: (1)

     

University of Kentucky

aaabbabbba   :Consider

X
a
a
a
a
b

Stack is empty

Accepted

Hence, the above PDA accepts L
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Solution: (2)

     

University of Kentucky

Type = ?

000000

000000

0000000000

00

|    

|    

||    

     

:grammar F-C into dTransformePDA 

BbBaB

AaAbA

XbBXaAX

XS

→

→

→

→



3/4/2025 62

Solution: (2)

     

University of Kentucky

Type = ?

000000

000000

0000000000

00

|    

|    

||    

     

:grammar F-C into dTransformePDA 

BbBaB

AaAbA

XbBXaAX

XS

→

→

→

→
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Solution: (2)

     

University of Kentucky

000000

000000

0000000000

00

|    

|    

||    

     

:grammar F-C into dTransformePDA 

BbBaB

AaAbA

XbBXaAX

XS

→

→

→

→

Type = ?
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Solution: (2)

     

University of Kentucky

000000

000000

0000000000

00

|    

|    

||    

     

:grammar F-C into dTransformePDA 

BbBaB

AaAbA

XbBXaAX

XS

→

→

→

→

Type = ?
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Solution: (2)

     

University of Kentucky Type = ?
000000

000000

0000000000

00

|    

|    

||    

     

:grammar F-C into dTransformePDA 

BbBaB

AaAbA

XbBXaAX

XS

→

→

→

→
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Solution: (2)

     

University of Kentucky

000000

000000

0000000000

00

|    

|    

||    

     

:grammar F-C into dTransformePDA 

BbBaB

AaAbA

XbBXaAX

XS

→

→

→

→

Type = ?
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Solution: (2)

     

University of Kentucky

000000

000000

0000000000

00

|    

|    

||    

     

:grammar F-C into dTransformePDA 

BbBaB

AaAbA

XbBXaAX

XS

→

→

→

→

Type = ?
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Solution: (2)

     

University of Kentucky

000000

000000

0000000000

00

|    

|    

||    

     

:grammar F-C into dTransformePDA 

BbBaB

AaAbA

XbBXaAX

XS

→

→

→

→

Type = ?
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Solution: (2)

     

University of Kentucky

000000

000000

0000000000

00

|    

|    

||    

     

:grammar F-C into dTransformePDA 

BbBaB

AaAbA

XbBXaAX

XS

→

→

→

→

bBBaB

aAAbA

bBSaASS

|   

|   

||    

:CFG  Simplified

→

→

→
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Solution: (2)

     

University of Kentucky

bBBaB

aAAbA

bBSaASS

|   

|   

||    

:CFG  Simplified

→

→

→

aababbaababbS

aababASaabaAAS

aabASaaAASaASS

aababb of Derivation







   

   

:  
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Nondeterministic PDAs are more 

powerful than deterministic PDAs.

University of Kentucky

There is in general no way to translate a non-deterministic 

PDA (NPDA) into a deterministic one.

Final-state acceptance and empty-stack acceptance

     are equivalent only for NPDAs

Final-state acceptance and empty-stack acceptance are 

not equivalent for DPDAs. For DPDAs, the class of 

languages defined by final-state acceptance is bigger.



3/4/2025 72

Nondeterministic PDAs are more powerful than

     deterministic PDAs.

     

     An example is to consider the language of even

     Palindromes (such as:  aababbbbabaa) over {a, b}.

     A context-free grammar for the language is given by

                    S → Λ | aSa | bSb

     Any PDA to accept the language must make a

     nondeterministic decision to start comparing the 2nd

     half of a string with the reverse of the first half.     

University of Kentucky

Left half and right half

are symmetric
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Example: consider the following PDA

University of Kentucky

X  

Start

)(

,

)(

,

)(

,

apush

ba

apush

aa

apush

Xa

0

)(

,

)(

,

)(

,

bpush

ab

bpush

bb

bpush

Xb

nop

,
,

nop

a,
 , 

nop

, bX 
1 2

 
pop

, X

This non-deterministic PDA accepts the language of even 

palindromes over {a, b}

pop

bb

pop

aa ,,
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Example: consider the following PDA

University of Kentucky

X  

Start

)(

,

)(

,

)(

,

apush

ba

apush

aa

apush

Xa

0

)(

,

)(

,

)(

,

bpush

ab

bpush

bb

bpush

Xb

nop

,
,

nop

a,
 , 

nop

, bX 
1 2

 
pop

, X

Why is this a non-deterministic PDA ?  

pop

bb

pop

aa ,,
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Example: consider the following PDA

University of Kentucky

X  

Start

)(

,

)(

,

)(

,

apush

ba

apush

aa

apush

Xa

0

)(

,

)(

,

)(

,

bpush

ab

bpush

bb

bpush

Xb

nop

,
,

nop

a,
 , 

nop

, bX 
1 2

 
pop

, X

Does it accept even palindromes over {a, b} ?

Consider (0, abbbba,  X) ⇒ (0,  bbbba,  aX)

⇒ (0,  bbba,  baX)

⇒ (0,  bba,  bbaX)

⇒  (0,  Ʌbba,  bbaX)

⇒  (1,  bba,  bbaX)

⇒  (1,  ba,  baX)   ⇒  (1,  a,  aX)

⇒  (1,  Ʌ,  X)         ⇒  (2,  Ʌ,  Ʌ)

pop

bb

pop

aa ,,

If we make a guess here
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Example: consider the following PDA

University of Kentucky

X  

Start

)(

,

)(

,

)(

,

apush

ba

apush

aa

apush

Xa

0

)(

,

)(

,

)(

,

bpush

ab

bpush

bb

bpush

Xb

nop

,
,

nop

a,
 , 

nop

, bX 
1 2

 
pop

, X

The PDA may guess the middle wrong:

Consider (0, abbbba,  X) ⇒ (0,  bbbba,  aX)

⇒ (0,  bbba,  baX)

⇒ (0,  Ʌbbba,  baX)

⇒  (1,  bbba,  baX)

⇒  (1,  bba,  aX)

pop

bb

pop

aa ,,

If the PDA made a guess 

here

It gets stuck here!
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Example: consider the following PDA

University of Kentucky

X  

Start

)(

,

)(

,

)(

,

apush

ba

apush

aa

apush

Xa

0

)(

,

)(

,

)(

,

bpush

ab

bpush

bb

bpush

Xb

nop

,
,

nop

a,
 , 

nop

, bX 
1 2

 
pop

, X

This PDA can only accept even palindromes:

Consider (0, aabbba,  X) ⇒ (0,  abbba,  aX)

⇒ (0,  bbba,  aaX)

⇒ (0,  bba,  baaX)

⇒  (0,  ba,  bbaaX)

⇒  (0,  a,  bbbaaX)

⇒ (0,  Ʌ,  abbbaaX)

⇒  (1,  Ʌ, abbbaaX)

pop

bb

pop

aa ,,

It gets stuck

here!
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There is in general no way to translate a non-

deterministic PDA (NPDA) into a deterministic one.

Why?

Why the technique to convert a non-deterministic FA to a 

deterministic FA cannot be used here?

If this is possible, then the converted deterministic PDA 

should be able to recognize the language of even

Palindromes. But this is a contradiction b/c a DPDA 

cannot make a guess. 
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There is in general no way to translate a non-

deterministic PDA (NPDA) into a deterministic one.

Indeed, there is no DPDA which recognizes the 

language of  even palindromes.

That is why we can say that NPDAs are more powerful 

than DPDAs.

However, we can define a similar language  L1 over

  {a, b, $} which can be recognized by a DPDA:

                   L1 = { 𝑤$𝑤𝑅 |  w ϵ {a, b}* }
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Example: consider the following PDA

University of Kentucky

X  

Start

)(

,

)(

,

)(

,

apush

ba

apush

aa

apush

Xa

0

)(

,

)(

,

)(

,

bpush

ab

bpush

bb

bpush

Xb

nop

$,
,

nop

a,$
 , 

nop

$, bX
1 2

 
pop

, X

A  DPDA  for  L1:

Consider (0, abb$bba,  X) ⇒ (0,  bb$bba,  aX)

⇒ (0,  b$bba,  baX)

⇒ (0,  $bba,  bbaX)

⇒  (1,  bba,  bbaX)

⇒  (1,  ba,  baX)

⇒  (1,  a,  aX)

⇒  (1,  Ʌ,  X)         ⇒  (2,  Ʌ,  Ʌ)

pop

bb

pop

aa ,,

What do you see 

here?

Is this PDA indeed 

deterministic?
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Note that

1.  Final-state acceptance and empty-stack acceptance

     are equivalent only for NPDAs

2.  Final-state acceptance and empty-stack acceptance

     are not equivalent for DPDAs. For DPDAs, the class

     of languages defined by final-state acceptance is 

     bigger.

Why?

      
b/c DPDAs do not have the instruction 

?, 𝑋

𝑝𝑜𝑝
 in most of the cases

(without  the instruction Ʌ,X/pop, we can still do final state acceptance, but we will not be able to 
do 𝐞𝐦𝐩𝐭𝐲 𝐬𝐭𝐚𝐜𝐤 𝐚𝐜𝐜𝐞𝐩𝐭𝐚𝐧𝐜𝐞.)
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Why?      Consider the following example:

X
0

𝑎, 𝑋

𝑝𝑢𝑠ℎ 𝑎
,

𝑏, 𝑋

𝑝𝑢𝑠ℎ(𝑏)
 

X
0

𝑎, 𝑋

𝑝𝑢𝑠ℎ(𝑎)
,

𝑏, 𝑋

𝑝𝑢𝑠ℎ(𝑏)

Accepts ?

Accepts ?

{ Ʌ, a, b}

Φ

Not even Ʌ
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Why?      Consider the following example:

X
0

𝑎, 𝑋

𝑝𝑢𝑠ℎ 𝑎
,

𝑏, 𝑋

𝑝𝑢𝑠ℎ(𝑏)
 

X
0

𝑎, 𝑋

𝑝𝑢𝑠ℎ(𝑎)
,

𝑏, 𝑋

𝑝𝑢𝑠ℎ(𝑏)

Accepts ?

Accepts ?

{ Ʌ, a, b}

Ʌ

Λ, 𝑋

𝑝𝑜𝑝

Not DPDA
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Why?      Or, consider the following example:

Accepts ?

Ʌ, a, aa, aaa, 

abb, aabbb, …

Accepts ?

abb, aabbb, …
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◼ CFGs and PDAs have equivalent expressive powers. 

More formally, . . . 

◼ Theorem. For every CFG G, there is a PDA P such 

that L(G) = L(P).

    In addition, for every PDA P, there is a CFG G such 

    that L(P) = L(G).

    Thus, L is CF iff there is a (non-deterministic) PDA P

    such that  L = L(P).

◼ CF languages are exactly those languages that are 

accepted by (non-deterministic) PDAs.

Summarize:
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L is CF iff there is a (non-deterministic) PDA P

    such that  L = L(P).

CF languages are exactly those languages that are 

accepted by (non-deterministic) PDAs.

    

      

 

Why?
If a CFL is infinite, it would have a non-trivial grammar (the right

hand side of at least one production would contain a non-

terminal and often time a recursive non-terminal). For such a 

grammar, when you convert it to a PDA, you would get a one-

state, non-deterministic PDA. For instance, convert the following 

simple cases and see what would you get.

    S → aS | Ʌ

or

    S → aS | b
Why?
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0
start

S 

Λ, 𝑆

< 𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ 𝑆 , 𝑝𝑢𝑠ℎ 𝑎 >

𝑎, 𝑎

𝑝𝑜𝑝
 

Λ,𝑆

𝑝𝑜𝑝
  

For     { S → aS | Ʌ  }
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0
start

S 

Λ, 𝑆

< 𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ 𝑆 , 𝑝𝑢𝑠ℎ 𝑎 >

𝑎, 𝑎

𝑝𝑜𝑝
 

𝑏,𝑏

𝑝𝑜𝑝

Λ,𝑆

<𝑝𝑜𝑝,𝑝𝑢𝑠ℎ 𝑏 >
  

For     { S → aS | b  }
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❑A CF language is called a deterministic final-state CF 

language if it can be recognized by a deterministic 

final-state PDA

◼ Even palindromes: not a deterministic final-state CFL

      

 
X  

Start

)(

,

)(

,

)(

,

apush

ba

apush

aa

apush

Xa

0

)(

,

)(

,

)(

,

bpush

ab

bpush

bb

bpush

Xb

nop

,
,

nop

a,
 , 

nop

, bX 
1 2

 
pop

, X

NPDA

Summarize:
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L1 over  {a, b, $} is a deterministic final-state CFL:

                   L1 = { 𝑤$𝑤𝑅 |  w ϵ {a, b}* }

X  

Start

)(

,

)(

,

)(

,

apush

ba

apush

aa

apush

Xa

0

)(

,

)(

,

)(

,

bpush

ab

bpush

bb

bpush

Xb

nop

$,
,

nop

a,$
 , 

nop

$, bX
1 2

 
pop

, X

DPDA

Summarize:
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End of Context-Free 

Language and 

Pushdown Automata 

II
University of Kentucky
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