
3/4/2025 1

CS375:

Logic and Theory of Computing

Fuhua (Frank) Cheng

Department of Computer Science

University of Kentucky

University of Kentucky

3/4/2025 2

Table of Contents:

◼ Week 1: Preliminaries (set algebra, relations,

 functions) (read Chapters 1-4)

◼ Weeks 2-5: Regular Languages, Finite

 Automata (Chapter 11)

◼ Weeks 6-8: Context-Free Languages,

Pushdown Automata (Chapters 12)

◼ Weeks 9-11: Turing Machines (Chapter 13)

University of Kentucky

3/4/2025 3

Table of Contents (conti):

▪ Weeks 12-13: Propositional Logic (Chapter

6), Predicate Logic (Chapter 7),

Computational Logic (Chapter 9),

Algebraic Structures (Chapter 10)

University of Kentucky

3/4/2025 4

Transform an empty-stack PDA to a C-F grammar

 such that

 language accepted by the PDA is the same as

 language generated by the C-F grammar

 C-F grammar

University of Kentucky

7. Context-Free Languages & Pushdown

Automata- Pushdown Automata

3/4/2025 5

We know how to transform a C-F grammar to an

empty-stack PDA

 Idea:

 use stack to simulate the (left-most) derivation

 of a string

University of Kentucky

7. Context-Free Languages & Pushdown

Automata- Pushdown Automata

3/4/2025 6

Example: Given S → aSb | Ʌ consider aabb

University of Kentucky

7. Context-Free Languages & Pushdown

Automata- Pushdown Automata

Left-most derivation: S ⇒ aSb ⇒ aaSbb ⇒ aabb

Stack simulation:

S
⇒

a

S

b
⇒

pop

+

push

a

S

b

b
⇒

Pop

 +

pushS

b
⇒

pop
S

b

b
⇒

pop
b

b
⇒

pop

b
⇒

pop

Ʌ

pop

So we need these PDA transition instructions:

(0, Ʌ, S, < pop, push(b), push(S), push(a) >)

(0, a, a, pop)

(0, Ʌ, S, pop)

(0, b, b, pop)

Here is why:
 ID’s for aaab:

University of Kentucky

S → aSb

S → aSb

S → Λ

Λ, 𝑆

𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ 𝑏 , 𝑝𝑢𝑠ℎ 𝑆 , 𝑝𝑢𝑠ℎ(𝑎)
𝑎, 𝑎

𝑝𝑜𝑝 Λ, 𝑆

𝑝𝑜𝑝

𝑏, 𝑏

𝑝𝑜𝑝

PDA instructions:

CTG Productions:

3/4/2025 8

To transform an empty-stack PDA to a C-F grammar,

we need to know the relationship between

accepting a string and generating a string

❑ Accepting a symbol ‘a’ means there is an instruction

“
𝑎,?

𝑝𝑜𝑝
 ” to execute when the input symbol ‘a’ is read

❑Generating a symbol ‘a’ means a production of the

form “B → a(w1)” will be executed in the (leftmost)

derivation process.
University of Kentucky

7. Context-Free Languages & Pushdown

Automata- Pushdown Automata

Why should the stack

operation be a ‘pop’?

b/c in this case ‘a’ will

be output (accepted)

3/4/2025 25

Transform an empty-stack PDA to a C-F grammar

 Type 1:

University of Kentucky

 PDA instruction Grammar Production

aBij →

can reach an empty-

stack status

‘a’ is the letter/symbol accepted/output

B

⋮ ⋮

3/5/2025 26

Transform an empty-stack PDA to a C-F grammar

 Type 1:

University of Kentucky

 PDA instruction Grammar Production

aBij →

Why there is nothing else on the righthand

side of this production but ‘a’?

b/c this edge is either the last edge of an acceptance

path, or the last edge of a sub-path of an accepted path

such that the remaining portion of the accepted path is

handled by another production (see slide 39)

3/4/2025 27

Transform an empty-stack PDA to a C-F grammar

Type 1:

 PDA instruction Grammar Production

University of Kentucky

aBij →

Example:

1 2

a, B

 pop
1 2

, X

 pop



→12X aB →12

The string accepted

3/4/2025 28

Transform an empty-stack PDA to a C-F grammar

Type 2:

PDA instruction Grammar Production

University of Kentucky

k

BaB jkik

 stateeach for

→

B

⋮
B

⋮ ⋮

accepted string is ‘a’

followed by whatever is

accepted between state j

and state k

same same

3/4/2025 29

Transform an empty-stack PDA to a C-F grammar

PDA instruction Grammar Production

University of Kentucky

k

aBB jkik

 stateeach for

→

Example:

321

a, B

nop

b, B

pop
4

c, B

pop

2313 aBB → 2414 aBB →

3/4/2025 University of Kentucky 30

How is X → aX implemented?

𝑎, 𝑎

𝑝𝑜𝑝

…

Λ, 𝑋

𝑝𝑜𝑝 < 𝑝𝑢𝑠ℎ 𝑋 , 𝑝𝑢𝑠ℎ 𝑎 >

…

X
…

a

X

…

X

𝑎, 𝑋

𝑝𝑢𝑠ℎ(𝑎)

? , 𝑋

𝑝𝑜𝑝

3/4/2025 31

Transform an empty-stack PDA to a C-F grammar

Type 3:

PDA instruction Grammar Production

University of Kentucky

lk

BaCB kljkil

 and stateeach for

→

B B

C

B

The path has to be

a workable path

3/4/2025 32

Transform an empty-stack PDA to a C-F grammar

PDA instruction Grammar Production

University of Kentucky

lk

BaCB kljkil

 and stateeach for

→

Example:

321

a, B

Push(C)

b, C

pop
4

c, B

pop

342314 BCaB →

B B
C

B

3/4/2025 33

Transform an empty-stack PDA to a C-F grammar

Type 4:

PDA instruction Grammar Production

University of Kentucky

Could lead to an empty-stack status

symbol)start is (

 stateeach for

S

j

XS ij→

X

The production that will generate the

string accepted by the PDA between

state i and state j

3/4/2025 34

Transform an empty-stack PDA to a C-F grammar

Type 4:

PDA instruction Grammar Production

University of Kentucky

j

XS ij

 stateeach for

→

Example:
1 2

a, X

 nopX

start
3

c, X

pop

13XS → 2313 aXX → (Type 2)

3/4/2025 35

Transform an empty-stack PDA to a C-F grammar

University of Kentucky

The order CFG productions are constructed:

 Type 4

 Type 1

 Type 2

 Type 3

(might not exist)

3/4/2025 36University of Kentucky

Example. Transform the following empty-stack PDA into a C-F

 grammar.

Solution:

Type 4

The start state 0 and
𝑎,𝑋

𝑝𝑜𝑝
 give:

01XS →

X

3/4/2025 37University of Kentucky

Example. Transform the following empty-stack PDA into a C-F

 grammar.

Solution:

Type 1

The pop operation (1, a, X, pop, 1) gives

aX →11

X

3/4/2025 38University of Kentucky

Example. Transform the following empty-stack PDA into a C-F

 grammar.

Solution:

Type 1

The pop operation (1, a, A, pop, 1) gives

aA →11

A… …

3/4/2025 39University of Kentucky

Example. Transform the following empty-stack PDA into a C-F

 grammar.

Type 1

Question: a,A/pop is not the last step of an acceptance path,

 why the right hand side of the production has only a

 terminal?

aA →11

A… …

Because this part

will be handled by

non-terminals

contained in

previously defined

production steps

𝑑, 𝐴

𝑝𝑜𝑝

𝑒, 𝑋

𝑝𝑜𝑝

3/4/2025 University of Kentucky 40

Here is why: S → 𝑋05

𝑎, 𝑋

𝑝𝑢𝑠ℎ(𝐴)

𝑏, 𝐴

𝑝𝑢𝑠ℎ(𝐵)

X

A

X

B

A

X

Φ

X

A

X

𝑐, 𝐵

𝑝𝑜𝑝

X

→ 𝑎𝐴14𝑋45

𝐴14→ 𝑏𝐵23𝐴34

0

1

2
3

4

5

𝐵23→ 𝑐

𝐴34→ 𝑑

→ 𝑏𝑐𝑑

𝑋45→ 𝑒

→ 𝑎𝑏𝑐𝑑𝑋45 → 𝑎𝑏𝑐𝑑𝑒

3/4/2025 41University of Kentucky

Example. Transform the following empty-stack PDA into a C-F

 grammar.

Solution:

Type 2

The nop operation (0, a, A, nop, 1) gives

1101 aAA →

…A… A…

3/4/2025 42University of Kentucky

Example. Transform the following empty-stack PDA into a C-F

 grammar.

Solution:

Type 3

The push operation (0, a, X, push(A), 0) gives

110101 XaAX →

X
A

X X

3/4/2025 43

Empty-stack PDA:

C-F Grammar:

University of Kentucky

1101 aAA →

01XS →

aX →11

110101 XaAX →

aA →11

S ⇒ 𝑋01

 ⇒ 𝑎𝐴01𝑋11

 ⇒ 𝑎𝑎𝐴11𝑋11

 ⇒ 𝑎𝑎𝑎𝑋11

 ⇒ 𝑎𝑎𝑎𝑎

Leftmost

derivation

The language accepted by this PDA

has only one element : aaaa

3/4/2025 44

Empty-stack PDA:

C-F Grammar:

University of Kentucky

1101 aAA →

01XS →

aX →11

110101 XaAX →

aA →11

(0, aaaa, X)

(0, aaa, AX)

(1, aa, AX)

 (1, a, X)

 (1, Ʌ, Φ)

X

A

Accepted

This PDA accepts only

one string: aaaa

Or, think this way:
 ID’s for aaaa:

University of Kentucky

S → 𝑋01

𝐴01 → 𝑎𝐴11

𝑋11 → 𝑎

𝑎, 𝑋

𝑝𝑢𝑠ℎ(𝑎)

CTG Productions:

𝑎 𝐴

𝑝𝑜𝑝

𝑎, 𝑋

𝑝𝑜𝑝

𝑎, 𝐴

𝑛𝑜𝑝

𝐴11 → 𝑎

𝑋01 → 𝑎𝐴01𝑋11

3/4/2025 46University of Kentucky

How to handle an empty-stack PDA of the following type:

X

Start

𝑎, 𝑎

𝑝𝑜𝑝

𝑏, 𝑏

𝑝𝑜𝑝

Λ, 𝑋

𝑝𝑜𝑝

0 Λ, 𝑋

𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ (𝑎, 𝑋, 𝑏)

Λ, 𝑋

𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ (𝑎, 𝑎, 𝑋)

This is the one-state empty-stack acceptance PDA we got

for the CFG 𝑆 → Ʌ
 𝑆 → 𝑎𝑆𝑏
 𝑆 → 𝑎𝑎𝑆

How should a PDA of this form be transformed to a CFG?

Would we be able to transform it back to the original CFG?

3/4/2025 47University of Kentucky

How to handle an empty-stack PDA of the following type:

X

Start

𝑎, 𝑎

𝑝𝑜𝑝

𝑏, 𝑏

𝑝𝑜𝑝

Λ, 𝑋

𝑝𝑜𝑝

0 Λ, 𝑋

𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ (𝑎, 𝑋, 𝑏)

Λ, 𝑋

𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ (𝑎, 𝑎, 𝑋)

Type 4:

X ∅

𝑆 → 𝑋00

Ʌ, 𝑋

𝑝𝑜𝑝
0 0

start

X

3/4/2025 48University of Kentucky

What if the given empty-stack PDA is of the following type?

X

Start

𝑎, 𝑎

𝑝𝑜𝑝

𝑏, 𝑏

𝑝𝑜𝑝

Λ, 𝑋

𝑝𝑜𝑝

0 Λ, 𝑋

𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ (𝑎, 𝑋, 𝑏)

Λ, 𝑋

𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ (𝑎, 𝑎, 𝑋)

Type 1:

Ʌ, 𝑋

𝑝𝑜𝑝
0 0

X

Y

⋮

Y

⋮

𝑋00 → Ʌ

3/4/2025 49University of Kentucky

What if the given empty-stack PDA is of the following type?

X

Start

𝑎, 𝑎

𝑝𝑜𝑝

𝑏, 𝑏

𝑝𝑜𝑝

Λ, 𝑋

𝑝𝑜𝑝

0 Λ, 𝑋

𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ (𝑎, 𝑋, 𝑏)

Λ, 𝑋

𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ (𝑎, 𝑎, 𝑋)

Type 1:

𝑎, 𝑎

𝑝𝑜𝑝
0 0

a

Y

⋮

Y

⋮

𝐴00 → 𝑎

3/4/2025 50University of Kentucky

What if the given empty-stack PDA is of the following type?

X

Start

𝑎, 𝑎

𝑝𝑜𝑝

𝑏, 𝑏

𝑝𝑜𝑝

Λ, 𝑋

𝑝𝑜𝑝

0 Λ, 𝑋

𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ (𝑎, 𝑋, 𝑏)

Λ, 𝑋

𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ (𝑎, 𝑎, 𝑋)

Type 1:

𝑏, 𝑏

𝑝𝑜𝑝
0 0

b

Y

⋮

Y

⋮

𝐵00 → 𝑏

3/4/2025 51University of Kentucky

What if the given empty-stack PDA is of the following type?

X

Start

𝑎, 𝑎

𝑝𝑜𝑝

𝑏, 𝑏

𝑝𝑜𝑝

Λ, 𝑋

𝑝𝑜𝑝

0 Λ, 𝑋

𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ (𝑎, 𝑋, 𝑏)

Λ, 𝑋

𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ (𝑎, 𝑎, 𝑋)

Consider the following situation (General Type 3):

0 0

Λ, 𝑋

𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ (𝑎, 𝑋, 𝑏)

X

Y

⋮

a

X

b

Y

⋮

Y

⋮

X

b

Y

⋮

pop

b

Y

⋮

pop pop

A combination of one type

1 and three type 3’s

3/4/2025 52University of Kentucky

What if the given empty-stack PDA is of the following type?

X

Start

𝑎, 𝑎

𝑝𝑜𝑝

𝑏, 𝑏

𝑝𝑜𝑝

Λ, 𝑋

𝑝𝑜𝑝

0
Λ, 𝑋

𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ (𝑎, 𝑋, 𝑏)

Λ, 𝑋

𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ (𝑎, 𝑎, 𝑋)

Consider the following situation (General Type 3):

0 0

X

Y

⋮

a

X

b

Y

⋮

Y

⋮

X

b

Y

⋮

pop

b

Y

⋮

pop pop

0 0 0
pop

aa,

pop

X,Λ, 𝑋

𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ (𝑎, 𝑋, 𝑏)
𝑏, 𝑏

𝑝𝑜𝑝

3/4/2025 53University of Kentucky

What if the given empty-stack PDA is of the following type?

X

Start

𝑎, 𝑎

𝑝𝑜𝑝

𝑏, 𝑏

𝑝𝑜𝑝

Λ, 𝑋

𝑝𝑜𝑝

0
Λ, 𝑋

𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ (𝑎, 𝑋, 𝑏)

Λ, 𝑋

𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ (𝑎, 𝑎, 𝑋)

Consider the following situation (General Type 3):

𝑋00 → 𝐴00𝑋00𝐵00

000 0 0
pop

aa,

pop

X, 𝑏, 𝑏

𝑝𝑜𝑝

Λ, 𝑋

𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ (𝑎, 𝑋, 𝑏)

3/4/2025 54University of Kentucky

What if the given empty-stack PDA is of the following type?

X

Start

𝑎, 𝑎

𝑝𝑜𝑝

𝑏, 𝑏

𝑝𝑜𝑝

Λ, 𝑋

𝑝𝑜𝑝

0
Λ, 𝑋

𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ (𝑎, 𝑋, 𝑏)

Λ, 𝑋

𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ (𝑎, 𝑎, 𝑋)

Similarly:

𝑋00 → 𝐴00𝐴00𝑋00

0 0 0 0 0
pop

X,𝑎, 𝑎

𝑝𝑜𝑝pop

aa,Λ, 𝑋

𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ (𝑎, 𝑎, 𝑋)

3/4/2025 55University of Kentucky

What if the given empty-stack PDA is of the following type?

X

 Start

𝑎, 𝑎

𝑝𝑜𝑝

𝑏, 𝑏

𝑝𝑜𝑝

Λ, 𝑋

𝑝𝑜𝑝

0
Λ, 𝑋

𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ (𝑎, 𝑋, 𝑏)

Λ, 𝑋

𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ (𝑎, 𝑎, 𝑋)

So, collectively, we have:

𝑆 → 𝑋00

 𝑋00 → Λ
 𝐴00 → 𝑎
 𝐵00 → 𝑏
 𝑋00 → 𝐴00𝑋00𝐵00

 𝑋00 → 𝐴00𝐴00𝑋00

𝑆 → Ʌ
 𝑆 → 𝑎𝑆𝑏
 𝑆 → 𝑎𝑎𝑆

University of Kentucky

Λ, 𝑋

𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ 𝑏 , 𝑝𝑢𝑠ℎ 𝑋 , 𝑝𝑢𝑠ℎ(𝑎)
𝑎, 𝑎

𝑝𝑜𝑝

Λ, 𝑋

𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ 𝑋 , 𝑝𝑢𝑠ℎ 𝑎 , 𝑝𝑢𝑠ℎ(𝑎)
Λ, 𝑋

𝑝𝑜𝑝

𝑏, 𝑏

𝑝𝑜𝑝

CTG Productions:

Or, think this way:
 ID’s for aaab:

S → 𝑋00

𝐵00 → 𝑏

𝐴00 → 𝑎

𝐴00 → 𝑎

𝐴00 → 𝑎

𝑋00 → Λ

𝑋00 → 𝐴00𝐴00𝑋00

𝑋00 → 𝐴00𝑋00𝐵00

3/4/2025 57

A General Question:

Given a language, how to find a

grammar for the language?

University of Kentucky

3/4/2025 58

Example. Find a grammar for the language

 L = {w ∈ {a, b}* | na(w) = nb(w)}

 by (1) constructing an empty-stack PDA to accept L and then

 (2) transforming it to a C-F grammar.

Solution: (1)

University of Kentucky

To accept Ʌ and to

reach empty-stack status

To ensure

of a’s and

of b’s are

the same

3/4/2025 59University of Kentucky

Note the following two PDAs are equivalent:

3/4/2025 60

Solution: (1)

University of Kentucky

aaabbabbba :Consider

X
a
a
a
a
b

Stack is empty

Accepted

Hence, the above PDA accepts L

3/4/2025 61

Solution: (2)

University of Kentucky

Type = ?

000000

000000

0000000000

00

|

|

||

:grammar F-C into dTransformePDA

BbBaB

AaAbA

XbBXaAX

XS

→

→

→

→

3/4/2025 62

Solution: (2)

University of Kentucky

Type = ?

000000

000000

0000000000

00

|

|

||

:grammar F-C into dTransformePDA

BbBaB

AaAbA

XbBXaAX

XS

→

→

→

→

3/4/2025 63

Solution: (2)

University of Kentucky

000000

000000

0000000000

00

|

|

||

:grammar F-C into dTransformePDA

BbBaB

AaAbA

XbBXaAX

XS

→

→

→

→

Type = ?

3/4/2025 64

Solution: (2)

University of Kentucky

000000

000000

0000000000

00

|

|

||

:grammar F-C into dTransformePDA

BbBaB

AaAbA

XbBXaAX

XS

→

→

→

→

Type = ?

3/4/2025 65

Solution: (2)

University of Kentucky Type = ?
000000

000000

0000000000

00

|

|

||

:grammar F-C into dTransformePDA

BbBaB

AaAbA

XbBXaAX

XS

→

→

→

→

3/4/2025 66

Solution: (2)

University of Kentucky

000000

000000

0000000000

00

|

|

||

:grammar F-C into dTransformePDA

BbBaB

AaAbA

XbBXaAX

XS

→

→

→

→

Type = ?

3/4/2025 67

Solution: (2)

University of Kentucky

000000

000000

0000000000

00

|

|

||

:grammar F-C into dTransformePDA

BbBaB

AaAbA

XbBXaAX

XS

→

→

→

→

Type = ?

3/4/2025 68

Solution: (2)

University of Kentucky

000000

000000

0000000000

00

|

|

||

:grammar F-C into dTransformePDA

BbBaB

AaAbA

XbBXaAX

XS

→

→

→

→

Type = ?

3/4/2025 69

Solution: (2)

University of Kentucky

000000

000000

0000000000

00

|

|

||

:grammar F-C into dTransformePDA

BbBaB

AaAbA

XbBXaAX

XS

→

→

→

→

bBBaB

aAAbA

bBSaASS

|

|

||

:CFG Simplified

→

→

→

3/4/2025 70

Solution: (2)

University of Kentucky

bBBaB

aAAbA

bBSaASS

|

|

||

:CFG Simplified

→

→

→

aababbaababbS

aababASaabaAAS

aabASaaAASaASS

aababb of Derivation







:

3/4/2025 71

Nondeterministic PDAs are more

powerful than deterministic PDAs.

University of Kentucky

There is in general no way to translate a non-deterministic

PDA (NPDA) into a deterministic one.

Final-state acceptance and empty-stack acceptance

 are equivalent only for NPDAs

Final-state acceptance and empty-stack acceptance are

not equivalent for DPDAs. For DPDAs, the class of

languages defined by final-state acceptance is bigger.

3/4/2025 72

Nondeterministic PDAs are more powerful than

 deterministic PDAs.

 An example is to consider the language of even

 Palindromes (such as: aababbbbabaa) over {a, b}.

 A context-free grammar for the language is given by

 S → Λ | aSa | bSb

 Any PDA to accept the language must make a

 nondeterministic decision to start comparing the 2nd

 half of a string with the reverse of the first half.

University of Kentucky

Left half and right half

are symmetric

3/4/2025 73

Example: consider the following PDA

University of Kentucky

X

Start

)(

,

)(

,

)(

,

apush

ba

apush

aa

apush

Xa

0

)(

,

)(

,

)(

,

bpush

ab

bpush

bb

bpush

Xb

nop

,
,

nop

a,
 ,

nop

, bX 
1 2

pop

, X

This non-deterministic PDA accepts the language of even

palindromes over {a, b}

pop

bb

pop

aa ,,

3/4/2025 74

Example: consider the following PDA

University of Kentucky

X

Start

)(

,

)(

,

)(

,

apush

ba

apush

aa

apush

Xa

0

)(

,

)(

,

)(

,

bpush

ab

bpush

bb

bpush

Xb

nop

,
,

nop

a,
 ,

nop

, bX 
1 2

pop

, X

Why is this a non-deterministic PDA ?

pop

bb

pop

aa ,,

3/4/2025 75

Example: consider the following PDA

University of Kentucky

X

Start

)(

,

)(

,

)(

,

apush

ba

apush

aa

apush

Xa

0

)(

,

)(

,

)(

,

bpush

ab

bpush

bb

bpush

Xb

nop

,
,

nop

a,
 ,

nop

, bX 
1 2

pop

, X

Does it accept even palindromes over {a, b} ?

Consider (0, abbbba, X) ⇒ (0, bbbba, aX)

⇒ (0, bbba, baX)

⇒ (0, bba, bbaX)

⇒ (0, Ʌbba, bbaX)

⇒ (1, bba, bbaX)

⇒ (1, ba, baX) ⇒ (1, a, aX)

⇒ (1, Ʌ, X) ⇒ (2, Ʌ, Ʌ)

pop

bb

pop

aa ,,

If we make a guess here

3/4/2025 76

Example: consider the following PDA

University of Kentucky

X

Start

)(

,

)(

,

)(

,

apush

ba

apush

aa

apush

Xa

0

)(

,

)(

,

)(

,

bpush

ab

bpush

bb

bpush

Xb

nop

,
,

nop

a,
 ,

nop

, bX 
1 2

pop

, X

The PDA may guess the middle wrong:

Consider (0, abbbba, X) ⇒ (0, bbbba, aX)

⇒ (0, bbba, baX)

⇒ (0, Ʌbbba, baX)

⇒ (1, bbba, baX)

⇒ (1, bba, aX)

pop

bb

pop

aa ,,

If the PDA made a guess

here

It gets stuck here!

3/4/2025 77

Example: consider the following PDA

University of Kentucky

X

Start

)(

,

)(

,

)(

,

apush

ba

apush

aa

apush

Xa

0

)(

,

)(

,

)(

,

bpush

ab

bpush

bb

bpush

Xb

nop

,
,

nop

a,
 ,

nop

, bX 
1 2

pop

, X

This PDA can only accept even palindromes:

Consider (0, aabbba, X) ⇒ (0, abbba, aX)

⇒ (0, bbba, aaX)

⇒ (0, bba, baaX)

⇒ (0, ba, bbaaX)

⇒ (0, a, bbbaaX)

⇒ (0, Ʌ, abbbaaX)

⇒ (1, Ʌ, abbbaaX)

pop

bb

pop

aa ,,

It gets stuck

here!

3/4/2025 78University of Kentucky

There is in general no way to translate a non-

deterministic PDA (NPDA) into a deterministic one.

Why?

Why the technique to convert a non-deterministic FA to a

deterministic FA cannot be used here?

If this is possible, then the converted deterministic PDA

should be able to recognize the language of even

Palindromes. But this is a contradiction b/c a DPDA

cannot make a guess.

3/4/2025 79University of Kentucky

There is in general no way to translate a non-

deterministic PDA (NPDA) into a deterministic one.

Indeed, there is no DPDA which recognizes the

language of even palindromes.

That is why we can say that NPDAs are more powerful

than DPDAs.

However, we can define a similar language L1 over

 {a, b, $} which can be recognized by a DPDA:

 L1 = { 𝑤$𝑤𝑅 | w ϵ {a, b}* }

3/4/2025 80

Example: consider the following PDA

University of Kentucky

X

Start

)(

,

)(

,

)(

,

apush

ba

apush

aa

apush

Xa

0

)(

,

)(

,

)(

,

bpush

ab

bpush

bb

bpush

Xb

nop

$,
,

nop

a,$
 ,

nop

$, bX
1 2

pop

, X

A DPDA for L1:

Consider (0, abb$bba, X) ⇒ (0, bb$bba, aX)

⇒ (0, b$bba, baX)

⇒ (0, $bba, bbaX)

⇒ (1, bba, bbaX)

⇒ (1, ba, baX)

⇒ (1, a, aX)

⇒ (1, Ʌ, X) ⇒ (2, Ʌ, Ʌ)

pop

bb

pop

aa ,,

What do you see

here?

Is this PDA indeed

deterministic?

3/4/2025 81University of Kentucky

Note that

1. Final-state acceptance and empty-stack acceptance

 are equivalent only for NPDAs

2. Final-state acceptance and empty-stack acceptance

 are not equivalent for DPDAs. For DPDAs, the class

 of languages defined by final-state acceptance is

 bigger.

Why?

b/c DPDAs do not have the instruction

?, 𝑋

𝑝𝑜𝑝
 in most of the cases

(without the instruction Ʌ,X/pop, we can still do final state acceptance, but we will not be able to
do 𝐞𝐦𝐩𝐭𝐲 𝐬𝐭𝐚𝐜𝐤 𝐚𝐜𝐜𝐞𝐩𝐭𝐚𝐧𝐜𝐞.)

3/4/2025 82University of Kentucky

Why? Consider the following example:

X
0

𝑎, 𝑋

𝑝𝑢𝑠ℎ 𝑎
,

𝑏, 𝑋

𝑝𝑢𝑠ℎ(𝑏)

X
0

𝑎, 𝑋

𝑝𝑢𝑠ℎ(𝑎)
,

𝑏, 𝑋

𝑝𝑢𝑠ℎ(𝑏)

Accepts ?

Accepts ?

{ Ʌ, a, b}

Φ

Not even Ʌ

3/4/2025 83University of Kentucky

Why? Consider the following example:

X
0

𝑎, 𝑋

𝑝𝑢𝑠ℎ 𝑎
,

𝑏, 𝑋

𝑝𝑢𝑠ℎ(𝑏)

X
0

𝑎, 𝑋

𝑝𝑢𝑠ℎ(𝑎)
,

𝑏, 𝑋

𝑝𝑢𝑠ℎ(𝑏)

Accepts ?

Accepts ?

{ Ʌ, a, b}

Ʌ

Λ, 𝑋

𝑝𝑜𝑝

Not DPDA

3/4/2025 84University of Kentucky

Why? Or, consider the following example:

Accepts ?

Ʌ, a, aa, aaa,

abb, aabbb, …

Accepts ?

abb, aabbb, …

3/4/2025 85University of Kentucky

◼ CFGs and PDAs have equivalent expressive powers.

More formally, . . .

◼ Theorem. For every CFG G, there is a PDA P such

that L(G) = L(P).

 In addition, for every PDA P, there is a CFG G such

 that L(P) = L(G).

 Thus, L is CF iff there is a (non-deterministic) PDA P

 such that L = L(P).

◼ CF languages are exactly those languages that are

accepted by (non-deterministic) PDAs.

Summarize:

3/4/2025 86University of Kentucky

L is CF iff there is a (non-deterministic) PDA P

 such that L = L(P).

CF languages are exactly those languages that are

accepted by (non-deterministic) PDAs.

Why?
If a CFL is infinite, it would have a non-trivial grammar (the right

hand side of at least one production would contain a non-

terminal and often time a recursive non-terminal). For such a

grammar, when you convert it to a PDA, you would get a one-

state, non-deterministic PDA. For instance, convert the following

simple cases and see what would you get.

 S → aS | Ʌ

or

 S → aS | b
Why?

3/4/2025 87University of Kentucky

0
start

S

Λ, 𝑆

< 𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ 𝑆 , 𝑝𝑢𝑠ℎ 𝑎 >

𝑎, 𝑎

𝑝𝑜𝑝

Λ,𝑆

𝑝𝑜𝑝

For { S → aS | Ʌ }

3/4/2025 88University of Kentucky

0
start

S

Λ, 𝑆

< 𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ 𝑆 , 𝑝𝑢𝑠ℎ 𝑎 >

𝑎, 𝑎

𝑝𝑜𝑝

𝑏,𝑏

𝑝𝑜𝑝

Λ,𝑆

<𝑝𝑜𝑝,𝑝𝑢𝑠ℎ 𝑏 >

For { S → aS | b }

3/4/2025 89University of Kentucky

❑A CF language is called a deterministic final-state CF

language if it can be recognized by a deterministic

final-state PDA

◼ Even palindromes: not a deterministic final-state CFL

X

Start

)(

,

)(

,

)(

,

apush

ba

apush

aa

apush

Xa

0

)(

,

)(

,

)(

,

bpush

ab

bpush

bb

bpush

Xb

nop

,
,

nop

a,
 ,

nop

, bX 
1 2

pop

, X

NPDA

Summarize:

3/4/2025 90University of Kentucky

L1 over {a, b, $} is a deterministic final-state CFL:

 L1 = { 𝑤$𝑤𝑅 | w ϵ {a, b}* }

X

Start

)(

,

)(

,

)(

,

apush

ba

apush

aa

apush

Xa

0

)(

,

)(

,

)(

,

bpush

ab

bpush

bb

bpush

Xb

nop

$,
,

nop

a,$
 ,

nop

$, bX
1 2

pop

, X

DPDA

Summarize:

3/4/2025 91

End of Context-Free

Language and

Pushdown Automata

II
University of Kentucky

	Slide 1: CS375: Logic and Theory of Computing
	Slide 2: Table of Contents:
	Slide 3: Table of Contents (conti):
	Slide 4: 7. Context-Free Languages & Pushdown Automata- Pushdown Automata
	Slide 5: 7. Context-Free Languages & Pushdown Automata- Pushdown Automata
	Slide 6: 7. Context-Free Languages & Pushdown Automata- Pushdown Automata
	Slide 7
	Slide 8: 7. Context-Free Languages & Pushdown Automata- Pushdown Automata
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82: Why? Consider the following example:
	Slide 83: Why? Consider the following example:
	Slide 84: Why? Or, consider the following example:
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91

