CS375:
Logic and Theory of Computing

Fuhua (Frank) Cheng

Department of Computer Science

University of Kentucky

3/4/2025 University of Kentucky 1

Table of Contents:

Week 1: Preliminaries (set algebra, relations,
functions) (read Chapters 1-4)

Weeks 2-5: Regular Languages, Finite
Automata (Chapter 11)

Weeks 6-8: Context-Free Languages,
_ Pushdown Automata (Chapters 12)

Weeks 9-11: Turing Machines (Chapter 13)

3/4/2025 University of Kentucky 2

Table of Contents (conti):

Weeks 12-13: Propositional Logic (Chapter
6), Predicate Logic (Chapter 7),
Computational Logic (Chapter 9),
Algebraic Structures (Chapter 10)

3/4/2025 University of Kentucky

[. Context-Free Languages & Pushdown
Automata- pushdown Automata

Transform an empty-stack PDA to a C-F grammar

such that

language accepted by the PDA iIs the same as
language generated by the C-F grammar

[. Context-Free Languages & Pushdown
Automata- pushdown Automata

We know how to transform a C-F grammar to an
empty-stack PDA

ldea:

use stack to simulate the (left-most) derivation
of a string

[. Context-Free Languages & Pushdown

Automata- pushdown Automata
Example: Given S — aSb | A consider aabb

Left-most derivation: S = aSb = aaSbb = aabb

pop pop | &
¥ 21 pop o B pop S pop pop
—sF] %]l a]=

So we need these PDA transition instructions:
(0, A, S, < pop, push(b), push(S), push(a) >)

pop (0, a, a, pop)
(0, A, S, pop)
1 L1 (0, b, b, pop)

|ID’s for aaab: CTG Productions:

(0. ‘aabb, asb) S~
(0, abb, Sb)
(0, Aabb, Sb)_
{0, abb, aSbb) S —ash
(0, bb, Sbh b)
(0, Abb, Sbb)
" (0, bb, bb) < S— A
{0, b, b
(0. A, -A) PDA instructions:
//_A,S/ \\
pop, push(b), push(S), push(a) b,b
ae pov
oo AS

| pop I

7 _ CO Why should the stack age b/c in this case ‘a’ will
operation be a ‘pop’? be output (accepted)

Automa fdown Automata

Acce g a symbol ‘a’ means there is an instruction
(“ “_/\to execute when the Input symbol ‘a’ is read

i
\ pop /[

Generating a symbol ‘a’ means a production of the

form "B — a(w1)” will be executed In the (leftmost)
derivation process.

Transform an empty-stack PDA to a C-F grammar

‘ a’Is the letter/symbol accepted/output ‘

Type 1:

PDA instruction

Transform an empty-stack PDA to a C-F grammar

Why there is nothing else on the righthand
side of this production but ‘a’?

Type 1:

PDA instruction Grammar Production

b/c this edge is either the last edge of an acceptance
path, or the last edge of a sub-path of an accepted path
such that the remaining portion of the accepted path is
handled by another production (see slide 39)

Transform an empty-stack PDA to a C-F grammar

Type 1: |The string accepted |

PDA instruction A Grammar Production
a.B

)

_|Q<ample: ‘ A X

DG B

X, > A

‘Blz—>a‘

3/4/2025 University of Kentucky 27

Transform an empty-stack PDA to a C-F grammar

Type 2:

PDA Instruction Grammar Production

/‘\

(a'B

0520520

accepted string is ‘a’
B B :
: same) same) followed by whatever is

for eacht state k

accepted between state |
3/4/2025 University of Kentucky and State k 28

Transform an empty-stack PDA to a C-F grammar

PDA Instruction Grammar Production

B, —aB ik

for eachstate k

29

How is X — aX implemented?

’_______-

A X \

l/ a I \‘

X 1, X : X |

. I . I . :

l / :
e e |
: (X, ___‘5.../ : ;‘2{} l

v push(a) (Jpop (pop !

3/4/2025 University of Kentucky 30

Transform an empty-stack PDA to a C-F grammar

Type 3:

The path has to be

PDA Instruction

B2
7~ push(C) ‘\(.\‘
"L

W O

3/4/2025 University of Kentucky 31

Transform an empty-stack PDA to a C-F grammar

PDA Instruction

Example:

2.C

7B
»'/1 \

Grammar Production

B, »aC, B,

for eachstatek and |

LI LI b, L

PushC o o
Vol

B, > aC,;B;,

32

Transform an empty-stack PDA to a C-F grammar

The production that will generate the
string accepted by the PDA between

Type 4: state i and state |

PDA Instruction

Grammar Production

for

7, X
om0 W
start r Bach state j

(S is\start symbol)

\X—I ‘ \ | Could lead to an empty-stack status
3

3/4/2025 University of Kentucky

3

Transform an empty-stack PDA to a C-F grammar

Type 4:

PDA Instruction Grammar Production

0] S X..
PGSR

for each state |

Transform an empty-stack PDA to a C-F grammar

The order CFG productions are constructed:

Type 4
N
Type 1

¥

Type 2 (might not exist)

N
Type 3

35

Example. Transform the following empty-stack PDA into a C-F
grammar. : “a.X v A

$ pop “/pop
A | s
1

Solution:
Type 4

aX
The start state 0 and —— give:
pop

Example. Transform the following empty-stack PDA into a C-F

— Eay

” ~

grammar. aX v X\ 4
/—\push(.»_l' y il Ok

(0}

K

Start

Solution:
Type 1
The pop operation (1, a, X, pop, 1) gives

a, X
pop
080 o
X ‘ \ 37

Example. Transform the following empty-stack PDA into a C-F

grammar. ahX a.X % AN
R)PP 0P /'

X oy oY
Stal't —N\Q/ a. A "Q/

nop

Solution:
Type 1
The pop operation (1, a, A, pop, 1) gives

Example. Transform the following empty-stack PDA into a C-F

grammar. 01)(54) ax AN
(TR Ty poptpon |

/

Type 1

Question: a,A/pop is not the last step of an acceptance path,
why the right hand side of the production has only a
terminal?

Because this part
will be handled by

a,A
@ pop)@ ‘ All_)a ‘ non-terminals

contained In

| A / previously defined
: : production steps

Here iswhy: | S— Xos — adi4X,s — abcdX,s — abcde

Aqi4,— bB,3A34, — bcd

By3—c
A34—>
Xgs— €
B LoD PrY i
A A
1 X X
b, A ™\ |
— AL \pushBY _

d

4

e, X

0]

pop

40

Example. Transform the following empty-stack PDA into a C-F
grammar.

Solution:
Type 2
The nop operation (0, a, A, nop, 1) gives

a,A a,A

1] L 41

Example. Transform the followina emptv-stack PDA |nto a C-F

’a X\
grammat. \fush(,ﬂ .
Stan—><to\/
Solution:
Type 3

The push operation (0, a, X, push(A), 0) gives

push(A) pop pop
[0=205Rot Xo i rrerv:s

V 42

A
X X X

a. X a. X a A

Empty-stack PDA:
pop " pop

Start iu

(oY

R

a_‘ a"

nop

C-F Grammar:

S —> X, N S= Xo

X, —a Leftmost = alp1X11

Ay, —>a ‘ = aalq1X11
o — Ay derivation = aaaXqq

Xop = aAy; Xy = aaaa

The language accepted by this PDA
has only one element : aaaa

Empty-stack PDA:

C-F Grammar:

S —> X,
X, —a

St

(0. aaaa, X)
(0, aaa, AX)
(1, aa, AX)
1, a X)

(1, A, D)
Accepted

A
RN

This PDA accepts only
one string: aaaa

Or, think this way:

ID’s for aaaa: CTG Productions:
(0, aaaa, X[S — Xo1
_(>O aaa aX)| = I© Xo1 = ado1 X1
(1 aa aX) | B Ay = adqy
?1 a X) - Ay o d
7 1, N, Q) | X113 > a
l a, X
push(a) ﬂ
a,A pop
nop a,X

How to handle an empty-stack PDA of the following type:

a a b, b A X
< QPOP pop pop

Start A X A X
pop,push (a,X,b) pop,push (a,a,X)

This Is the one-state empty-stack acceptance PDA we got
for the CFG S A

S - aSb
— S - aaS

‘ How should a PDA of this form be transformed to a CFG? ‘

‘Would we be able to transform it back to the original CFG? ‘

How to handle an empty-stack PDA of the following type:

a a b, b
< 2 pop pop \J
Start A X A X
pop,push (a,X,b) pop,push (a,a,X)

What if the given empty-stack PDA is of the following type?

a a b, b
< 2 pop pop \J
Start A X A X
pop,push (a,X,b) pop,push (a,a,X)

Type 1:
A X
O [
X

What if the given empty-stack PDA is of the following type?

A a a\ b, b A X
y < pop J/ pop pop
Start A X A X
pop,push (a,X,b) pop,push (a,a,X)

Type 1:

a,a

_@ pop ,@ ‘ Ay = «a

<
<

49

What if the given empty-stack PDA is of the following type?

a, a/ b, b\ A, X
y < ‘? pop _pop J pop
Start A X A X
pop,push (a,X,b) pop,push (a,a,X)

Type 1:
b,b

_O pop ,@ [By - b

< T
<

50

What if the given empty-stack PDA is of the following type?

a a b, b A X

y i 2 pop pop pop
Start A X A X
pop,push (a,X,b)) pop,push (a,a,X)

Consider the following situation (General Type 3):

A combination of one type]

A X
go > pop,push (a, X, b))@ i 1 and three type 3’s

Pop pop POp

= | (= [o| =

<o
_<

X
I..-<cr><sn
I..<c><

What if the given empty-stack PDA is of the following type?

a a b, b A X

y { 2 pop pop pop
Start ?} A X A X
pop,push (a,X,b) / pop,push (a,a,X)

Consider the following situation (General Type 3):

A, X ﬂ A’ X b’b
Q=i ot ¥otrotra

Pop pop POp

= | (= [o| =

<o
_<

X
I..-<c7><sn
I..<c><

What if the given empty-stack PDA is of the following type?

a a b, b A X

{ ‘?POP pop po
A
pop,

p
X
Start , X A X
push (a,X,b) / pop,push (a,a,X)

Consider the following situation (General Type 3):

A X E A X b,b
~0)0 (0)20)2

‘ Xoo = ApoXooBoo ‘ 53

What if the given empty-stack PDA is of the following type?

a a b, b A X

i Zpop pop pop

X
Start
pop, push (a X,b) _ pop, push (a a,X)

Similarly:

A X a, a aa A, X
OO0 (0) (o)
0

‘ Xoo = ApoAooXoo ‘ o4

What if the given empty-stack PDA is of the following type?

a a b, b A X
« i QPOP pop pop

Start A X A X
pop,push (a,X,b) pop,push (a,a,X)

So, collectively, we have:

S = Xy

Xogp = A S—-o> A
1 AQQ - a » S — aSh

Boo = b S — aaS

Xoo = AgoXpoBoo
Xoo = AgoAooXoo N

Or, think this way:

CTG Productions: ...

< S - Xy \

Xoo = AooXooBoo

Xoo = AooAooXoo

AX

pop, push(X), push(a), push(a)

ID’s for aaab:
(0, aaab, X)
—>
(0, aaab, aXb)]
Agg 2 a | j
(0, aab, Xb)
go, aab, aaXb) 7
|<— - a
(0, ab, aXb) 00
>]<_ Arn = a
(0, b, Xb) 00
(0, b b) XA
e A P —
' T b,b
: 0
pop, push(b), push(X), push(a) pop
a,a
pop A X

pop

A General Question:

Given a language, how to find a
grammar for the language?

3/4/2025 University of Kentucky 57

Example. Find a grammar for the language
L = {w &{a, b}* | na(w) = nb(w)}

by (1) constructing an empty-stack PDA to accept L and then

(2) transforming it to a C-F grammat.

Solution: (1)
a, X a, a
push(a) push(a)
b X b,b
X
Start 0 push(b) push(b)
l/A, X\(’b,a a,b \‘
\N Py \pr PO@ /
- To ensure
To accept A and to # of a’'s and
reach empty-stack status # of b’s are

3/4/2025 University of Kentucky the same

Note the following two PDAs are equivalent:

3/4/2025

a, X a, a
push(a) push(a)

b, X b,b

Start - 0 }
| gu&h(b) push(d)
' A X \ b,a a,b
\ pop / pop pop
a, X a,a a, b

push(a) push(a) pop

/

X
> 0 - —
start ' AX
\pop ’
b, X b,b b, a

push(b) push(b) pop

~

59

Solution: (1)

X

Start 0 ’ push(b)
A X b,a a,b
pop Pop J\ pop

Consider :_aaalibabbas |

‘ Accepted ‘

REEER

Hence, the above PDA accepts L | | Stack is empty

60

Solution: (2)

[

b, X

a, X a,a
push(a) push(a)
b,b

push(b) push(b)

ba a,b

PDA Transformed.

S—)XQQ

Xoo > A | aAy, X o | bBooXoo

Ay — b aA, Ay,
B,, = a|bB,,B,,

- F grammar :

pop pop

61

Solution: (2) i a, X a,a
/ \ push(a) push(a)

X ,] b, X b,b
Start —’Q}) | push(b) push(b)

\/ AX ba a,b

pop pop

PDA Transformed into C : A X

S Xa O——@©)
Xopg > A | @Ay X g0 [DBy X o
Ay — b Ay Ay Type =7

By, — a|bBy,By,

62

Solution: (2)

/ ax

a.x

a, a

push(a) push(a)

b,b

') b.- X

push(b) push(b)

pop

PDA Transformed intoC-F
S —> Xy
X00 _)A X00 |bBOOXOO

Ay = blaA, Ay

By, — a|bBy,By,

3/4/2025

University of Kentucky

b,a a,b
pop pop

63

: X]
Solution: (2) . s el

/ \ push(a) push(a)

) b, X b, b
push(b) push(b)

\/ AX ba a,b

pop pop pop

3/4/2025 University of Kentucky 64

Solution: (2)

Start

PDA Transformed into
S —> Xy
ﬁ —> AlaAy, X, [DBy X o

Ay, — b|aAy Ay
By, — a|bBy,By,

a. X a. A

ush(A4)" push(A4)
b. X b.B

push(B) push(B)
A.X bA aB

pPop ~ pop’ pop

a, X

push(A)
@u_A
@

pop
pop

Type =7?

65

Solution: (2)

a,X a A
push(A4)" push(A4)
X | bX BB

Start ush(B)” push(B)

0
g A.X bA aB
\ / pop * pop’ pop
// b, X
PDA Transformed into C - Fgr @ ush(5)
S — X, i

Xoo — AlaA, Xy, |bBooXoo
Ay, — b|aAy Ay

By, — a|bBy,By, pop

3/4/2025 University of Kentucky

Solution: (2)

a, X a.A
push(A4)" push(A4)

Start—2 (0

3/4/2025 University of Kentucky

Solution: (2)

a, X a.A
push(A) push(A)

J push(B’) push(B)

2/ ' ‘A a.B
_/ e

Start

PDA Transformed into C-F gr
S —> Xy

Xoo = AlaA, Xy |
Ay, — bl aA,

By, — a|bB By,

3/4/2025 University of Kentucky Type — ’?

Solution: (2)

/ \ push(A push(A)

/?\ \ 5x 5B
" push(B) push(B)

Stzut—u 0
AX b A a.B
\/ pop ~ pop” pop

PDA Transformed into C - F grammar : Simplified CFG :
S — Xy ;
S — A|aAS |bBS
| Xoo = Al 8ApX g | DBy X g » L LAA |
Ay = b laAo A, —b]
BOO_)aleooBoo B _)aleB

3/4/2025 University of Kentucky 69

Solution: (2)

/ \ push(A) push(A)

/i\ \ b5Xx 5B
push(B) push(B)
6

Stmt—»« O
A.X b A a.B
\/ pop " pop’ pop

Simplified CFG:: Derivation of |aababb:
S —AaAS |bBS | B[S = aAS = aaAAS = aabAS
A —Db|aAA — aabaAAS = aababAS
B—a|bBB — aababbS — aababb

3/4/2025 University of Kentucky 70

Nondeterministic PDAS are more
powerful than deterministic PDAs.

Final-state acceptance and empty-stack acceptance
are equivalent only for NPDAs

Final-state acceptance and empty-stack acceptance are
not equivalent for DPDAs. For DPDAS, the class of
languages defined by final-state acceptance is bigger.

3/4/2025 University of Kentucky 71

Nondeterministic PDAs are more powerful than
deterministic PDASs.

Left half and right half
are symmetric

An example is to consider the laguage of even
Palindromes (such as: aababbbbabaa) over {a, b}.

A context-free grammar for the language is given by
S— A|aSa|bSb

—— Any PDA to accept the language must make a
nondeterministic decision to start comparing the 2nd
half of a string with the reverse of the first half.

3/4/2025 University of Kentucky 72

Example: consider the following PDA

a, X a,a a,b a,a b,b
push (a) push(a) push(a) pop pop
Start A X Aa A,b A X
’ nop nop pop
b, X
push (b) push (b) push (b)

This non-deterministic PDA accepts the language of even
palindromes over {a, b}

Example: consider the following PDA

‘Why Is this a non-deterministic PDA ?

’_- ‘-~

'aX‘/ aa\ a,b a,a b,b
\\Push (a)l,\\push (a) } push (a) 0p pop
X
Start _
i }«op.Anop ,’ nop
b XN bb /F?\
push (b), push (b) push (b)'

Does it accept even palindromes over {a, b} ? ‘

a, X a,a a,b a,a b,b
push (a) push(a) push(a) pop pop

2 1
Start A X Aa ADb A, X

‘5 nop nop nop pop
b, X

push (b) push (b) push (b)

Consider (0, abbbba, X) = (0, bbbba, aX)
— = (0, bbba, baX)
= (0, bba, bbaX)

r = (1, bba, bbaX)
we make a guess here

= (1, ba, baX) = (1, a, aX)

> (1, A X)) = (2 A N

The PDA may guess the middle wrong: ‘

a, X a,a a,b a,a b,b
push (a) push(a) push(a) pop pop

% 1
Start A, X Aa ADb A, X

‘5 nop nop nop pop
b, X

push (b) push (b) push (b)

Consider (0, abbbba, X) = (0, bbbba, aX)
— = (0, bbba, baX)

Abbba, baX)

If the PDA made a guess = (1, bbba, bax)
here = (1, bba, aX)

\ It gets stuck here!

This PDA can only accept even palindromes: ‘

a, X a, a a,b a,a b,b
push (a) push(a) push(a) pop pop

X
Start AX A, a Aﬁ

nop nop nop

b, X , b,
push (b) push (b) push (b)

Consider (0, aabbba, X) = (0, abbba, aX)
— = (0, bbba, aaX)

= (0, bba, baaX)
= (0, ba, bbaaX)
= (0, a, bbbaaX)

= (0, A, abbbaaX) It gets stuck
= (1, A, abbbaaX) « | here!

There is in general no way to translate a non-
deterministic PDA (NPDA) into a deterministic one.

Why?
Why the technique to convert a non-deterministic FAto a
deterministic FA cannot be used here?

If this Is possible, then the converted deterministic PDA
should be able to recognize the language of even

Palindromes. But this Is a contradiction b/c a DPDA
cannot make a guess.

There is in general no way to translate a non-
deterministic PDA (NPDA) into a deterministic one.
Indeed, there is no DPDA which recognizes the
language of even palindromes.

That iIs why we can say that NPDAs are more powerful
than DPDAs.

However, we can define a similar language L1 over
-~ {a, b, $} which can be recognized by a DPDA:

L1 = {w$w® | we{a, b}*}

A DPDA for Lui:

a, X a,a a,b a,a b,b
push (a) push(a) push(a) pop pop

o rerer
X
Start $X $,a $,b

nop nop nop

b, X , b,
push (b) push (b) push (b)

Consider (0, abb$bba, X) = (0, bb$bba, aX)
— = (0, b$bba, baX)

= (0, $bba, bbaX)

~ (1. G @
Is this PDA indeed = (1, ba, baX)
deterministic? = (1, a, aX)

What do you see
here?

> (1, A X)) = (2 A N

Note that

1.| Final-state acceptance and empty-stack acceptance
are equivalent only for NPDAs

2.(Final-state acceptance and empty-stack acceptance
are not equivalent for DPDAs. For DPDAs, the class
of languages defined by final-state acceptance Is

bigger.

- Why?

b/c DPDASs do not have the instruction ;’T); IN Most of the cases

(without the instruction AX/pop, we can still do final state acceptance, but we will not be able to
do empty stack acceptance.)

Why’> Consider the following example:

a, X b, X
push(a) push(b)

(7 Accepts ? {/\,a, b}
~

a, X b, X
push(a) push(b)

Accepts ? o

X ;<:)
Not even A

3/4/2025 82

Why? Consider the following example:

a, X b, X
push(a) push(b)

(7 Accepts ? {/\,a, b}
~

a, X b, X
push(a) push(b)

< n7 Accepts ? N\
X

Not DPDA

N, X
3/4/2025 p Op 83

Why’> Or, consider the following example:

a, X a, a

push(a) push(a) b, a

Accepts ?
N\, a, aa, aaa,
abb, aabbb, ...
a, X a,a
push(a) push(a) b, a
X Q il 0 b,a Accepts ?
Do
start 2 abb, aabbb, ...
b, X

S 84

Summarize:

CFGs and PDAs have equivalent expressive powers.
More formally, . . .

Theorem. For every CFG G, there is a PDA P such
that L(G) = L(P).
In addition, for every PDA P, there is a CFG G such

that L(P) = L(G).
Thus, L is CF iff there is a (non-deterministic) PDA P
such that L =L(P).

CF languages are exactly those languages that are
accepted by (non-deterministic) PDAs.

L is CF iff there Is a (non-deterministic) PDA P
such that L = L(P).
CF languages are exactly those languages that are
non-deterministic) PDAS.

If a CFL is infinite, it would have a non-trivial grammar (the right

hand side of at least one production would contain a non-
terminal and often time a recursive non-terminal). For such a
grammar, when you convert it to a PDA, you would get a one-
state, non-deterministic PDA. For instance, convert the following
simple cases and se

S—aS|A

or
S—aS|b

For

{S—aS|A }

aa AS
pop Dpop

S
>

AS
< pop, push(S), push(a) >

87

For {S—aS|b}
a,a b,b AS
pop pop <pop,push(b)>

S
>
start

AS
< pop, push(S),push(a) >

88

Summarize:

A CF language is called a deterministic final-state CF

language If it can be recognized by a deterministic
final-state PDA

Even palindromes: not a deterministic final-state CFL

a, X d, d d, b NPDA
push (a) push(a) push(a)

X
Start 0 AX A /\,b)@ A, X

nop ' nop nop 00p
b, X b,b b, a
push (b) push (b) push (b)

Summarize:

L1 over {a, b, $} is a deterministic final-state CFL:
L1 = {w$wh | we{a, b}*}

a, X a,a a,b DPDA
push (a) push(a) push(a)

X
Start L $X $a $,b>@ A, X

nop nop nop oop
b, X b, b b, a
push (b) push (b) push (b)

End of Context-Free
Language and
Pushdown Automata
1

	Slide 1: CS375: Logic and Theory of Computing
	Slide 2: Table of Contents:
	Slide 3: Table of Contents (conti):
	Slide 4: 7. Context-Free Languages & Pushdown Automata- Pushdown Automata
	Slide 5: 7. Context-Free Languages & Pushdown Automata- Pushdown Automata
	Slide 6: 7. Context-Free Languages & Pushdown Automata- Pushdown Automata
	Slide 7
	Slide 8: 7. Context-Free Languages & Pushdown Automata- Pushdown Automata
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82: Why? Consider the following example:
	Slide 83: Why? Consider the following example:
	Slide 84: Why? Or, consider the following example:
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91

