
2/23/2024 1

CS375:

Logic and Theory of Computing

Fuhua (Frank) Cheng

Department of Computer Science

University of Kentucky

University of Kentucky



2/23/2024 2

Table of Contents:

◼ Week 1: Preliminaries (set algebra, relations, 

functions) (read  Chapters 1-4)

◼ Weeks 2-5: Regular Languages, Finite

Automata (Chapter 11)

◼ Weeks 6-8: Context-Free Languages, 

Pushdown Automata  (Chapters 12)

◼ Weeks 9-11: Turing Machines (Chapter 13)

University of Kentucky



2/23/2024 3

Table of Contents (conti):

▪ Weeks 12-13: Propositional Logic (Chapter 

6), Predicate Logic (Chapter 7), 

Computational Logic (Chapter 9), 

Algebraic Structures (Chapter 10)

University of Kentucky



2/23/2024 4

Transform an empty-stack PDA to a C-F grammar 

such that

language accepted by the PDA is the same as

language generated by the C-F grammar

C-F grammar University of Kentucky

7. Context-Free Languages & Pushdown 

Automata- Pushdown Automata



2/23/2024 5

We know how to transform a C-F grammar to an 

empty-stack PDA 

Idea:

use stack to simulate the (left-most) derivation 

of a string

University of Kentucky

7. Context-Free Languages & Pushdown 

Automata- Pushdown Automata



2/23/2024 6

Example:   Given S → aSb | Ʌ          consider aabb

University of Kentucky

7. Context-Free Languages & Pushdown 

Automata- Pushdown Automata

Left-most derivation:   S  ⇒ aSb ⇒ aaSbb ⇒ aabb

Stack simulation: 

S
⇒

a

S

b
⇒

pop 

+

push

a

S

b

b
⇒

Pop

+

pushS

b
⇒

pop
S

b

b
⇒

pop 
b

b
⇒

pop

b
⇒

pop

Ʌ

pop

So we need these PDA transition instructions:

(0, Ʌ, S, < pop, push(b), push(S), push(a) >)

(0, a, a, pop)

(0, Ʌ, S, pop)

(0, b, b, pop)



2/23/2024 7

To transform an empty-stack PDA to a C-F grammar, 

we need to know the relationship between 

accepting a string and generating a string

❑ Accepting a symbol ‘a’ means there is an instruction

“
𝑎,?

𝑝𝑜𝑝
” to execute when the input symbol ‘a’ is read

❑Generating a symbol ‘a’ means a production of the 

form “B → a(w1)” can be executed in the (leftmost) 

derivation process.  
University of Kentucky

7. Context-Free Languages & Pushdown 

Automata- Pushdown Automata

Why should the stack 

operation be a ‘pop’?

b/c in this case ‘a’ will 

be output (accepted)



2/23/2024 University of Kentucky 8

𝑤 = ⋯𝑎⋯

How would a PDA accept a symbol ‘a’ in an input string? 

ji

𝑎, 𝐵

𝑥pop

(State j could be the same as state i, and

B can not be Ʌ )

Relationship between accepting and 

generating:

Must have

Why B can not be Ʌ ?

If B is Ʌ, it means the stack is empty, and a string has already 

been accepted, so no need to process anything any more.

Why the stack operation must be a ‘pop’?

b/c in this case ‘a’ will be output (accepted).



2/23/2024 University of Kentucky 9

How would a CFG generate a string with a symbol ‘a’ in it?  

𝑤 = ⋯𝑎⋯

(B is a non-terminal, w1 is a string of terminals 

and/or non-terminals, and w1 could be Ʌ) 

Relationship between accepting and 

generating:

Why w1 could be Ʌ ?

Because a could be the last symbol of w

Must have

B           w0 a w1



2/23/2024 University of Kentucky 10

How would an empty-stack PDA accept a string ‘a···c’ ? 

(State k could be the same as state i, and

B can not be Ʌ )

Relationship between accepting and 

generating:

𝑤 = 𝑎⋯𝑐

Must have

k

𝑐, 𝐵

𝑝𝑜𝑝
⋯i

𝑎, 𝐵

𝑥
j

Why B can not be Ʌ ?

Why the ‘B’ in “c,B/pop” is the same as the ‘B’ in 

“a,B/     ” ？



2/23/2024 University of Kentucky 11

How would an empty-stack PDA accept a string ‘a···c’ ? 

(State k could be the same as state i, and

B can not be Ʌ )

Relationship between accepting and 

generating:

𝑤 = 𝑎⋯𝑐

Must have

k

𝑐, 𝐵

𝑝𝑜𝑝
⋯i

𝑎, 𝐵

𝑥
j

Why the ‘B’ in “c,B/pop” is the same as the ‘B’ in 

“a,B/     ” ？

For w=a…c to be accepted by the PDA, B must be the 

start symbol of the stack, it must also be the last symbol to  

remove from the stack.



2/23/2024 15

Transform an empty-stack 

PDA to a C-F grammar

University of Kentucky

Basic idea:
Define non-terminals Bij for the CFG that can generate all 

strings w that:

– upon reading w on the input tape the PDA will

take you from state i to state j in the PDA and

have a “net result” of popping B off the stack  

• In essence, B is “eventually” replaced by w

• It may take many moves to get there.

Skip slides 

12-14



2/23/2024 16

Transform an empty-stack PDA to a C-F grammar 

University of Kentucky

Three questions have to be answered:

1. When would only a terminal be involved on the right

hand side of a production?

2. When would both a terminal and a non-terminal be

involved on the right hand side of a production?

3. When would the start symbol be involved in a

production?



Transform an empty-stack PDA to a C-F grammar 

2/23/2024 University of Kentucky 17

𝐵𝑖𝑗 ⇒ ⇒ ⇒ ⋯ ⇒ w

(leftmost derivation)

ji

w

B 

⋮ ⋮

(B is removed)
same



Transform an empty-stack PDA to a C-F grammar 

2/23/2024 University of Kentucky 18

𝐵𝑖𝑗 ⇒ ⇒ ⇒ ⋯ ⇒ w

(leftmost derivation)

X

(X is removed)

ji

w
X

(stack is empty)

(w is accepted)

Φ

Case 1:

(w is generated)



Transform an empty-stack PDA to a C-F grammar 

2/23/2024 University of Kentucky 19

𝐵𝑖𝑗 ⇒ ⋯ ⇒ w

(leftmost derivation)

X

nm

w
X (w is part of an 

accepted string)

Φ

Case 2:

(w is part of a 

generated string)

B 

⋮ ⋮

(B is

removed)
same

i j

𝐵𝑚𝑛 ⇒ ⋯ 𝑤1 𝐵𝑗𝑛



2/23/2024 University of Kentucky 20
X

Φ

What is the point?

A

X X

B

A

X

A

X

B

A

X

C

B

A

X

C

B

A

X

D

C

B

A

X

The acceptance process can be decomposed as a 

sequence of net-loss-of one-stack-symbol’s

A Pascal Triangle-like chart

Type 1 Type 3

Type 4



2/23/2024 University of Kentucky 21

For each push there must be 

a pop.

Otherwise, the stack wouldn’t  

be empty eventually.



2/23/2024 University of Kentucky 22

There could be several peaks



2/23/2024 University of Kentucky 23

How is  S → a  implemented?

Λ, 𝑆

𝑝𝑜𝑝 < 𝑝𝑢𝑠ℎ 𝑎 >

…

S

…

a

𝑎, 𝑎

𝑝𝑜𝑝

…



2/23/2024 24

Transform an empty-stack PDA to a C-F grammar 

Type 1:

University of Kentucky

PDA instruction Grammar Production   

aBij →

can reach an empty-

stack status 

‘a’ is the letter/symbol accepted/output

B 

⋮ ⋮



2/23/2024 25

Transform an empty-stack PDA to a C-F grammar

Type 1:

PDA instruction Grammar Production

University of Kentucky

aBij →

Example:

1 2

a, B

pop
1 2

, X

pop



→12X aB →12

The string accepted



2/23/2024 26

Transform an empty-stack PDA to a C-F grammar

Type 2:

PDA instruction Grammar Production

University of Kentucky

k

BaB jkik

 stateeach for   

→

B 

⋮
B 

⋮ ⋮

accepted string is ‘a’ 

followed by whatever is 

accepted  between state j 

and state k

same same



2/23/2024 27

Transform an empty-stack PDA to a C-F grammar

PDA instruction Grammar Production

University of Kentucky

k

aBB jkik

 stateeach for   

→

Example:

321

a, B

nop

b, B

pop
4

c, B

pop

2313 aBB → 2414 aBB →



2/23/2024 University of Kentucky 28

How is  X → aX implemented?

𝑎, 𝑎

𝑝𝑜𝑝

…

Λ, 𝑋

𝑝𝑜𝑝 < 𝑝𝑢𝑠ℎ 𝑋 , 𝑝𝑢𝑠ℎ 𝑎 >

…

X
…

a

X

…

X

𝑎, 𝑋

𝑝𝑢𝑠ℎ(𝑎)

? , 𝑋

𝑝𝑜𝑝



2/23/2024 29

Transform an empty-stack PDA to a C-F grammar

Type 3:

PDA instruction Grammar Production

University of Kentucky

lk

BaCB kljkil

 and  stateeach for   

→

B B

C

B

The path has to be 

a workable path



2/23/2024 30

Transform an empty-stack PDA to a C-F grammar

PDA instruction Grammar Production

University of Kentucky

lk

BaCB kljkil

 and  stateeach for   

→

Example:

321

a, B  

Push(C)

b, C

pop
4

c, B

pop

342314 BCaB →

B B
C

B



2/23/2024 31

Transform an empty-stack PDA to a C-F grammar

Type 4:

PDA instruction Grammar Production

University of Kentucky

Could lead to an empty-stack status

symbol)start   is  ( 

 stateeach for   

S

j

XS ij→

X

The production that will generate the 

string accepted by the PDA between 

state i and state j



2/23/2024 32

Transform an empty-stack PDA to a C-F grammar

Type 4:

PDA instruction Grammar Production

University of Kentucky

j

XS ij

 stateeach for 

→

Example:
1 2

a, X

nopX

start
3

c, X

pop

13XS → 2313 aXX → (Type 2)



2/23/2024 33

Transform an empty-stack PDA to a C-F grammar

University of Kentucky

The order CFG productions are constructed:

Type 4

Type 1

Type 2 

Type 3

(might not exist)



2/23/2024 34University of Kentucky

Example. Transform the following empty-stack PDA into a C-F

grammar.

Solution:

Type 4

The start state 0 and  
𝑎,𝑋

𝑝𝑜𝑝
give:

01XS →

X



2/23/2024 35University of Kentucky

Example. Transform the following empty-stack PDA into a C-F

grammar.

Solution:

Type 1

The pop operation (1, a, X, pop, 1) gives

aX →11

X



2/23/2024 36University of Kentucky

Example. Transform the following empty-stack PDA into a C-F

grammar.

Solution:

Type 1

The pop operation (1, a, A, pop, 1) gives

aA →11

A… …



2/23/2024 37University of Kentucky

Example. Transform the following empty-stack PDA into a C-F

grammar.

Type 1

Question: a,A/pop is not the last step of an acceptance path,

why the right hand side of the production has only a 

terminal?

aA →11

A… …

Because this part 

will be handled by 

non-terminals 

contained in 

previously defined 

production steps



𝑑, 𝐴

𝑝𝑜𝑝

𝑒, 𝑋

𝑝𝑜𝑝

2/23/2024 University of Kentucky 38

Here is why: S → 𝑋05

𝑎, 𝑋

𝑝𝑢𝑠ℎ(𝐴)

𝑏, 𝐴

𝑝𝑢𝑠ℎ(𝐵)

X

A

X

B

A

X

Φ

X

A

X

𝑐, 𝐵

𝑝𝑜𝑝

X

→ 𝑎𝐴14𝑋45

𝐴14→ 𝑏𝐵23𝐴34

0

1

2
3

4

5

𝐵23→ 𝑐

𝐴34→ 𝑑

→ 𝑏𝑐𝑑

𝑋45→ 𝑒

→ 𝑎𝑏𝑐𝑑𝑋45 → 𝑎𝑏𝑐𝑑𝑒



2/23/2024 39University of Kentucky

Example. Transform the following empty-stack PDA into a C-F

grammar.

Solution:

Type 2

The nop operation (0, a, A, nop, 1) gives

1101 aAA →

…A… A…



2/23/2024 40University of Kentucky

Example. Transform the following empty-stack PDA into a C-F

grammar.

Solution:

Type 3

The push operation (0, a, X, push(A), 0) gives

110101 XaAX →

X
A

X X



2/23/2024 41

Empty-stack PDA:

C-F Grammar:

University of Kentucky

1101 aAA →

01XS →

aX →11

110101 XaAX →

aA →11

S ⇒ 𝑋01

⇒ 𝑎𝐴01𝑋11

⇒ 𝑎𝑎𝐴11𝑋11

⇒ 𝑎𝑎𝑎𝑋11

⇒ 𝑎𝑎𝑎𝑎

Leftmost

derivation

The language accepted by this PDA 

has only one element : aaaa



2/23/2024 42

Empty-stack PDA:

C-F Grammar:

University of Kentucky

1101 aAA →

01XS →

aX →11

110101 XaAX →

aA →11

(0,  aaaa,  X)

(0,   aaa,  AX)

(1,  aa,  AX)

(1,  a,  X) X

A

Accepted This PDA accepts only 

one string: aaaa



2/23/2024 43University of Kentucky

How to handle an empty-stack PDA of the following type:

X  

Start

𝑎, 𝑎

𝑝𝑜𝑝

𝑏, 𝑏

𝑝𝑜𝑝

Λ, 𝑋

𝑝𝑜𝑝

0 Λ, 𝑋

𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ (𝑎, 𝑋, 𝑏)

Λ, 𝑋

𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ (𝑎, 𝑎, 𝑋)

This is the one-state empty-stack acceptance PDA we got 

for the CFG 𝑆 → Ʌ
𝑆 → 𝑎𝑆𝑏
𝑆 → 𝑎𝑎𝑆

How should a PDA of this form be transformed to a CFG?

Would we be able to transform it back to the original CFG?



2/23/2024 44University of Kentucky

How to handle an empty-stack PDA of the following type:

X  

Start

𝑎, 𝑎

𝑝𝑜𝑝

𝑏, 𝑏

𝑝𝑜𝑝

Λ, 𝑋

𝑝𝑜𝑝

0 Λ, 𝑋

𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ (𝑎, 𝑋, 𝑏)

Λ, 𝑋

𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ (𝑎, 𝑎, 𝑋)

Type 4:

X ∅

𝑆 → 𝑋00

Ʌ, 𝑋

𝑝𝑜𝑝
0 0

start

X



2/23/2024 45University of Kentucky

What if the given empty-stack PDA is of the following type?

X  

Start

𝑎, 𝑎

𝑝𝑜𝑝

𝑏, 𝑏

𝑝𝑜𝑝

Λ, 𝑋

𝑝𝑜𝑝

0 Λ, 𝑋

𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ (𝑎, 𝑋, 𝑏)

Λ, 𝑋

𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ (𝑎, 𝑎, 𝑋)

Type 1:

Ʌ, 𝑋

𝑝𝑜𝑝
0 0

X 

Y

⋮

Y

⋮

𝑋00 → Ʌ



2/23/2024 46University of Kentucky

What if the given empty-stack PDA is of the following type?

X  

Start

𝑎, 𝑎

𝑝𝑜𝑝

𝑏, 𝑏

𝑝𝑜𝑝

Λ, 𝑋

𝑝𝑜𝑝

0 Λ, 𝑋

𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ (𝑎, 𝑋, 𝑏)

Λ, 𝑋

𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ (𝑎, 𝑎, 𝑋)

Type 1:

𝑎, 𝑎

𝑝𝑜𝑝
0 0

a 

Y

⋮

Y

⋮

𝐴00 → 𝑎



2/23/2024 47University of Kentucky

What if the given empty-stack PDA is of the following type?

X  

Start

𝑎, 𝑎

𝑝𝑜𝑝

𝑏, 𝑏

𝑝𝑜𝑝

Λ, 𝑋

𝑝𝑜𝑝

0 Λ, 𝑋

𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ (𝑎, 𝑋, 𝑏)

Λ, 𝑋

𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ (𝑎, 𝑎, 𝑋)

Type 1:

𝑏, 𝑏

𝑝𝑜𝑝
0 0

b 

Y

⋮

Y

⋮

𝐵00 → 𝑏



2/23/2024 48University of Kentucky

What if the given empty-stack PDA is of the following type?

X  

Start

𝑎, 𝑎

𝑝𝑜𝑝

𝑏, 𝑏

𝑝𝑜𝑝

Λ, 𝑋

𝑝𝑜𝑝

0 Λ, 𝑋

𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ (𝑎, 𝑋, 𝑏)

Λ, 𝑋

𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ (𝑎, 𝑎, 𝑋)

Consider the following situation (General Type 3):

0 0

Λ, 𝑋

𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ (𝑎, 𝑋, 𝑏)

X 

Y

⋮

a  

X 

b 

Y

⋮

Y

⋮

X 

b 

Y

⋮

pop

b 

Y

⋮

pop pop

A combination of one type 

1 and three type 3’s



2/23/2024 49University of Kentucky

What if the given empty-stack PDA is of the following type?

X  

Start

𝑎, 𝑎

𝑝𝑜𝑝

𝑏, 𝑏

𝑝𝑜𝑝

Λ, 𝑋

𝑝𝑜𝑝

0
Λ, 𝑋

𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ (𝑎, 𝑋, 𝑏)

Λ, 𝑋

𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ (𝑎, 𝑎, 𝑋)

Consider the following situation (General Type 3):

0 0

X 

Y

⋮

a  

X 

b 

Y

⋮

Y

⋮

X 

b 

Y

⋮

pop

b 

Y

⋮

pop pop

0 0 0
pop

aa,

pop

X,Λ, 𝑋

𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ (𝑎, 𝑋, 𝑏)
𝑏, 𝑏

𝑝𝑜𝑝



2/23/2024 50University of Kentucky

What if the given empty-stack PDA is of the following type?

X  

Start

𝑎, 𝑎

𝑝𝑜𝑝

𝑏, 𝑏

𝑝𝑜𝑝

Λ, 𝑋

𝑝𝑜𝑝

0
Λ, 𝑋

𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ (𝑎, 𝑋, 𝑏)

Λ, 𝑋

𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ (𝑎, 𝑎, 𝑋)

Consider the following situation (General Type 3):

𝑋00 → 𝐴00𝑋00𝐵00

000 0 0
pop

aa,

pop

X, 𝑏, 𝑏

𝑝𝑜𝑝

Λ, 𝑋

𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ (𝑎, 𝑋, 𝑏)



2/23/2024 51University of Kentucky

What if the given empty-stack PDA is of the following type?

X  

Start

𝑎, 𝑎

𝑝𝑜𝑝

𝑏, 𝑏

𝑝𝑜𝑝

Λ, 𝑋

𝑝𝑜𝑝

0
Λ, 𝑋

𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ (𝑎, 𝑋, 𝑏)

Λ, 𝑋

𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ (𝑎, 𝑎, 𝑋)

Similarly:

𝑋00 → 𝐴00𝐴00𝑋00

0 0 0 0 0
pop

X,𝑎, 𝑎

𝑝𝑜𝑝pop

aa,Λ, 𝑋

𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ (𝑎, 𝑎, 𝑋)



2/23/2024 52University of Kentucky

What if the given empty-stack PDA is of the following type?

X  

Start

𝑎, 𝑎

𝑝𝑜𝑝

𝑏, 𝑏

𝑝𝑜𝑝

Λ, 𝑋

𝑝𝑜𝑝

0
Λ, 𝑋

𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ (𝑎, 𝑋, 𝑏)

Λ, 𝑋

𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ (𝑎, 𝑎, 𝑋)

So, collectively, we have:

𝑆 → 𝑋00
𝑋00 → Λ
𝐴00 → 𝑎
𝐵00 → 𝑏
𝑋00 → 𝐴00𝑋00𝐵00
𝑋00 → 𝐴00𝐴00𝑋00

𝑆 → Ʌ
𝑆 → 𝑎𝑆𝑏
𝑆 → 𝑎𝑎𝑆



2/23/2024 53

Example. Find a grammar for the language

L = {w ∈ {a, b}* | na(w) = nb(w)}

by (1) constructing an empty-stack PDA to accept L and then 

(2) transforming it to a C-F grammar.

Solution: (1)

University of Kentucky

To accept Ʌ and to

reach empty-stack status

To ensure

# of a’s and

# of b’s are

the same



2/23/2024 54University of Kentucky

Note the following two PDAs are equivalent:



2/23/2024 55

Solution: (1)

University of Kentucky

aaabbabbba   :Consider

X
a
a
a
a
b

Stack is empty

Accepted

Hence, the above PDA accepts L



2/23/2024 56

Solution: (2)

University of Kentucky

Type = ?

000000

000000

0000000000

00

|    

|    

||    

     

:grammar F-C into dTransformePDA 

BbBaB

AaAbA

XbBXaAX

XS

→

→

→

→



2/23/2024 57

Solution: (2)

University of Kentucky

Type = ?

000000

000000

0000000000

00

|    

|    

||    

     

:grammar F-C into dTransformePDA 

BbBaB

AaAbA

XbBXaAX

XS

→

→

→

→



2/23/2024 58

Solution: (2)

University of Kentucky

000000

000000

0000000000

00

|    

|    

||    

     

:grammar F-C into dTransformePDA 

BbBaB

AaAbA

XbBXaAX

XS

→

→

→

→

Type = ?



2/23/2024 59

Solution: (2)

University of Kentucky

000000

000000

0000000000

00

|    

|    

||    

     

:grammar F-C into dTransformePDA 

BbBaB

AaAbA

XbBXaAX

XS

→

→

→

→

Type = ?



2/23/2024 60

Solution: (2)

University of Kentucky Type = ?
000000

000000

0000000000

00

|    

|    

||    

     

:grammar F-C into dTransformePDA 

BbBaB

AaAbA

XbBXaAX

XS

→

→

→

→



2/23/2024 61

Solution: (2)

University of Kentucky

000000

000000

0000000000

00

|    

|    

||    

     

:grammar F-C into dTransformePDA 

BbBaB

AaAbA

XbBXaAX

XS

→

→

→

→

Type = ?



2/23/2024 62

Solution: (2)

University of Kentucky

000000

000000

0000000000

00

|    

|    

||    

     

:grammar F-C into dTransformePDA 

BbBaB

AaAbA

XbBXaAX

XS

→

→

→

→

Type = ?



2/23/2024 63

Solution: (2)

University of Kentucky

000000

000000

0000000000

00

|    

|    

||    

     

:grammar F-C into dTransformePDA 

BbBaB

AaAbA

XbBXaAX

XS

→

→

→

→

Type = ?



2/23/2024 64

Solution: (2)

University of Kentucky

000000

000000

0000000000

00

|    

|    

||    

     

:grammar F-C into dTransformePDA 

BbBaB

AaAbA

XbBXaAX

XS

→

→

→

→

bBBaB

aAAbA

bBSaASS

|   

|   

||    

:CFG  Simplified

→

→

→



2/23/2024 65

Solution: (2)

University of Kentucky

bBBaB

aAAbA

bBSaASS

|   

|   

||    

:CFG  Simplified

→

→

→

aababbaababbS

aababASaabaAAS

aabASaaAASaASS

aababb of Derivation







   

   

:  



2/23/2024 66

Nondeterministic PDAs are more powerful than

deterministic PDAs.

An example is to consider the language of even

Palindromes (such as:  aababbbbabaa) over {a, b}.

A context-free grammar for the language is given by

S → Λ | aSa | bSb

Any PDA to accept the language must make a

nondeterministic decision to start comparing the 2nd

half of a string with the reverse of the first half.

University of Kentucky

Left half and right half

are symmetric



2/23/2024 67

Example: consider the following PDA

University of Kentucky

X  

Start

)(

,

)(

,

)(

,

apush

ba

apush

aa

apush

Xa

0

)(

,

)(

,

)(

,

bpush

ab

bpush

bb

bpush

Xb

nop

,
,

nop

a,
 , 

nop

, bX 
1 2

 
pop

, X

This non-deterministic PDA accepts the language of even 

palindromes over {a, b}

pop

bb

pop

aa ,,



2/23/2024 68

Example: consider the following PDA

University of Kentucky

X  

Start

)(

,

)(

,

)(

,

apush

ba

apush

aa

apush

Xa

0

)(

,

)(

,

)(

,

bpush

ab

bpush

bb

bpush

Xb

nop

,
,

nop

a,
 , 

nop

, bX 
1 2

 
pop

, X

Why is this a non-deterministic PDA ?  

pop

bb

pop

aa ,,



2/23/2024 69

Example: consider the following PDA

University of Kentucky

X  

Start

)(

,

)(

,

)(

,

apush

ba

apush

aa

apush

Xa

0

)(

,

)(

,

)(

,

bpush

ab

bpush

bb

bpush

Xb

nop

,
,

nop

a,
 , 

nop

, bX 
1 2

 
pop

, X

Does it accept even palindromes over {a, b} ?

Consider (0, abbbba,  X) ⇒ (0,  bbbba,  aX)

⇒ (0,  bbba,  baX)

⇒ (0,  bba,  bbaX)

⇒ (0,  Ʌbba,  bbaX)

⇒ (1,  bba,  bbaX)

⇒ (1,  ba,  baX)   ⇒ (1,  a,  aX)

⇒ (1,  Ʌ,  X)         ⇒ (2,  Ʌ,  Ʌ)

pop

bb

pop

aa ,,

If we make a guess here



2/23/2024 70

Example: consider the following PDA

University of Kentucky

X  

Start

)(

,

)(

,

)(

,

apush

ba

apush

aa

apush

Xa

0

)(

,

)(

,

)(

,

bpush

ab

bpush

bb

bpush

Xb

nop

,
,

nop

a,
 , 

nop

, bX 
1 2

 
pop

, X

The PDA may guess the middle wrong:

Consider (0, abbbba,  X) ⇒ (0,  bbbba,  aX)

⇒ (0,  bbba,  baX)

⇒ (0,  Ʌbbba,  baX)

⇒ (1,  bbba,  baX)

⇒ (1,  bba,  aX)

pop

bb

pop

aa ,,

If the PDA made a guess 

here

It gets stuck here!



2/23/2024 71

Example: consider the following PDA

University of Kentucky

X  

Start

)(

,

)(

,

)(

,

apush

ba

apush

aa

apush

Xa

0

)(

,

)(

,

)(

,

bpush

ab

bpush

bb

bpush

Xb

nop

,
,

nop

a,
 , 

nop

, bX 
1 2

 
pop

, X

This PDA can only accept even palindromes:

Consider (0, aabbba,  X) ⇒ (0,  abbba,  aX)

⇒ (0,  bbba,  aaX)

⇒ (0,  bba,  baaX)

⇒ (0,  ba,  bbaaX)

⇒ (0,  a,  bbbaaX)

⇒ (0,  Ʌ,  abbbaaX)

⇒ (1,  Ʌ, abbbaaX)

pop

bb

pop

aa ,,

It gets stuck

here!



2/23/2024 72University of Kentucky

There is in general no way to translate a non-

deterministic PDA (NPDA) into a deterministic one.

Indeed, there is no DPDA which recognizes the 

language of  even palindromes.

That is why we can say that NPDAs are more powerful 

than DPDAs.

However, we can define a similar language  L1 over

{a, b, $} which can be recognized by a DPDA:

L1 = { 𝑤$𝑤𝑅 |  w ϵ {a, b}* }



2/23/2024 73

Example: consider the following PDA

University of Kentucky

X  

Start

)(

,

)(

,

)(

,

apush

ba

apush

aa

apush

Xa

0

)(

,

)(

,

)(

,

bpush

ab

bpush

bb

bpush

Xb

nop

$,
,

nop

a,$
 , 

nop

$, bX
1 2

 
pop

, X

A  DPDA  for  L1:

Consider (0, abb$bba,  X) ⇒ (0,  bb$bba,  aX)

⇒ (0,  b$bba,  baX)

⇒ (0,  $bba,  bbaX)

⇒ (1,  bba,  bbaX)

⇒ (1,  ba,  baX)

⇒ (1,  a,  aX)

⇒ (1,  Ʌ,  X)         ⇒ (2,  Ʌ,  Ʌ)

pop

bb

pop

aa ,,

What do you see 

here?

Is this PDA indeed 

deterministic?



2/23/2024 74University of Kentucky

Note that

1.  Final-state acceptance and empty-stack acceptance

are equivalent only for NPDAs

2.  Final-state acceptance and empty-stack acceptance

are not equivalent for DPDAs. For DPDAs, the class

of languages defined by final-state acceptance is 

bigger.

Why?

b/c DPDAs do not have the instruction 
?, 𝑋

𝑝𝑜𝑝
in most of the cases

(without  the instruction Ʌ,X/pop,we can still do final state acceptance, but we will not be able to 
do 𝐞𝐦𝐩𝐭𝐲 𝐬𝐭𝐚𝐜𝐤 𝐚𝐜𝐜𝐞𝐩𝐭𝐚𝐧𝐜𝐞.)



2/23/2024 75University of Kentucky

Why?      Consider the following example:

X
0

𝑎, 𝑋

𝑝𝑢𝑠ℎ 𝑎
,

𝑏, 𝑋

𝑝𝑢𝑠ℎ(𝑏)

X
0

𝑎, 𝑋

𝑝𝑢𝑠ℎ(𝑎)
,

𝑏, 𝑋

𝑝𝑢𝑠ℎ(𝑏)

Accepts ?

Accepts ?

{ Ʌ, a, b}

Φ

Not even Ʌ



2/23/2024 76University of Kentucky

Why?      Consider the following example:

X
0

𝑎, 𝑋

𝑝𝑢𝑠ℎ 𝑎
,

𝑏, 𝑋

𝑝𝑢𝑠ℎ(𝑏)

X
0

𝑎, 𝑋

𝑝𝑢𝑠ℎ(𝑎)
,

𝑏, 𝑋

𝑝𝑢𝑠ℎ(𝑏)

Accepts ?

Accepts ?

{ Ʌ, a, b}

Ʌ

Λ, 𝑋

𝑝𝑜𝑝

Not DPDA



2/23/2024 77University of Kentucky

Why?      Or, consider the following example:

Accepts ?

Ʌ, aa, abb

Accepts ?

abb



2/23/2024 78University of Kentucky

◼ CFGs and PDAs have equivalent expressive powers. 

More formally, . . . 

◼ Theorem. For every CFG G, there is a PDA P such 

that L(G) = L(P).

In addition, for every PDA P, there is a CFG G such 

that L(P) = L(G).

Thus, L is CF iff there is a (non-deterministic) PDA P

such that  L = L(P).

◼ CF languages are exactly those languages that are 

accepted by (non-deterministic) PDAs.

Summarize:



2/23/2024 79University of Kentucky

L is CF iff there is a (non-deterministic) PDA P

such that  L = L(P).

CF languages are exactly those languages that are 

accepted by (non-deterministic) PDAs.

Why?
If a CFL is infinite, it would have a non-trivial grammar (the right

hand side of at least one production would contain a non-

terminal and often time a recursive non-terminal). For such a 

grammar, when you convert it to a PDA, you would get a one-

state, non-deterministic PDA. For instance, convert the following 

simple cases and see what would you get.

S → aS | Ʌ

or

S → aS | b
Why?



2/23/2024 80University of Kentucky

0
start

S 

Λ, 𝑆

< 𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ 𝑆 , 𝑝𝑢𝑠ℎ 𝑎 >

𝑎, 𝑎

𝑝𝑜𝑝

Λ,𝑆

𝑝𝑜𝑝

For     { S → aS | Ʌ  }



2/23/2024 81University of Kentucky

0
start

S 

Λ, 𝑆

< 𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ 𝑆 , 𝑝𝑢𝑠ℎ 𝑎 >

𝑎, 𝑎

𝑝𝑜𝑝

𝑏,𝑏

𝑝𝑜𝑝

Λ,𝑆

<𝑝𝑜𝑝,𝑝𝑢𝑠ℎ 𝑏 >

For     { S → aS | b  }



2/23/2024 82University of Kentucky

❑A CF language is called a deterministic final-state CF 

language if it can be recognized by a deterministic 

final-state PDA

◼ Even palindromes: not a deterministic final-state CFL

X  

Start

)(

,

)(

,

)(

,

apush

ba

apush

aa

apush

Xa

0

)(

,

)(

,

)(

,

bpush

ab

bpush

bb

bpush

Xb

nop

,
,

nop

a,
 , 

nop

, bX 
1 2

 
pop

, X

NPDA

Summarize:



2/23/2024 83University of Kentucky

L1 over  {a, b, $} is a deterministic final-state CFL:

L1 = { 𝑤$𝑤𝑅 |  w ϵ {a, b}* }

X  

Start

)(

,

)(

,

)(

,

apush

ba

apush

aa

apush

Xa

0

)(

,

)(

,

)(

,

bpush

ab

bpush

bb

bpush

Xb

nop

$,
,

nop

a,$
 , 

nop

$, bX
1 2

 
pop

, X

DPDA

Summarize:



2/23/2024 84

End of Context-Free 

Language and 

Pushdown Automata 

II
University of Kentucky


