CS375: Logic and Theory of Computing

Fuhua (Frank) Cheng

Department of Computer Science

University of Kentucky

Table of Contents:

Week 1: Preliminaries (set algebra, relations, functions) (read Chapters 1-4) Weeks 2-5: Regular Languages, Finite Automata (Chapter 11) Weeks 6-8: Context-Free Languages, **Pushdown Automata (Chapters 12)** Weeks 9-11: Turing Machines (Chapter 13)

Table of Contents (conti):

Weeks 12-13: Propositional Logic (Chapter 6), Predicate Logic (Chapter 7), Computational Logic (Chapter 9), Algebraic Structures (Chapter 10)

7. Context-Free Languages & Pushdown Automata- Pushdown Automata

Transform an empty-stack PDA to a C-F grammar

such that

language accepted by the PDA is the same as

language generated by the C-F grammar

7. Context-Free Languages & Pushdown

Automata- Pushdown Automata

We know how to transform a C-F grammar to an empty-stack PDA

Idea:

use stack to simulate the (left-most) derivation of a string

Relationship between **accepting** and **generating**:

How would a PDA accept a symbol 'a' in an input string?

Must have

 $w = \cdots a \cdots$

(State j could be the same as state i, and B can not be Λ)

Why B can not be Λ ?

If B is Λ , it means the stack is empty, and a string has already been accepted, so no need to process anything any more.

Why the stack operation must be a 'pop'?

b/c in this case 'a' will be output (accepted).

Relationship between **accepting** and **generating**:

How would a CFG generate a string with a symbol 'a' in it?

Must have

 $w = \cdots a \cdots$

(B is a non-terminal, w1 is a string of terminals and/or non-terminals, and w1 could be Λ)

Why w1 could be Λ ?

Because a could be the last symbol of w

2/23/2024

2/23/2024

For w=a...c to be accepted by the PDA, B must be the start symbol of the stack, it must also be the last symbol to remove from the stack.

Skip slides 12-14

Basic idea:

Define non-terminals Bij for the CFG that can generate all strings w that:

- upon reading w on the input tape the PDA will
 - take you from state i to state j in the PDA and
 - have a "net result" of popping B off the stack
- In essence, B is "eventually" replaced by w
- It may take many moves to get there.

Three questions have to be answered:

1. When would only a *terminal* be involved on the right hand side of a production?

2. When would both a terminal and a non-terminal be involved on the right hand side of a production?

3. When would the start symbol be involved in a production?

(leftmost derivation)

Transform an empty-stack PDA to a C-F grammar se (X is removed) (stack is empty) W (w is accepted) (w is generated) $\Rightarrow \cdots$ B_{ij} W

(leftmost derivation)

2/23/2024

(leftmost derivation)

What is the point?

A Pascal Triangle-like chart

The acceptance process can be decomposed as a sequence of net-loss-of one-stack-symbol's

For each push there must be a pop.

Otherwise, the stack wouldn't be empty eventually.

There could be several peaks

How is $S \rightarrow a$ implemented?

Type 2:

PDA instruction **Grammar Production** $B_{ik} \rightarrow a B_{jk}$ for each state k accepted string is 'a' B В same followed by whatever is same accepted between state j and state k University of Kentucky 2/23/2024 26

PDA instruction

Grammar Production

2/23/2024

University of Kentucky

Type 4:

The order CFG productions are constructed:

Type 4 Type 1 **Type 2** (might not exist) Type 3

Solution:

Type 4

The start state 0 and $\frac{a, X}{pop}$ give: $x \rightarrow 0$ $\xrightarrow{a, X}{pop} \rightarrow 1$

$$S \rightarrow X_{01}$$

Solution:

Type 1

The pop operation (1, *a*, *X*, *pop*, 1) gives

$$X_{11} \rightarrow a$$

The language accepted by this PDA has only one element : aaaa

C-F Grammar:

 $S \rightarrow X_{01}$ $X_{11} \rightarrow a$ $A_{11} \rightarrow a$ $A_{01} \rightarrow a A_{11}$ $X_{01} \rightarrow a A_{01} X_{11}$

- (0, <u>aaaa</u>, <u>X</u>)
- (0, <u>a</u>aa, <u>A</u>X)
- (1, <u>a</u>a, <u>A</u>X)
 - (1, <u>a</u>, <u>X</u>)

Accepted

A X

This PDA accepts only one string: aaaa

How to handle an empty-stack PDA of the following type:

 $\begin{array}{c} S \rightarrow aSb \\ S \rightarrow aaS \end{array}$

How should a PDA of this form be transformed to a CFG?

Would we be able to transform it back to the original CFG?

How to handle an empty-stack PDA of the following type:

Consider the following situation (General Type 3):

Similarly:

So, collectively, we have:

$$\frac{S \rightarrow X_{00}}{X_{00} \rightarrow \Lambda}$$

$$\frac{A_{00} \rightarrow A}{B_{00} \rightarrow b}$$

$$\frac{X_{00} \rightarrow A_{00} X_{00} B_{00}}{X_{00} \rightarrow A_{00} A_{00} X_{00}}$$

$$\begin{array}{c}
S \rightarrow \Lambda \\
S \rightarrow aSb \\
S \rightarrow aaS
\end{array}$$

Example. Find a grammar for the language

$$L = \{ w \in \{a, b\}^* \mid n_a(w) = n_b(w) \}$$

by (1) <u>constructing an empty-stack PDA to accept *L* and then (2) <u>transforming it to a C-F grammar</u>.</u>

Solution: (1)

Note the following two PDAs are equivalent:

2/23/2024

54

Solution: (2)

PDA Transformed into C - F grammar

$$S \rightarrow X_{00}$$

 $X_{00} \rightarrow \Lambda | aA_{00}X_{00} | bB_{00}X_{00}$
 $A_{00} \rightarrow b | aA_{00}A_{00}$
 $B_{00} \rightarrow a | bB_{00}B_{00}$

Simplified CFG :

$$S \rightarrow \Lambda \mid aAS \mid bBS$$

 $A \rightarrow b \mid aAA$
 $B \rightarrow a \mid bBB$

Solution: (2)

Simplified CFG:Derivation of aababb:
$$S \rightarrow \Lambda | aAS | bBS$$
 \checkmark $A \rightarrow b | aAA$ \checkmark $B \rightarrow a | bBB$ \checkmark $aabaAAS \Rightarrow aabaAAS$ $\Rightarrow aabaAAS \Rightarrow aababAS$ $\Rightarrow aababbS \Rightarrow aababb$

Nondeterministic PDAs are more powerful than deterministic PDAs.

Left half and right half are symmetric

An example is to consider the language of even Palindromes (such as: aababbbabaa) over {*a*, *b*}.

A context-free grammar for the language is given by $S \rightarrow \Lambda \mid aSa \mid bSb$

Any PDA to accept the language must make a nondeterministic decision to start comparing the 2nd half of a string with the reverse of the first half.

Example: consider the following PDA

This non-deterministic PDA accepts the language of even palindromes over {a, b}

Example: consider the following PDA

Why is this a non-deterministic PDA?

There is in general no way to translate a nondeterministic PDA (NPDA) into a deterministic one.

- Indeed, there is no DPDA which recognizes the language of even palindromes.
- That is why we can say that NPDAs are more powerful than DPDAs.
- However, we can define a similar language L1 over {a, b, \$} which can be recognized by a DPDA:

L1 = { $w \$ w^R$ | $w \in \{a, b\}^*$ }

A DPDA for L1:

Note that

- 1. Final-state acceptance and empty-stack acceptance are equivalent only for NPDAs
- 2. Final-state acceptance and empty-stack acceptance are not equivalent for DPDAs. For DPDAs, the class of languages defined by final-state acceptance is bigger.
- Why?

b/c DPDAs do not have the instruction $\frac{?, X}{pop}$ in most of the cases

(without the instruction Λ ,X/pop,we can still do final state acceptance, but we will not be able to do empty stack acceptance.)

Consider the following example:

$$\frac{a, X}{push(a)}, \frac{b, X}{push(b)}$$

Accepts ? { A, a, b}

Accepts ? •

Consider the following example:

 $\frac{a, X}{push(a)}, \frac{b, X}{push(b)}$ X = 0 $\frac{\Lambda, X}{push(b)}$

Accepts ? $\{\Lambda, a, b\}$

Accepts ? Λ

Not DPDA

Why?

Or, consider the following example:

Summarize:

CFGs and PDAs have equivalent expressive powers. More formally, . . .

Theorem. For every CFG G, there is a PDA P such that L(G) = L(P).

In addition, for every PDA P, there is a CFG G such that L(P) = L(G).

Thus, L is CF iff there is a (non-deterministic) PDA P such that L = L(P).

CF languages are exactly those languages that are accepted by (non-deterministic) PDAs. L is CF iff there is a (non-deterministic) PDA P such that L = L(P).

CF languages are exactly those languages that are accepted by (non-deterministic) PDAs.

Why?

If a CFL is infinite, it would have a non-trivial grammar (the right hand side of at least one production would contain a nonterminal and often time a recursive non-terminal). For such a grammar, when you convert it to a PDA, you would get a onestate, non-deterministic PDA. For instance, convert the following simple cases and see what would you get.

Why?

 $S \rightarrow aS \mid \Lambda$

or

 $S \rightarrow aS \mid b$

For $\{ S \rightarrow aS \mid \Lambda \}$

For $\{ S \rightarrow aS \mid b \}$

Summarize:

A CF language is called a *deterministic final-state CF language* if it can be recognized by a deterministic final-state PDA

Even palindromes: not a deterministic final-state CFL

Summarize:

L1 over {a, b, \$} is a deterministic final-state CFL: $L_1 = \{ w \$ w^R \mid w \in \{a, b\}^* \}$

End of Context-Free Language and Pushdown Automata