CS375:
 Logic and Theory of Computing

Fuhua (Frank) Cheng

Department of Computer Science
University of Kentucky

Table of Contents:

Week 1: Preliminaries (set algebra, relations, functions) (read Chapters 1-4)
Weeks 2-5: Regular Languages, Finite Automata (Chapter 11)
Weeks 6-8: Context-Free Languages, Pushdown Automata (Chapters 12)

- Weeks 9-11: Turing Machines (Chapter 13)

Table of Contents (conti):

Weeks 12-13: Propositional Logic (Chapter 6), Predicate Logic (Chapter 7), Computational Logic (Chapter 9), Algebraic Structures (Chapter 10)

Context-Free Languages \& Pushdown

Automata- Pushdown Automata

Transform an empty-stack PDA to a C-F grammar

such that

language accepted by the PDA is the same as
language generated by the C-F grammar
7. Context-Free Languages \& Pushdown

Automata- Pushdown Automata
We know how to transform a C-F grammar to an empty-stack PDA

Idea:

use stack to simulate the (left-most) derivation of a string

Context-Free Languages \& Pushdown

 Automata- Pushdown AutomataExample: Given $S \rightarrow$ aSb $\mid \wedge \quad$ consider aabb
Left-most derivation: $S \Rightarrow \mathrm{aSb} \Rightarrow \mathrm{aaSbb} \Rightarrow$ aabb
Stack simulation:

Con

Why should the stack operation be a 'pop'? be output (accepted)

Automate- down Automat

To transfo n empty-stad A to a C-F grammar, we need know the flonship between accept i a string no generating a string

Accel find symbol 'a' means there is an instruction
" $\frac{a, \text { ? }}{\text { pop }} 1$ o execute when the input symbol ' a ' is read
\square Generating a symbol 'a' means a production of the form " $B \rightarrow a\left(w_{1}\right)$ " can be executed in the (leftmost) derivation process.

Relationship between accepting and generating:

How would a PDA accept a symbol ' a ' in an input string?
Must have

(State j could be the same as state i, and B can not be \wedge)

Why B can not be 1 ?

If B is Λ, it means the stack is empty, and a string has already been accepted, so no need to process anything any more.

Why the stack operation must be a 'pop'?
b / c in this case 'a' will be output (accepted).

Relationship between accepting and generating:

How would a CFG generate a string with a symbol 'a' in it?

Must have
$w=\cdots a \cdots$

(B is a non-terminal, w1 is a string of terminals and/or non-terminals, and w1 could be Λ)

Why w1 could be ^ ?
Because a could be the last symbol of w

Relationship between accepting and generating:

How would an empty-stack PDA accept a string ' $a \cdots c$ '?
$w=a \cdots c$

(State k could be the same as state i, and B can not be ^)

Why B can not be \wedge ?

Why the ' B ' in " $c, B / p o p$ " is the same as the ' B ' in "a, B / \square "?

Relationship between accepting and generating:

How would an empty-stack PDA accept a string ' $a \cdots c$ ' ?
$w=a \cdots c$

Must have

(State k could be the same as state i, and B can not be ^)

Why the ' B ' in " $c, B / p o p$ " is the same as the ' B ' in " $a, B / \square$ "?

For w=a ...c to be accepted by the PDA, B must be the start symbol of the stack, it must also be the last symbol to remove from the stack.

Transform an empty-stack PDA to a C-F grammar

Skip slides 12-14

Basic idea:

Define non-terminals Bij for the CFG that can generate all strings w that:

- upon reading w on the input tape the PDA will take you from state i to state j in the PDA and have a "net result" of popping B off the stack
- In essence, B is "eventually" replaced by w
- It may take many moves to get there.

Transform an empty-stack PDA to a C-F grammar

Three questions have to be answered:

1. When would only a terminal be involved on the right hand side of a production?
2. When would both a terminal and a non-terminal be involved on the right hand side of a production?
3. When would the start symbol be involved in a production?

Transform an empty-stack PDA to a C-F grammar

$$
\begin{gathered}
\text { i---> ---> }--->\quad---\gg \\
B_{i j} \Rightarrow \square \Rightarrow \square \\
\text { (leftmost derivation) }
\end{gathered}
$$

Transform an empty-stack PDA to a C-F grammar

Case 1:

(X is removed) (stack is empty)
w
\xrightarrow{X} i- - $-\gg-->\quad--->\quad$ (w is accepted)
令

$$
B_{i j} \Rightarrow \square \Rightarrow \square \quad \Rightarrow \quad w \quad(w \text { is generated })
$$

(leftmost derivation)

Transform an empty-stack PDA to a C-F grammar

Case 2:

What is the point?

A Pascal Triangle-like chart

The acceptance process can be decomposed as a sequence of net-loss-of one-stack-symbol's

For each push there must be a pop.

Otherwise, the stack wouldn't be empty eventually.

There could be several peaks

How is $S \rightarrow$ a implemented?

Transform an empty-stack PDA to a C-F grammar

Type 1:
PDA instruction

Grammar Production

$$
B_{i j} \rightarrow i a
$$

Transform an empty-stack PDA to a C-F grammar

Grammar Production

Type 1:

PDA instruction

$$
X_{12} \rightarrow \Lambda
$$

The string accepted

Example:

University of Kentucky

Transform an empty-stack PDA to a C-F grammar

Type 2:

PDA instruction
Grammar Production

accepted string is 'a' followed by whatever is accepted between state j and state k

Transform an empty-stack PDA to a C-F grammar

PDA instruction

Grammar Production

$$
B_{i k} \rightarrow a B_{j k}
$$

for each state k

Example:

How is $X \rightarrow a X$ implemented?

Transform an empty-stack PDA to a C-F grammar

Type 3:

PDA instruction

Grammar Production

Transform an empty-stack PDA to a C-F grammar

PDA instruction

Grammar Production

$B_{14} \rightarrow a C_{23} B_{34}$

Transform an empty-stack PDA to a C-F grammar

Type 4:
 PDA instruction

The production that will generate the string accepted by the PDA between state i and state j

Transform an empty-stack PDA to a C-F grammar

Type 4:

PDA instruction

Grammar Production

$S \rightarrow X_{i j}$
for each state

Example:

Transform an empty-stack PDA to a C-F grammar

The order CFG productions are constructed:

Type 4

Type 1

Type 2 (might not exist)

Type 3

Example. Transform the following empty-stack PDA into a C-F grammar.

Solution:

Type 4
The start state 0 and $\frac{a, X}{p o p}$ give:

$$
S \rightarrow X_{01}
$$

Example. Transform the following empty-stack PDA into a C-F grammar.

Solution:

Type 1
The pop operation (1, a, X, pop, 1) gives

$$
X_{11} \rightarrow a
$$

Example. Transform the following empty-stack PDA into a C-F grammar.

Solution:

Type 1
The pop operation (1, a, A, pop, 1) gives

$$
A_{11} \rightarrow a
$$

Example. Transform the following empty-stack PDA into a C-F grammar.

Type 1

Question: $\mathrm{a}, \mathrm{A} / \mathrm{pop}$ is not the last step of an acceptance path, why the right hand side of the production has only a terminal?

Because this part will be handled by non-terminals contained in previously defined production steps

Here is why: $S \rightarrow X_{05} \rightarrow a A_{14} X_{45} \rightarrow a b c d X_{45} \rightarrow a b c d e$

$$
\begin{gathered}
A_{14} \rightarrow b B_{23} A_{34} \rightarrow b c d \\
B_{23} \rightarrow c \\
A_{34} \rightarrow d
\end{gathered}
$$

$$
X_{45} \rightarrow e
$$

Example. Transform the following empty-stack PDA into a C-F grammar.

Solution:

Type 2
The nop operation $(0, a, A$, nop, 1$)$ gives

Example. Transform the followina emptv-stack PDA into a C-F grammar.

Solution:

Type 3
The push operation ($0, a, X, p u s h(A), 0$) gives

Empty-stack PDA:

C-F Grammar:

$$
\left.\begin{array}{l}
S \rightarrow X_{01} \\
X_{11} \rightarrow a \\
A_{11} \rightarrow a \\
A_{01} \rightarrow a A_{11} \\
X_{01} \rightarrow a A_{01} X_{11}
\end{array}\right] \quad \begin{aligned}
& S \Rightarrow X_{01} \\
& \text { Leftmost } \\
& \quad \Rightarrow a A_{01} X_{11} \\
& \text { derivation }
\end{aligned} \quad \begin{aligned}
& \Rightarrow a a A_{11} X_{11} \\
& \\
&
\end{aligned}
$$

The language accepted by this PDA has only one element : aaaa

Empty-stack PDA:

C-F Grammar:

$$
\left.\begin{array}{l}
S \rightarrow X_{01} \\
X_{11} \rightarrow a \\
A_{11} \rightarrow a \\
A_{01} \rightarrow a A_{11} \\
X_{01} \rightarrow a A_{01} X_{11}
\end{array}\right] \begin{aligned}
& \text { (0, aaaa, } \underline{\mathrm{X}}) \\
& (0, \underline{\text { aaa, }} \underline{\mathrm{AX})} \\
& (1, \underline{\text { aa, }} \underline{\mathrm{AX})} \\
& (1, \underline{\mathrm{a}}, \underline{\mathrm{X}}) \\
& \text { Accepted }
\end{aligned}
$$

This PDA accepts only one string: aaaa

How to handle an empty-stack PDA of the following type:

$$
\frac{1}{\frac{a, a}{p o p} \frac{b, b}{p o p} \frac{\Lambda, X}{p o p}} \frac{\Lambda, X}{\text { sop,push }(a, X, b)} \frac{\Lambda, X}{\text { pop,push }(a, a, X)}
$$

This is the one-state empty-stack acceptance PDA we got for the CFG

$$
\begin{aligned}
& S \rightarrow \Lambda \\
& S \rightarrow a S b \\
& S \rightarrow a a S
\end{aligned}
$$

How should a PDA of this form be transformed to a CFG?
Would we be able to transform it back to the original CFG?

How to handle an empty-stack PDA of the following type:

Type 4:

$$
S \rightarrow X_{00}
$$

What if the given empty-stack PDA is of the following type?

Type 1:

$$
X_{00} \rightarrow \Lambda
$$

What if the given empty-stack PDA is of the following type?

Type 1:

$$
A_{00} \rightarrow a
$$

What if the given empty-stack PDA is of the following type?

Type 1:

$$
B_{00} \rightarrow b
$$

What if the given empty-stack PDA is of the following type?

Consider the following situation (General Type 3):

What if the given empty-stack PDA is of the following type?

Consider the following situation (General Type 3):

What if the given empty-stack PDA is of the following type?

Consider the following situation (General Type 3):

$$
X_{00} \rightarrow A_{00} X_{00} B_{00}
$$

What if the given empty-stack PDA is of the following type?

Similarly:

$$
X_{00} \rightarrow A_{00} A_{00} X_{00}
$$

What if the given empty-stack PDA is of the following type?

$$
\text { Start } \frac{\Lambda, X}{\frac{a, a}{p o p} \frac{b, b}{p o p} \frac{\Lambda, X}{p o p}} \frac{\Lambda, X}{\text { pop,push }(a, X, b)} \quad \frac{\Lambda}{\text { pop,push }(a, a, X)}
$$

So, collectively, we have:

$$
\begin{aligned}
& \frac{S \rightarrow X_{00}}{\underline{X_{00} \rightarrow \Lambda}} \\
& \hline A_{00} \rightarrow a \\
& \hline B_{00} \rightarrow b \\
& \hline X_{00} \rightarrow A_{00} X_{00} B_{00} \\
& \hline X_{00} \rightarrow A_{00} A_{00} X_{00} \\
& \hline
\end{aligned}
$$

$$
\frac{\frac{S \rightarrow \Lambda}{S \rightarrow a S b}}{\frac{S \rightarrow a a S}{S}}
$$

Example. Find a grammar for the language

$$
L=\left\{w \in\{a, b\}^{*} \mid n_{a}(w)=n_{b}(w)\right\}
$$

by (1) constructing an empty-stack PDA to accept L and then
(2) transforming it to a C-F grammar.

Solution: (1)

Note the following two PDAs are equivalent:

Solution: (1)

Consider: acacdabbabbbba|

Accepted

Hence, the above PDA accepts L
Stack is empty

Solution: (2)

$$
\begin{array}{|l}
\hline \text { PDA Transformed into C-F gr } \\
\begin{array}{l}
S \rightarrow X_{00} \\
X_{00} \rightarrow \Lambda\left|a A_{00} X_{00}\right| b B_{00} X_{00} \\
A_{00} \rightarrow b \mid a A_{00} A_{00} \\
B_{00} \rightarrow a \mid b B_{00} B_{00} \\
\hline
\end{array} \\
\hline
\end{array}
$$

Type $=$?

Solution: (2)

$$
\text { Start } \xrightarrow{X}\left\{\begin{array}{ll}
\frac{a, X}{p u s h(a)} & \frac{a, a}{p u s h(a)} \\
\frac{b, X}{p u s h(b)} & \frac{b, b}{p u s h(b)} \\
\frac{\Lambda, X}{p o p} & \frac{b, a}{p o p}
\end{array} \frac{\frac{a, b}{p o p}}{}\right.
$$

PDA Transformed into C-F grammar :
$S \rightarrow X_{00}$
$X_{00} \rightarrow \Lambda\left|a A_{00} X_{00}\right| b B_{00} X_{00}$
$A_{00} \rightarrow b \mid a A_{00} A_{00}$
$B_{00} \rightarrow a \mid b B_{00} B_{00}$

Type = ?

Solution: (2)

PDA Transformed into C-Fgrammar :
$S \rightarrow X_{00}$
$X_{00} \rightarrow \Lambda\left|a A_{00} X_{00}\right| b B_{00} X_{00}$
$A_{00} \rightarrow b \mid a A_{00} A_{00}$
$B_{00} \rightarrow a \mid b B_{00} B_{00}$

Type = ?

Solution: (2)

$$
\text { Start } \xrightarrow{\frac{a, X}{p u \sin (a)}} \begin{array}{ll}
\frac{a, a}{p u s h(a)} \\
\frac{b, X}{p u \sin (b)} & \frac{b, b}{p u s h(b)} \\
\frac{\Lambda, X}{p o p} & \frac{b, a}{p o p}
\end{array} \frac{a, b}{p o p}
$$

PDA Transformed into C - F grammar:
$S \rightarrow X_{00}$
$X_{00} \rightarrow \Lambda \mid a A_{00} X_{00} \not b B_{00} X_{00}$
$A_{00} \rightarrow b \mid a A_{00} A_{00}$
$B_{00} \rightarrow a b B_{00} B_{00}$

Solution: (2)

$$
\text { Start } \xrightarrow{X} \begin{aligned}
& \frac{a, X}{\operatorname{push}(A)}, \frac{a, A}{\operatorname{push}(A)} \\
& \frac{b, X}{\operatorname{push}(B)}, \frac{b, B}{\operatorname{push}(B)}
\end{aligned}
$$

PDA Transformed into \subset-R grammar :
$S \rightarrow X_{00}$

$$
\begin{aligned}
& X_{00} \rightarrow \Lambda\left|a A_{00} X_{00}\right| b B_{00} X_{00} \\
& \hline A_{00} \rightarrow b \mid a A_{00} A_{00} \\
& B_{00} \rightarrow a \mid b B_{00} B_{00}
\end{aligned}
$$

Type = ?

Solution: (2)

Solution: (2)

$$
\begin{aligned}
& \hline \text { PDA Transformed into C- } Z \text { gr } \\
& S \rightarrow X_{00} \\
& \quad X_{00} \rightarrow \Lambda\left|a A_{00} X \backslash\right| b B_{00} X_{00} \\
& \underline{A_{00}} \rightarrow b \mid a A_{00} A_{00} \\
& B_{00} \rightarrow a \mid b B_{00} B_{00} \\
& \hline
\end{aligned}
$$

Solution: (2)

PDA Transf $\quad S \rightarrow X_{00}$
 $X_{00} \rightarrow \Lambda\left|a A_{00} X_{00}\right| b B_{00} X_{00}$
 $A_{00} \rightarrow b \mid a A_{00} A_{0}$
 $\underline{B}_{00} \rightarrow a \mid \underline{b B_{00}} B_{00}$

Type = ?

Solution: (2)

PDA Transformed into C - F grammar :
$S \rightarrow X_{00}$
$X_{00} \rightarrow \Lambda\left|a A_{00} X_{00}\right| b B_{00} X_{00}$
$A_{00} \rightarrow b \mid a A_{00} A_{00}$
$B_{00} \rightarrow a \mid b B_{00} B_{00}$

Simplified CFG:

$$
\begin{aligned}
S & \rightarrow \Lambda|a A S| b B S \\
A & \rightarrow b \mid a A A \\
B & \rightarrow a \mid b B B
\end{aligned}
$$

Solution: (2)

Simplified CFG:

$$
\begin{aligned}
& S \rightarrow \underline{\Lambda}|a A S| b B S \\
& A \rightarrow \underline{\underline{b}} \mid \underline{\underline{a A A}} \\
& B \rightarrow a \mid b B B \\
& \hline
\end{aligned}
$$

Derivation of aababb:
$S \Rightarrow \underline{a A S} \Rightarrow \underline{a a A A S} \Rightarrow \underline{a a b A S}$
\Rightarrow aabaAAS $\Rightarrow \underline{a a b a b A S}$
$\Rightarrow a a b a b b S \Rightarrow a a b a b b$

Nondeterministic PDAs are more powerful than deterministic PDAs.

Left half and right half are symmetric
An example is to consider the language of even Palindromes (such as: aababb|bbabaa) over $\{a, b\}$.

A context-free grammar for the language is given by

$$
S \rightarrow \wedge|a S a| b S b
$$

Any PDA to accept the language must make a nondeterministic decision to start comparing the 2nd half of a string with the reverse of the first half.

Example: consider the following PDA

This non-deterministic PDA accepts the language of even palindromes over $\{\mathrm{a}, \mathrm{b}\}$

Example: consider the following PDA

Why is this a non-deterministic PDA ?

Does it accept even palindromes over $\{a, b\}$?

Consider (0, abbbba, X$) \quad \Rightarrow(0, \mathrm{bbbba}, \mathrm{aX})$
$\Rightarrow(0, b b b a, b a X)$
$\Rightarrow(0, \mathrm{bba}, \mathrm{bbaX})$
$\Rightarrow(0, \wedge b b a, b b a X)$
$\Rightarrow(1, b b a, b b a X)$
$\Rightarrow(1, b a, b a X) \Rightarrow(1, a, a X)$
$\Rightarrow(1, \wedge, X) \quad \Rightarrow(2, \wedge, \wedge)$

The PDA may guess the middle wrong:

$\frac{a, X}{\text { push }(a)} \frac{a, a}{\text { push }(a)} \frac{a, b}{\text { push }(a)} \quad \frac{a, a}{\text { pop }} \frac{b, b}{\text { pop }}$

Consider (0, abbbba, X$) \quad \Rightarrow(0$, bbbba, aX$)$
$\Rightarrow(0, b b b a, b a X)$
$\Rightarrow(0 \rightarrow \wedge b b b a, b a X)$
If the PDA made a guess here
$\Rightarrow(1, b b b a, b a X)$
$\Rightarrow(1, \mathrm{bba}, \mathrm{aX})$

This PDA can only accept even palindromes:

$\frac{a, X}{\text { push }(a)} \frac{a, a}{\text { push }(a)} \frac{a, b}{\text { push }(a)} \quad \frac{a, a}{\text { pop }} \frac{b, b}{\text { pop }}$

Consider (0, aabbba, X$) \quad \Rightarrow(0, a b b b a, \mathrm{aX})$
$\Rightarrow(0, b b b a, a a X)$
$\Rightarrow(0, b b a$, baaX $)$
$\Rightarrow(0, b a, b b a a X)$
$\Rightarrow(0, a, b b b a a X)$
$\Rightarrow(0, \wedge$, abbbaaX)
$\Rightarrow(1, \wedge, a b b b a a X)$
It gets stuck here!

There is in general no way to translate a nondeterministic PDA (NPDA) into a deterministic one.

Indeed, there is no DPDA which recognizes the language of even palindromes.

That is why we can say that NPDAs are more powerful than DPDAs.

However, we can define a similar language L_{1} over $\{a, b, \$\}$ which can be recognized by a DPDA:

$$
\mathrm{L}_{1}=\left\{w \$ w^{R} \mid w \in\{\mathrm{a}, \mathrm{~b}\}^{*}\right\}
$$

A DPDA for L_{1} :

Consider $(0, a b b \$ b b a, X) \quad \Rightarrow(0, b b \$ b b a, a X)$
$\Rightarrow(0, b \$ b b a, b a X)$
$\Rightarrow(0, \$ b b a$, baX $)$
What do you see
$\Rightarrow(1$, baa) bia) here?

Is this PDA indeed deterministic?
$\Rightarrow(1, \mathrm{ba}, \mathrm{baX})$
$\Rightarrow(1, a, a X)$
$\Rightarrow(1, \wedge, X) \quad \Rightarrow(2, \wedge, \wedge)$

Note that

1. Final-state acceptance and empty-stack acceptance are equivalent only for NPDAs
2. Final-state acceptance and empty-stack acceptance are not equivalent for DPDAs. For DPDAs, the class of languages defined by final-state acceptance is bigger.

Why?

b/c DPDAs do not have the instruction $\frac{?, X}{\text { pop }}$ in most of the cases
(without the instruction $\Lambda, X /$ pop,we can still do final state acceptance, but we will not be able to do empty stack acceptance.)

Consider the following example:

Accepts?

Not even \wedge

Consider the following example:

Accepts? $\{\wedge, \mathrm{a}, \mathrm{b}\}$

Accepts? \wedge

Not DPDA

Why?

Or, consider the following example:

Accepts ?
$\wedge, a \mathrm{ab}, \mathrm{abb}$

Accepts? abb

Summarize:

CFGs and PDAs have equivalent expressive powers. More formally, . . .

Theorem. For every CFG G, there is a PDA P such that $L(G)=L(P)$.

In addition, for every PDA P, there is a CFG G such that $L(P)=L(G)$.
Thus, L is CF iff there is a (non-deterministic) PDA P such that $L=L(P)$.

- CF languages are exactly those languages that are accepted by (non-deterministic) PDAs.

L is CF iff there is a (non-deterministic) PDA P such that $L=L(P)$.
CF languages are exactly those languages that are accepted by (non-deterministic) PDAs.

Why?

If a CFL is infinite, it would have a non-trivial grammar (the right hand side of at least one production would contain a nonterminal and often time a recursive non-terminal). For such a grammar, when you convert it to a PDA, you would get a onestate, non-deterministic PDA. For instance, convert the following simple cases and see what would you get.

$$
S \rightarrow a S \mid \wedge
$$

or

$$
S \rightarrow a S / b
$$

For $\quad\{\mathrm{S} \rightarrow \mathrm{aS} \mid \wedge\}$

For $\quad\{\mathrm{S} \rightarrow \mathrm{aS} \mid \mathrm{b}\}$

Summarize:

A CF language is called a deterministic final-state CF language if it can be recognized by a deterministic final-state PDA

Even palindromes: not a deterministic final-state CFL

$$
\frac{a, X}{\operatorname{push}(a)} \frac{a, a}{\text { push }(a)} \frac{a, b}{\text { push }(a)}
$$

Summarize:

L_{1} over $\{\mathrm{a}, \mathrm{b}, \$\}$ is a deterministic final-state CFL:

$$
\mathrm{L}_{1}=\left\{w \$ w^{R} \mid \mathrm{w} \in\{\mathrm{a}, \mathrm{~b}\}^{*}\right\}
$$

End of Context-Free Language and

 Pushdown Automata II