
3/4/2025 1

CS375:

Logic and Theory of Computing

Fuhua (Frank) Cheng

Department of Computer Science

University of Kentucky

University of Kentucky

3/4/2025 2

Table of Contents:

◼ Week 1: Preliminaries (set algebra, relations,

 functions) (read Chapters 1-4)

◼ Weeks 2-5: Regular Languages, Finite

 Automata (Chapter 11)

◼ Weeks 6-8: Context-Free Languages,

Pushdown Automata (Chapters 12)

◼ Weeks 9-11: Turing Machines (Chapter 13)

University of Kentucky

3/4/2025 3

Table of Contents (conti):

▪ Weeks 12-13: Propositional Logic (Chapter

6), Predicate Logic (Chapter 7),

Computational Logic (Chapter 9),

Algebraic Structures (Chapter 10)

University of Kentucky

3/4/2025 4

Goal:

 To study a non-regular language

 called context-free language,

 and the machine called pushdown automaton

 that recognizes this language.

University of Kentucky

7. Context-Free Languages & Pushdown

Automata- Context-Free Languages

Why do we want to study context-free language?

3/4/2025 5University of Kentucky

7. Context-Free Languages & Pushdown

Automata- Context-Free Languages

Why do we want to study context-free

language?

Because regular languages do not include any

programming languages such as Pascal, C,

C++, Java or Python as members.

Why? Consider the data item 𝑎2𝑏2. This item

can be a term in a polynomial and yet it is not

recognized as a regular language term.

3/4/2025 6

Can a machine recognize a language that is not regular?

 YES.

A context-free grammar has productions of the form

 N → w

where N is a non-terminal and w is a string containing

terminals and/or non-terminals.

University of Kentucky

7. Context-Free Languages & Pushdown

Automata- Context-Free Languages

Can have more than

one production

N w

The language 𝑎𝑛𝑏𝑛 | 𝑛 ∈ 𝑁 is not regular, but it has a

non-regular grammar

 S → aSb | Ʌ

3/4/2025 7University of Kentucky

7. Context-Free Languages & Pushdown

Automata- Context-Free Languages

 Why is the grammar called

 “context-free grammar” ?

Consider the rule

 S → aSb

 What this says is “wherever you find S, you can replace it with

 aSb”.

3/4/2025 8University of Kentucky

7. Context-Free Languages & Pushdown

Automata- Context-Free Languages

Why is the grammar called “context-free grammar” ?

 S → aSb

 CSB → CaSbB

==

 In summary, in the first case, you didn't need any context

 to apply the rule. You can apply it irrespective of the context

 in which S appears. So, grammars which contain only rules

 of first kind are called context-free grammars.

3/4/2025 9University of Kentucky

7. Context-Free Languages & Pushdown

Automata- Context-Free Languages

Why is the grammar called

 “context-free grammar” ?

 Now consider the rule

 CSB → CaSbB

 This says “You can replace S with aSb only if it is preceded by C

 and followed by B”. Here it imposes a condition on when S can

 be replaced with aSb. You can apply this rule only if S appears in

 this particular context. Here, ‘context’ is used as is generally

 used in normal English.

3/4/2025 10University of Kentucky

7. Context-Free Languages & Pushdown

Automata- Context-Free Languages

nn ba

2+nnba

A context-free language is the set of strings derived from a

context-free grammar.

Example. { | n ∈ N} is a C-F language derived from the

 C-F grammar

 S → aSb | Λ.

Example. Any regular grammar is context-free.

 So regular languages are C-F languages.

Quiz. Find a grammar for { | n ∈ N}.

Answer. S → aSb | bb.

Think of the strings in the following

form:

 bb, (ab)bb, (aabb)bb, (aaabbb)bb, …

3/4/2025 11

Quiz. Find a grammar for { | w ∈ {a, b}* }, where

 is the reverse of w.

 Answer. S → aSa | bSb | Λ.

 Example.

 Question.

University of Kentucky

7. Context-Free Languages & Pushdown

Automata- Context-Free Languages

Rww
Rw

abbabaababSbaaSaS 

? },,,{ if What  dcbaw

Would S → aSa | bSb | cSc | dSd | Λ work?

3/4/2025 12

Techniques for Constucting Grammars:

 Let L and M be two C-F grammars with disjoint sets

 of non-terminals and with start symbols A and B,

 respectively.

 Then

 • L U M has grammar S → A | B

 • LM has grammar S → AB

 • L* has grammar S → AS | Λ

University of Kentucky

7. Context-Free Languages & Pushdown

Automata- Context-Free Languages

Why do we need

a ‘Ʌ’ here?

How about the

alphabets?

3/4/2025 13

 Then

 • L U M : S → A | B plus

 • LM : S → AB plus

 • L* : S → AS | Λ plus

University of Kentucky

L*M has grammar S → AS | B (4)

(1)

(2)

(3)

S ⇒ AA…AAS

 ⇒ AA…AAB

L : A → ⋯
 ⋯ ⋯

M : B → ⋯
 ⋯ ⋯

3/4/2025 14University of Kentucky

7. Context-Free Languages & Pushdown

Automata- Context-Free Languages

Examples. For a string x and letter a let na(x) be the number of

a’s in x. Let L = { x ∈ {a, b}* | na(x) = nb(x) }.

 A C-F grammar for L with start symbol E can be written as:

 E → aEbE | bEaE | Λ.

 Use this information to find grammars for following languages.

 1. { x ∈ {a, b}* | na(x) = 1 + nb(x) }.

 Solution: S → EaE.

 Can this grammar generate 𝑎4𝑎𝑏4, 𝑎2𝑏3𝑎𝑏5𝑎6, 𝑏2𝑎𝑎5𝑏3 ?

Would 𝑺 → 𝒂𝑬 𝒐𝒓
 𝑺 → 𝑬𝒂 𝒘𝒐𝒓𝒌?

3/4/2025 15University of Kentucky

Examples. For a string x and letter a let na(x) be the number

 of a’s in x. Let L = { x ∈ {a, b}* | na(x) = nb(x) }.

A C-F grammar for L with start symbol E can be written as:

 E → aEbE | bEaE | Λ.

Question 1:

Would E → aEb | bEa | Ʌ work for L ?

NO.

Because we wouldn’t be able to generate strings

such as: abba, baab, ababbaba, babaabab, …

E → aEbE → aEbbEaE → aɅbbɅaɅ = abba

Can not generate strings whose

2nd half is symmetric to its 1st half

3/4/2025 16University of Kentucky

Examples. For a string x and letter a let na(x) be the number

 of a’s in x. Let L = { x ∈ {a, b}* | na(x) = nb(x) }.

A C-F grammar for L with start symbol E can be written as:

 E → aEbE | bEaE | Λ.

Question 2:
Why don’t we need an ‘E’ on the left hand side of the

productions, i.e., why don’t we need productions of the

following form?

 E → EaEbE | EbEaE | Ʌ

Because the left most symbol of each string in L is either

‘a’ or ‘b’. If it is ‘a’, we can start with the first production.

If it is ‘b’, we can start with the second production.

3/4/2025 17University of Kentucky

7. Context-Free Languages & Pushdown

Automata- Context-Free Languages

? work

or Woul

EaS

aES

→

→
1. { x ∈ {a, b}* | na(x) = 1 + nb(x) }.

 Solution: S → EaE.

 Can this grammar generate 𝑎4𝑎𝑏4, 𝑎2𝑏3𝑎𝑏5𝑎6, 𝑏2𝑎𝑎5𝑏3 ?

 𝑎4𝑎𝑏4 = 𝑎 (𝑎4 𝑏4)

𝑎2𝑏3𝑎𝑏5𝑎6 = 𝑎2𝑏3𝑎 𝑏5𝑎5 𝑎

𝑏2𝑎𝑎5𝑏3 = 𝑏2𝑎2 𝑎(𝑎3𝑏3)

?
?

3/4/2025 18

Examples. For a string x and letter a let na(x) be the number of

a’s in x. Let L = {x ∈ {a, b}* | na(x) = nb(x)}.

 A grammar for L with start symbol E can be written as:

 E → aEbE | bEaE | Λ.

 Use this information to find grammars for following languages.

 2. {x ∈ {a, b}* | na(x) = 2 + nb(x) }.

 Solution: S → EaEaE.

University of Kentucky

7. Context-Free Languages & Pushdown

Automata- Context-Free Languages

? not Why EaaES →

Can this grammar generate 𝑎4𝑎𝑏2𝑎𝑏2, 𝑎2𝑏3𝑎𝑏5𝑎𝑎6 ?

𝑎4𝑎𝑏2𝑎𝑏2 = 𝑎𝑎(𝑎2𝑎𝑏2𝑎𝑏2)

𝑎2𝑏3𝑎𝑏5𝑎𝑎6 = (𝑎2𝑏3𝑎𝑏5𝑎𝑎4)𝑎𝑎

3/4/2025 19

Examples. For a string x and letter a let na(x) be the number of

a’s in x. Let L = {x ∈ {a, b}* | na(x) = nb(x)}.

 A grammar for L with start symbol E can be written as:

 E → aEbE | bEaE | Λ.

 Use this information to find grammars for following languages.

 3. { x ∈ {a, b}* | na(x) > nb(x) }.

 Solution: S → EaET

 T → aET | Λ.

University of Kentucky

7. Context-Free Languages & Pushdown

Automata- Context-Free Languages

What is T for?

S → EaET → EaEaET → EaEaEaET → ….

To ensure the number

of extra a’s can be as

many as possible

Would the following T work?

 T → TEa | Λ

3/4/2025 20

Examples. For a string x and letter a let na(x) be the number of

a’s in x. Let L = {x ∈ {a, b}* | na(x) = nb(x)}.

 A grammar for L with start symbol E can be written as:

 E → aEbE | bEaE | Λ.

 Use this information to find grammars for following languages.

 3. { x ∈ {a, b}* | na(x) > nb(x) }.

 Solution: S → EaET

 T → aET | Λ.

University of Kentucky

7. Context-Free Languages & Pushdown

Automata- Context-Free Languages

Questions: would S →EaES | Ʌ or S→ EaES | a work?

None would work!!! Why?

3/4/2025 21

Examples. For a string x and letter a let na(x) be the number of

a’s in x. Let L = {x ∈ {a, b}* | na(x) = nb(x)}.

 A grammar for L with start symbol E can be written as:

 E → aEbE | bEaE | Λ.

 Use this information to find grammars for following languages.

 4. {x ∈ {a, b}* | na(x) < nb(x) }.

 Solution: S → EbET T → bET | Λ.

University of Kentucky

7. Context-Free Languages & Pushdown

Automata- Context-Free Languages

compare #4

with #3

3/4/2025 22

A pushdown automaton (PDA):

 a finite automaton with a stack

 stack operations: pop, push, and nop.

University of Kentucky

7. Context-Free Languages & Pushdown

Automata- Pushdown Automata

a PDA is an automaton that can memorize things

What can we do with a PDA ?

can be used to model a parser for instance.

(Most programming languages have deterministic PDA’s)

Do nothing

Infinite memory but

restricted access

UNDO

3/4/2025 23

A PDA starts with one designated symbol on the stack.

A state transition is determined by:

Representation:

University of Kentucky

7. Context-Free Languages & Pushdown

Automata- Pushdown Automata

If the machine is in state i and the input

letter is b and C is on top of the stack,

then pop the stack and enter state j

current state

input symbol

top of the stack

(i, b, C, pop, j)

3/4/2025 24University of Kentucky

Pushdown Automata, intuitively

Start

S

stack

S

A stack is used when events

occurred more recently are

more important

3/4/2025 25University of Kentucky

Why not a Pushup Automaton?

Start

X

X

queue

A queue is used when the order

of occurrence is important

3/4/2025 28University of Kentucky

Start X
1

nop

X,
4

)(

,

)(

,

apush

aa

apush

Xa

3

pop

ab,
2

pop

a,

nop

X,
stack

X

a a b

Input string

a
a

Output queue

b a

Λ

a

For the PDA example in slide 26:

Λ

3/4/2025 University of Kentucky 29

Why is stack data structure important?

(1) can reverse a word;

(2) for “undo” mechanism;

(3) can be used to match braces, …

Very useful for language processing

Question: Can a queue do the same thing?

3/4/2025 University of Kentucky 30

Why is stack data structure important?

(1) can reverse a word;

I

𝑋

𝑎

𝑚

𝑎

𝑏

𝑜

𝑦 Top

X
Λ, ?

𝑝𝑜𝑝

Λ, 𝑋

𝑛𝑜𝑝

Λ, ?

𝑝𝑜𝑝

? , 𝑋

𝑝𝑢𝑠ℎ(?)

? , #

𝑝𝑢𝑠ℎ(?) Λ, 𝑋

𝑛𝑜𝑝
⋮

⋮

⋮

Next input symbol

Empty

space

symbol

Current top symbol

3/4/2025 University of Kentucky 31

(2) for “undo” mechanism;

⋮

𝐸𝑖−2 𝐸𝑖−1 𝐸𝑖

Top

How should the previous PDA be modified?

3/4/2025 University of Kentucky 32

X ∗, ?

𝑝𝑜𝑝

? , 𝑋

𝑝𝑢𝑠ℎ(?)

? , #

𝑝𝑢𝑠ℎ(?) ∗, 𝑋

𝑛𝑜𝑝

Next input event

Current top event

⋮

𝐸𝑖−2 𝐸𝑖−1 𝐸𝑖

Top

UNDO

3/4/2025 University of Kentucky 33

UNDO and REDO can be implemented

with two stacks

• Push all operations to Undo-stack

• When UNDO is called, pop operations from
Undo-stack and push it to Redo-stack.

• When REDO is called, pop operations from
Redo-stack and push it to Undo-stack.

How should the previous PDA be modified?

3/4/2025 University of Kentucky 34

(3) can be used to match braces

⋯)⋯ (⋯ [⋯] ⋯ }

Top

{

{ [()] }

How should the previous PDA be modified?

(use two stacks, one for every input symbol,

one for braces only)

3/4/2025 35

Acceptance of a string:

 A string w is accepted by a PDA if there is a

path from the start state to a final state such

that the symbols on the path edges

concatenate to w. Otherwise, w is rejected.

University of Kentucky

Final State acceptance

 vs Empty-stack acceptance

This kind acceptance is called Final State Acceptance

3/4/2025 36University of Kentucky

stack

Start X
1

nop

X,
4

)(

,

)(

,

apush

aa

apush

Xa

3

pop

ab,
2

pop

a,

nop

X,

pop

ab, a a a a b b

Input string

Output queue

b

X

a

a

a

a

a a b a a

3

Λ

Final State acceptance example:accepted

3/4/2025 37

Empty-Stack Acceptance.
 Instead of final-state acceptance, a PDA can also be

 defined to accept a string by the condition that the stack

 is empty.

 The two types of acceptance are equivalent in that they

 define PDAs that accept the same class of languages.

University of Kentucky

empty-stack PDA  final-state PDA

Final State acceptance

 vs Empty-stack acceptance

3/4/2025 38University of Kentucky

stack

Start X
1

4

)(

,

)(

,

apush

aa

apush

Xa

3

pop

ab,
2

pop

a,

pop

ab, a a a a b b

Input string

Output queue

b

X

a

a

a

a

a a b a a

3

𝚲

Empty Stack acceptance example:

Λ, 𝑋

𝑝𝑜𝑝

Stack is empty

accepted

Λ, 𝑋

𝑛𝑜𝑝

3/4/2025 39

Question: is the following PDA a final-state acceptance PDA for

the language L = { 𝑎𝑛𝑏𝑛 | 𝑛 ∈ 𝑁 } ?

University of Kentucky

7. Context-Free Languages & Pushdown

Automata- Pushdown Automata

𝜦, 𝑿

𝒑𝒐𝒑

𝜦, 𝑿

𝒑𝒐𝒑

Start X

YES Λ, 𝑋

𝑛𝑜𝑝or

or

3/4/2025 40

Question: is the following PDA an empty-stack acceptance PDA

for the language L = { 𝑎𝑛𝑏𝑛 | 𝑛 ∈ 𝑁 } ?

University of Kentucky

7. Context-Free Languages & Pushdown

Automata- Pushdown Automata

𝜦, 𝑿

𝒑𝒐𝒑

𝜦, 𝑿

𝒑𝒐𝒑

Start X

Is Ʌ accepted?

So Ʌ is accepted b/c the

stack is empty now X

3/4/2025 41

Question: is the following PDA an empty-stack acceptance PDA

for the language L = { 𝑎𝑛𝑏𝑛 | 𝑛 ∈ 𝑁 } ?

University of Kentucky

7. Context-Free Languages & Pushdown

Automata- Pushdown Automata

𝜦, 𝑿

𝒑𝒐𝒑

𝜦, 𝑿

𝒑𝒐𝒑

Start X

Is abɅ accepted?

So ab is accepted b/c the

stack is empty now X

a

Try aabb, aaabbb, … yourself

3/4/2025 42University of Kentucky

7. Context-Free Languages & Pushdown

Automata- Pushdown Automata

Deterministic PDA: at most one legal transition for the same

combination of input symbol, state and top stack symbol

Nondeterminism can occur in two ways:

3/4/2025 43University of Kentucky

7. Context-Free Languages & Pushdown

Automata- Pushdown Automata

Deterministic PDA: at most one legal transition for the same

combination of input symbol, state and top stack symbol

Nondeterminism: the 2nd case:

 b=Ʌb, hence,

 if δ(i, Ʌ, C) is not empty,

 then processing δ(i, b, C)

 could give us two different

 legal transitions. Why?

𝑏, 𝐷

𝑝𝑜𝑝

𝛿 𝑖, 𝑎 𝐶 means when you are in state i, the next input symbol

is 𝑎 and the top element in the stack is C, the number of

instructions that can be used for this combination

3/4/2025 44University of Kentucky

7. Context-Free Languages & Pushdown

Automata- Pushdown Automata

Deterministic PDA: at most one legal transition for the same

combination of input symbol, state and top stack symbol

Nondeterminism: the 2nd case:

 In addition to getting δ(i, b, C) ,

 we can get δ(i, Ʌ, C) first and

 then followed by δ(j, b, D) where

 j is the next state of δ(i, Ʌ, C) and

 D is a stack symbol right below C (after popping C).

𝑏, 𝐷

𝑝𝑜𝑝

3/4/2025 45University of Kentucky

7. Context-Free Languages & Pushdown

Automata- Pushdown Automata

Intuitively,

A PDA is deterministic if

 |δ(i, a, C)| + |δ(i, Ʌ, C)| ≤ 1

 for any state i, any alphabet symbol a, any stack symbol C.

Deterministic PDA: never have a choice

Nondeterminisitic PDA: may have several alternatives

 how to continue

3/4/2025 46

Example. A PDA to accept the language { | n > 0} as a

 graph and as a set of 5-tuples.

7. Context-Free Languages & Pushdown

Automata- Pushdown Automata
nnba

Deterministic or

nondeterministic?

aabb

Will this PDA accept aabbb?

NO. Why?

3/4/2025 47

Example. A PDA to accept the language { | n > 0} as a

 graph and as a set of 5-tuples.

University of Kentucky

7. Context-Free Languages & Pushdown

Automata- Pushdown Automata
nnba

X
a

Consider: aaabbb a
a

Accepted

(final state)

3/4/2025 48

Example. A PDA to accept the language { | n > 0} as a

 graph and as a set of 5-tuples.

7. Context-Free Languages & Pushdown

Automata- Pushdown Automata
nnba

In this case, we can recover all the a’s in the given

string aaabbb.

Each time we pop an ‘a’ out from the stack, we get

one ‘a’ back. What is the significance of this?

The stack plays the role of

a counter here, implicitly.

(output: bababa)

3/4/2025 49

Example. A PDA to accept the language { | n > 0} as a

 graph and as a set of 5-tuples.

7. Context-Free Languages & Pushdown

Automata- Pushdown Automata
nnba

This PDA does not accept aabbab, but would accept aabb. Why?

Because after the substring aabb is processed, we are in state 1

and we can only execute the instruction Ʌ,X/nop then.

3/4/2025 50

Quiz. How should you modify the machine to accept

 { | n ∈ N} (final state)?

University of Kentucky

7. Context-Free Languages & Pushdown

Automata- Pushdown Automata

nnba

2) nop, ,,,0(X

Answer: Add the instruction

nop

X,

3/4/2025 51

Example. A PDA to accept the language { | n > 0} as a

 graph and as a set of 5-tuples.

University of Kentucky

7. Context-Free Languages & Pushdown

Automata- Pushdown Automata
nnba

Instead of

0 1

pop

ab,

nop

X,

pop

ab,

)(

,

apush

Xa

Start X

)(

,

apush

aa

Would this PDA

also work?

3/4/2025 52

Example. A PDA to accept the language { | n > 0} as a

 graph and as a set of 5-tuples.

University of Kentucky

7. Context-Free Languages & Pushdown

Automata- Pushdown Automata
nnba

Deterministic or

nondeterministic?

0 1
Start X

)(

,

apush

Xa

pop

ab,pop

ab,

nop

X,

)(

,

apush

aa

Would this PDA

also work?

Take a

closer

look

3/4/2025 53

Example. A PDA to accept the language { | n > 0} as a

 graph and as a set of 5-tuples.

University of Kentucky

nnba

0
Start X

1

pop

ab,pop

ab,

nop

X,

)(

,

apush

Xa

)(

,

apush

aa

Would this PDA

also work?

This PDA accepts

𝑎𝑛1𝑏𝑛1 𝑎𝑛2𝑏𝑛2 ⋯ 𝑎𝑛𝑘𝑏𝑛𝑘 𝑎𝑚 𝑛𝑖 , 𝑘, 𝑚 𝜖 𝑁 }

NO

such as: Ʌ, a, aa, aabb, aabbaa, …, aabbaaabbbaa, …

3/4/2025 54

Example. Find a PDA to accept the language { | n ∈ N}.

A solution:

University of Kentucky

7. Context-Free Languages & Pushdown

Automata- Pushdown Automata
nnba2

2 a’s for

one b

Deterministic, or

nondeterministic?

3/4/2025 55

Does every high-level programming

language have a deterministic PDA?

University of Kentucky

YES or NO

Yes. Why? because each high-level language
has a context-free grammar, and a CFG is
equivalent to a DPDA

3/4/2025 56

An important definition:

 Instantaneous Description (ID) :

 (current state, unconsumed input, stack contents)

 e.g., (0, aaaabb, X) : start in state 0 with X on the stack

 and the input string being aaaabb

University of Kentucky

7. Context-Free Languages & Pushdown

Automata- Pushdown Automata

Plays the role

of a stack

3/4/2025 57

Example. Find a PDA to accept the language { | n ∈ N}.

A solution:

University of Kentucky

7. Context-Free Languages & Pushdown

Automata- Pushdown Automata
nnba2

accepted

3/4/2025 58

Example. Find a PDA to accept the language { | n ∈ N}.

A solution:

University of Kentucky

7. Context-Free Languages & Pushdown

Automata- Pushdown Automata
nnba2

How do I know the PDA should be built this way?

3/4/2025 59

Example. Find a PDA to accept the language { | n ∈ N}.

A solution:

University of Kentucky

7. Context-Free Languages & Pushdown

Automata- Pushdown Automata
nnba2

First, to accept , we have two choices:

Start X

nop

X,

Start X

nop

X,

3/4/2025 60

Example. Find a PDA to accept the language { | n ∈ N}.

A solution: Then, build mechanism to push onto the stack

University of Kentucky

7. Context-Free Languages & Pushdown

Automata- Pushdown Automata
nnba2

ma

nop

X,

Start X

)(

,

)(

,

apush

aa

apush

Xa

nop

X,

Start X

)(

,

)(

,

apush

aa

apush

Xa

3/4/2025 61

Example. Find a PDA to accept the language { | n ∈ N}.

A solution: Then, build mechanism to push onto the stack

University of Kentucky

7. Context-Free Languages & Pushdown

Automata- Pushdown Automata
nnba2

ma

nop

X,

Start X

)(

,

)(

,

apush

aa

apush

Xa

nop

X,

Start X

)(

,

)(

,

apush

aa

apush

Xa

Ignore this one because it accepts N}|{ nam

3/4/2025 62

Example. Find a PDA to accept the language { | n ∈ N}.

A solution: Then, build mechanism to pop from the stack

 2 times for a given

University of Kentucky

7. Context-Free Languages & Pushdown

Automata- Pushdown Automata
nnba2

1
Start X

nop

X,

)(

,

)(

,

apush

aa

apush

Xa

a

2

pop

ab,

b

3

pop

a,

3/4/2025 63

Example. Find a PDA to accept the language { | n ∈ N}.

A solution: Then, build mechanism to pop from the stack

 2 times for each , to accept

University of Kentucky

7. Context-Free Languages & Pushdown

Automata- Pushdown Automata
nnba2

1
Start X

nop

X,

)(

,

)(

,

apush

aa

apush

Xa

a

2 3

pop

ab,

b

pop

a,

nnba2

nop

X,

pop

ab,

3/4/2025 64

Example. Find a PDA to accept the language { | n ∈ N}.

A solution: Then, build mechanism to pop from the stack

 2 times for each , to accept

University of Kentucky

7. Context-Free Languages & Pushdown

Automata- Pushdown Automata
nnba2

1
Start X

nop

X,

)(

,

)(

,

apush

aa

apush

Xa

a

2 3

pop

ab,

b nnba2

nop

X,

pop

ab,
Remove this

edge if n>0

pop

a,

3/4/2025 65

Example. Find a PDA to accept the language { | n ∈ N}.

Idea: build mechanism to pop from the stack once for

 for every two ‘s

University of Kentucky

7. Context-Free Languages & Pushdown

Automata- Pushdown Automata
nnba 2

32
nop

ab,

pop

ab,

a
b

nop

ab,

3/4/2025 66

Example. Find a PDA to accept the language { | n ∈ N}.

Idea: build mechanism to pop from the stack once for

 for every two ‘s

University of Kentucky

7. Context-Free Languages & Pushdown

Automata- Pushdown Automata
nnba 2

3
nop

ab,

pop

ab,

a
b

OR

2
pop

ab,

3/4/2025 67

Question: is the following PDA a final-state acceptance PDA for

the language L = { 𝑎𝑛𝑏𝑛 | 𝑛 ∈ 𝑁 } ?

University of Kentucky

7. Context-Free Languages & Pushdown

Automata- Pushdown Automata

𝜦, 𝑿

𝒑𝒐𝒑

𝜦, 𝑿

𝒑𝒐𝒑

Start X

YES

3/4/2025 68

Question: is the following PDA an empty-stack acceptance PDA

for the language L = { 𝑎𝑛𝑏𝑛 | 𝑛 ∈ 𝑁 } ?

University of Kentucky

7. Context-Free Languages & Pushdown

Automata- Pushdown Automata

𝜦, 𝑿

𝒑𝒐𝒑

𝜦, 𝑿

𝒑𝒐𝒑

Start X

Is Ʌ accepted?

So Ʌ is accepted b/c the

stack is empty now X

3/4/2025 69

Question: is the following PDA an empty-stack acceptance PDA

for the language L = { 𝑎𝑛𝑏𝑛 | 𝑛 ∈ 𝑁 } ?

University of Kentucky

7. Context-Free Languages & Pushdown

Automata- Pushdown Automata

𝜦, 𝑿

𝒑𝒐𝒑

𝜦, 𝑿

𝒑𝒐𝒑

Start X

Is abɅ accepted?

So ab is accepted b/c the

stack is empty now X

a

Try aabb, aaabbb, … yourself

3/4/2025 70

Transform final-state acceptance to empty-stack acceptance:

Introduce a new start state s, a new stack symbol Y, a new empty

state e, and construct edges and actions as shown in the

diagram below. Note that ? stands for any stack symbol.

University of Kentucky

7. Context-Free Languages & Pushdown

Automata- Pushdown Automata

3/4/2025 71

Transform final-state acceptance to empty-stack acceptance:

Introduce a new start state s, a new stack symbol Y, a new empty

state e, and construct edges and actions as shown in the

diagram below. Note that ? stands for any stack symbol.

University of Kentucky

The arrangement here ensures that if xxxx is accepted

by the final-state PDA then ɅxxxxɅ is accepted by the

empty-stack PDA

3/4/2025 72

Example: given the following final-state PDA, convert it to a

 empty-stack PDA

University of Kentucky

7. Context-Free Languages & Pushdown

Automata- Pushdown Automata

nop

X,

3/4/2025 73

Example: given the following final-state PDA, convert it to a

 empty-stack PDA

University of Kentucky

7. Context-Free Languages & Pushdown

Automata- Pushdown Automata

nop

X,

s e

)(

,

Xpush

Y

Start Y

pop

X,

pop

Y,

3/4/2025 74

Example: given the following final-state PDA, convert it to a

 empty-stack PDA

University of Kentucky

7. Context-Free Languages & Pushdown

Automata- Pushdown Automata

s e

)(

,

Xpush

Y

Start Y

pop

Y,

OR

pop

X,

pop

X,

3/4/2025 75University of Kentucky

Question: is the new stack symbol ‘Y’

really needed here ?

First, non-final states have nothing to do with ‘Y’ or ‘e’.

Consider the following final state acceptance PDA that

accepts the CFL L={ 𝑎𝑛𝑏𝑚 | 𝑛, 𝑚 ∈ 𝑁; 𝑛 > 𝑚 }

21

3

0

𝒂, 𝑿

𝒑𝒖𝒔𝒉(𝒂)

𝒂, 𝒂

𝒑𝒖𝒔𝒉(𝒂)

𝒃, 𝒂

𝒑𝒐𝒑

Ʌ, 𝒂

𝒑𝒐𝒑

𝒃, 𝒂

𝒑𝒐𝒑
𝒃, 𝑿

𝒑𝒐𝒑

Ʌ, 𝑿

𝒑𝒐𝒑X

Start

Are a, aaa, aab, aaaabb,

aabbbb accepted by this

PDA ? Yes

But not this one

3/4/2025 76University of Kentucky

Consider the following final state acceptance PDA that

accepts the CFL L={ 𝑎𝑛𝑏𝑚 | 𝑛, 𝑚 ∈ 𝑁; 𝑛 > 𝑚 }

0

𝒂, 𝑿

𝒑𝒖𝒔𝒉(𝒂)

𝒂, 𝒂

𝒑𝒖𝒔𝒉(𝒂)

3

Ʌ, 𝒂

𝒑𝒐𝒑

𝒃, 𝒂

𝒑𝒐𝒑

1

𝒃, 𝒂

𝒑𝒐𝒑

2

𝒃, 𝑿

𝒑𝒐𝒑

Ʌ, 𝑿

𝒑𝒐𝒑X

Start

Is a accepted by this PDA ?

a Ʌ

Input queue

stack

X

a

Yes

3/4/2025 77University of Kentucky

Consider the following final state acceptance PDA that

accepts the CFL L={ 𝑎𝑛𝑏𝑚 | 𝑛, 𝑚 ∈ 𝑁; 𝑛 > 𝑚 }

0

𝒂, 𝑿

𝒑𝒖𝒔𝒉(𝒂)

𝒂, 𝒂

𝒑𝒖𝒔𝒉(𝒂)

3

Ʌ, 𝒂

𝒑𝒐𝒑

𝒃, 𝒂

𝒑𝒐𝒑

1

𝒃, 𝒂

𝒑𝒐𝒑

2

𝒃, 𝑿

𝒑𝒐𝒑

Ʌ, 𝑿

𝒑𝒐𝒑X

Start

Is aaa accepted by this PDA ?

a a a Ʌ

Input queue

stack

X

a
a
a

Yes

3/4/2025 78University of Kentucky

Consider the following final state acceptance PDA that

accepts the CFL L={ 𝑎𝑛𝑏𝑚 | 𝑛, 𝑚 ∈ 𝑁; 𝑛 > 𝑚 }

0

𝒂, 𝑿

𝒑𝒖𝒔𝒉(𝒂)

𝒂, 𝒂

𝒑𝒖𝒔𝒉(𝒂)

3

Ʌ, 𝒂

𝒑𝒐𝒑

𝒃, 𝒂

𝒑𝒐𝒑

1

𝒃, 𝒂

𝒑𝒐𝒑

2

𝒃, 𝑿

𝒑𝒐𝒑

Ʌ, 𝑿

𝒑𝒐𝒑X

Start

Is aab accepted by this PDA ?

a a b Ʌ

Input queue

stack

X

a
a

Yes

3/4/2025 79University of Kentucky

Consider the following final state acceptance PDA that

accepts the CFL L={ 𝑎𝑛𝑏𝑚 | 𝑛, 𝑚 ∈ 𝑁; 𝑛 > 𝑚 }

0

𝒂, 𝑿

𝒑𝒖𝒔𝒉(𝒂)

𝒂, 𝒂

𝒑𝒖𝒔𝒉(𝒂)

3

Ʌ, 𝒂

𝒑𝒐𝒑

𝒃, 𝒂

𝒑𝒐𝒑

1

𝒃, 𝒂

𝒑𝒐𝒑

2

𝒃, 𝑿

𝒑𝒐𝒑

Ʌ, 𝑿

𝒑𝒐𝒑X

Start

Is aabb accepted by this PDA ?

a a b b Ʌ

Input queue

stack

X

a
a

Yes or No

3/4/2025 80University of Kentucky

Consider the following final state acceptance PDA that

accepts the CFL L={ 𝑎𝑛𝑏𝑚 | 𝑛, 𝑚 ∈ 𝑁; 𝑛 > 𝑚 }

0

𝒂, 𝑿

𝒑𝒖𝒔𝒉(𝒂)

𝒂, 𝒂

𝒑𝒖𝒔𝒉(𝒂)

3

Ʌ, 𝒂

𝒑𝒐𝒑

𝒃, 𝒂

𝒑𝒐𝒑

1

𝒃, 𝒂

𝒑𝒐𝒑

2

𝒃, 𝑿

𝒑𝒐𝒑

Ʌ, 𝑿

𝒑𝒐𝒑X

Start

Is aabbb accepted by this PDA ?

a a b b b Ʌ

Input queue

stack

X

a
a

No

3/4/2025 81University of Kentucky

3

Ʌ, 𝒂

𝒑𝒐𝒑

0

𝒂, 𝑿

𝒑𝒖𝒔𝒉(𝒂)

𝒂, 𝒂

𝒑𝒖𝒔𝒉(𝒂)

𝒃, 𝒂

𝒑𝒐𝒑

1

𝒃, 𝒂

𝒑𝒐𝒑

2

𝒃, 𝑿

𝒑𝒐𝒑

Ʌ, 𝑿

𝒑𝒐𝒑X

Start

eɅ, 𝑿

𝒑𝒐𝒑

Ʌ, 𝒂

𝒑𝒐𝒑

Ʌ, 𝒂

𝒑𝒐𝒑

Ʌ, 𝑿

𝒑𝒐𝒑

Ʌ, 𝒂

𝒑𝒐𝒑

If we add an empty state ‘e’ and construct new edges

and instructions as follows, would this give us an empty-

stack acceptance PDA for L= { 𝑎𝑛𝑏𝑚 | 𝑛, 𝑚 ∈ 𝑁; 𝑛 > 𝑚

} ? NO. Why?

3/4/2025 82University of Kentucky

It accepts strings 𝑎𝑛, 𝑛 ≥ 1, by empty stack

3

Ʌ, 𝒂

𝒑𝒐𝒑

0

𝒂, 𝑿

𝒑𝒖𝒔𝒉(𝒂)

𝒂, 𝒂

𝒑𝒖𝒔𝒉(𝒂)

𝒃, 𝒂

𝒑𝒐𝒑

1

𝒃, 𝒂

𝒑𝒐𝒑

2

𝒃, 𝑿

𝒑𝒐𝒑

Ʌ, 𝑿

𝒑𝒐𝒑X

Start

eɅ, 𝑿

𝒑𝒐𝒑

Ʌ, 𝒂

𝒑𝒐𝒑

Ʌ, 𝒂

𝒑𝒐𝒑

Ʌ, 𝑿

𝒑𝒐𝒑

Ʌ, 𝒂

𝒑𝒐𝒑

a a Ʌ Ʌ Ʌ

Input queue
stack

X
a
a

Accepted

3/4/2025 83University of Kentucky

It accepts strings 𝑎𝑛𝑏𝑚, 𝑛 ≥ 𝑚, by empty stack

3

Ʌ, 𝒂

𝒑𝒐𝒑

0

𝒂, 𝑿

𝒑𝒖𝒔𝒉(𝒂)

𝒂, 𝒂

𝒑𝒖𝒔𝒉(𝒂)

𝒃, 𝒂

𝒑𝒐𝒑

1

𝒃, 𝒂

𝒑𝒐𝒑

2

𝒃, 𝑿

𝒑𝒐𝒑

Ʌ, 𝑿

𝒑𝒐𝒑X

Start

eɅ, 𝑿

𝒑𝒐𝒑

Ʌ, 𝒂

𝒑𝒐𝒑

Ʌ, 𝒂

𝒑𝒐𝒑

Ʌ, 𝑿

𝒑𝒐𝒑

Ʌ, 𝒂

𝒑𝒐𝒑

a a b Ʌ Ʌ

Input queue
stack

X

a
a

Accepted

3/4/2025 84University of Kentucky

3

Ʌ, 𝒂

𝒑𝒐𝒑

0

𝒂, 𝑿

𝒑𝒖𝒔𝒉(𝒂)

𝒂, 𝒂

𝒑𝒖𝒔𝒉(𝒂)

𝒃, 𝒂

𝒑𝒐𝒑

1

𝒃, 𝒂

𝒑𝒐𝒑

2

𝒃, 𝑿

𝒑𝒐𝒑

Ʌ, 𝑿

𝒑𝒐𝒑X

Start

eɅ, 𝑿

𝒑𝒐𝒑

Ʌ, 𝒂

𝒑𝒐𝒑

Ʌ, 𝒂

𝒑𝒐𝒑

Ʌ, 𝑿

𝒑𝒐𝒑

Ʌ, 𝒂

𝒑𝒐𝒑

But it would accept strings 𝑎𝑛𝑏𝑛, n ≥1,

by empty stack

a a b b Ʌ

Input queue
stack

X

a
aaccepted

3/4/2025 85University of Kentucky

3

Ʌ, 𝒂

𝒑𝒐𝒑

0

𝒂, 𝑿

𝒑𝒖𝒔𝒉(𝒂)

𝒂, 𝒂

𝒑𝒖𝒔𝒉(𝒂)

𝒃, 𝒂

𝒑𝒐𝒑

1

𝒃, 𝒂

𝒑𝒐𝒑

2

𝒃, 𝑿

𝒑𝒐𝒑

Ʌ, 𝑿

𝒑𝒐𝒑

Y Start

eɅ, 𝑿

𝒑𝒐𝒑

Ʌ, 𝒂

𝒑𝒐𝒑

Ʌ, 𝒂

𝒑𝒐𝒑

Ʌ, 𝑿

𝒑𝒐𝒑

Ʌ, 𝒂

𝒑𝒐𝒑

Using a new stack symbol ‘Y’ in the transformation

process is necessary here.

s Λ, 𝑌

𝑝𝑢𝑠ℎ(𝑋)

Λ, 𝑌

𝑝𝑜𝑝

aabb would not

be accepted here

So Y is really needed here

3/4/2025 86

A final state acceptance PDA for the language

 L = { 𝑎𝑛𝑏𝑛 | 𝑛 ∈ 𝑁 } ?

University of Kentucky

𝜦, 𝑿

𝒑𝒐𝒑

𝜦, 𝑿

𝒑𝒐𝒑

Start X

When Ʌ is accepted, the stack is empty

X

3/4/2025 87

A final state acceptance PDA for the language

 L = { 𝑎𝑛𝑏𝑛 | 𝑛 ∈ 𝑁 } ?

University of Kentucky

𝜦, 𝑿

𝒑𝒐𝒑

𝜦, 𝑿

𝒑𝒐𝒑

Start X

When abɅ is accepted, the stack is empty

X

a

3/4/2025 88

In this case, when we do the transformation, a new stack

symbol ‘Y’ is also needed b/c otherwise we wouldn’t be

able to move from state 2 to state ‘e’.

University of Kentucky

s e

)(

,

Xpush

Y

Start Y

pop

Y,

pop

X,

pop

X,

Y

3/4/2025 89

Transform empty-stack acceptance to final-state acceptance:

Introduce a new start state s, a new stack symbol Y, a new final

state ƒ, and construct edges and actions as shown in the

diagram below.

University of Kentucky

7. Context-Free Languages & Pushdown

Automata- Pushdown Automata

3/4/2025 90University of Kentucky

The arrangement here ensures that if xxxx is accepted

by the empty-stack PDA then ɅxxxxɅ is accepted by the

final-state PDA

3/4/2025 91

Theorem: The context-free (C-F) languages are exactly

 the languages accepted by PDAs.

Proof: We’ll see two algorithms,

 one to transform a C-F grammar to an empty-stack PDA,

 & one to transform an empty-stack PDA to a C-F

 grammar. QED.

 University of Kentucky

7. Context-Free Languages & Pushdown

Automata- Pushdown Automata

C-F grammar  empty-stack PDA  final-state PDA

3/4/2025 92

7. Context-Free Languages & Pushdown

Automata- Pushdown Automata

For each programming language,

there is a PDA to recognize that

programming language.

Why?

b/c each programming language is

a context-free language

3/4/2025 93

Transform C-F grammar to empty-stack PDA:

 - The idea is to use the stack of the PDA to simulate the

 (leftmost) derivation of a string in the grammar.

 - The PDA has ONE STATE, but we allow multiple stack

 operations.

 - The stack symbols are the terminals and nonterminals of the

 grammar.

 - The designated starting stack symbol is the grammar start

 symbol.

7. Context-Free Languages & Pushdown

Automata- Pushdown Automata

3/4/2025 University of Kentucky 94

N = { S }

T = { a, b }

S : start symbol

P =
S → Λ

S → aSb
S → aaS

0
start

S

Λ, 𝑆

< 𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ 𝑆 , 𝑝𝑢𝑠ℎ 𝑎 , 𝑝𝑢𝑠ℎ 𝑎 >

𝑎, 𝑎

𝑝𝑜𝑝

𝑏, 𝑏

𝑝𝑜𝑝

Λ,𝑆

𝑝𝑜𝑝

Λ, 𝑆

< 𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ 𝑏 , 𝑝𝑢𝑠ℎ 𝑆 , 𝑝𝑢𝑠ℎ 𝑎 >

Transform C-F grammar to empty-stack PDA:

3/4/2025 University of Kentucky 95

N = { S }

T = { a, b }

S : start symbol

P =
S → Λ

S → aSb
S → aaS

Transform C-F grammar to empty-stack PDA:

What is the language of

this C-F grammar?

𝑎𝑚+2𝑛𝑏𝑚 | 𝑛, 𝑚 𝜖 𝑁

Ʌ, aa, aaaa, … , 𝑎2𝑛, …
 ab, aaab, aaaaab, …

aabb, aaaabb, aaaaabbb, …

3/4/2025 96

Now, consider the following PDA:

Deterministic or

non-deterministic?

Transform C-F grammar to empty-stack PDA:

3/4/2025 University of Kentucky 97

DFA vs NFA
For a DFA, you have only one chance to determine if

a given string is accepted by the DFA because there

will be only one path in the DFA for that string. If that

path does not lead to a final state, then the only

conclusion is that string is not accepted by the DFA.

For an NFA, there could be several different paths in

the NFA for that string. If one path does not lead to a

final state, you can try other available paths to see if

one of them would work.

3/4/2025 98

Transform C-F grammar to empty-stack PDA:

PDA instructions:

(0, a, a, pop, 0)

(0, b, b, pop, 0)

(0, Ʌ, S, pop, 0)

(0, Ʌ, S, <pop, push(b), push(S), push(a)>, 0)

(0, Ʌ, S, <pop, push(S), push(a), push(a)>, 0)

3/4/2025 99

Transform C-F grammar to empty-stack PDA:

How do I know the PDA should be constructed

the above way?

The work of a PDA reverses the work of a

grammar in the sense that a grammar generates

a string while a PDA executes a string

For instance: S ⟹ 𝑎𝑆𝑏 ⟹ 𝑎𝑎𝑎𝑆𝑏 ⟹ 𝑎𝑎𝑎𝑏

On the other hand: aaab → aab → ab → b → Ʌ

3/4/2025 University of Kentucky 102

when top symbol of the stack is a nonterminal

and next input symbol is not a Ʌ

then put a Ʌ in front of the un-consumed portion

of the input string

and the PDA should have an instruction for you

to replace the top symbol of the stack with the

right hand side of a grammar production.

Key Idea:

3/4/2025 103University of Kentucky

)0,)(),(),(,,,,0(apushSpushbpushpopS

S
a

)0,,,,0(popaa

)0,)(),(),(,,,,0(apushapushSpushpopS

S
a
a

)0,,,,0(popaa

)0,,,,0(popaa

)0,,,,0(popS

)0,,,,0(popbb

),,0(

),,0(

),,0(

),,0(

),,0(

),,0(

),,0(

),,0(









bb

Sbb

aSbab

aaSbaab

Sbaab

aSbaaab

Saaab

Accepted
b
S

3/4/2025 106University of Kentucky

a

S

b

S

b

a

a

S

b

a

S

b

S

b

b

S

push

pop

+

push pop

pop

+

push pop pop pop

),,0(

),,0(

),,0(

),,0(

),,0(

),,0(

),,0(

),,0(









bb

Sbb

aSbab

aaSbaab

Sbaab

aSbaaab

Saaab

S → aSb S → aaS S → Ʌ

S ⟹ 𝑎𝑆𝑏 ⟹ 𝑎𝑎𝑎𝑆𝑏 ⟹ 𝑎𝑎𝑎𝑏

(Left-most derivation of aaab)

So operations on the stack

reflect derivation of the string

aaab

3/4/2025 University of Kentucky 107

So, when the PDA processes the

string aaab, operations on the stack

of the PDA reflect the derivation of

the string aaab

Now the process of transforming a

C-F grammar to an empty-stack

PDA

Transform C-F grammar to empty-stack PDA:

3/4/2025 108

Transform C-F grammar to empty-stack PDA:

Basic idea:

 – Use the stack of the PDA to simulate the (leftmost) derivation

 of a string in the grammar

 • Push S (start symbol of CFG) on the stack

 • From this point on, there are two moves the PDA can make:

1. 1. If a non-terminal A is at the top of the stack, pop it and push the

 right-hand side of a production A → B1B2 ···Bn from G

 2. If a terminal a is at the top of the stack, pop it and match it with

 whatever symbol is being read from the input string

7. Context-Free Languages & Pushdown

Automata- Pushdown Automata

3/4/2025 University of Kentucky 109

Leftmost and Rightmost Derivations
Consider the grammar G = ({S, A, B, C}, {a, b, c}, S, P)

where

 P = { S → ABC, A → aA | Ʌ , B → bB | Ʌ , C → cC | Ʌ }

Leftmost derivation (always expand the leftmost variable first):

 S ⇒ ABC ⇒ aABC ⇒ aBC ⇒ abBC ⇒ abbBC ⇒ abbC

 ⇒ abbcC ⇒ abbc

Rightmost derivation (always expand the rightmost variable

first):

 S ⇒ ABC ⇒ ABcC ⇒ ABc ⇒ AbBc ⇒ AbbBc ⇒ Abbc

 ⇒ aAbbc ⇒ abbc

Note:

1. Different derivations result in different sentential forms, but

2. For a C-F grammar, it doesn't make difference in what order

 we expand the variables.

3/4/2025 110

How to simulate a leftmost derivation of aaab for the grammar

 

University of Kentucky

7. Context-Free Languages & Pushdown

Automata- Pushdown Automata

aaSaSbS ||→

a

S

b

S

b

a

a

S

b

a

S

b

S

b

b

Output:

S

push

pop

+

push pop

a

pop

+

push pop

a

pop

a

pop

pop b

S → aSb ; S → aaS ; S → Ʌ𝑆 ⇒ 𝑎𝑆𝑏 ⇒ 𝑎𝑎𝑎𝑆𝑏 ⇒ 𝑎𝑎𝑎𝑏

3/4/2025 113

Example. For the grammar: , do a leftmost

derivation of aaab and show the IDs for executing it.

First, get PDA instructions for terminals and productions:

 Terminals Corresponding PDA instructions

 Productions Corresponding PDA instructions

University of Kentucky

7. Context-Free Languages & Pushdown

Automata- Pushdown Automata

aaSaSbS ||→

)0,,,,0(

)0,,,,0(

popbbb

popaaa

)0,,,(0,

)0,)(),(),(,,,(0,

)0,)(),(),(,,,,0(

popSS

apushapushSpushpopSaaSS

apushSpushbpushpopSaSbS

→

→

→

Start with this one

3/4/2025 114

This is the empty-stack PDA:

Why?

3/4/2025 115

A leftmost derivation of aaab:

 ID’s for aaab: PDA instructions:

University of Kentucky

)0,)(),(),(,,,,0(apushSpushbpushpopS

S
a

)0,,,,0(popaa

)0,)(),(),(,,,,0(apushapushSpushpopS

S
a
a

)0,,,,0(popaa

)0,,,,0(popaa

)0,,,,0(popS

)0,,,,0(popbb

),,0(

),,0(

),,0(

),,0(

),,0(

),,0(

),,0(

),,0(









bb

Sbb

aSbab

aaSbaab

Sbaab

aSbaaab

Saaab

Accepted

b
S

First note that:

Here is why:
 ID’s for aaab:

University of Kentucky

),,0(

),,0(

),,0(

),,0(

),,0(

),,0(

),,0(

),,0(









bb

Sbb

aSbab

aaSbaab

Sbaab

aSbaaab

Saaab
S → aSb

S → aaS

S → Λ

Λ, 𝑆

𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ 𝑏 , 𝑝𝑢𝑠ℎ 𝑆 , 𝑝𝑢𝑠ℎ(𝑎)
𝑎, 𝑎

𝑝𝑜𝑝

Λ, 𝑆

𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ 𝑆 , 𝑝𝑢𝑠ℎ 𝑎 , 𝑝𝑢𝑠ℎ(𝑎)
Λ, 𝑆

𝑝𝑜𝑝

𝑏, 𝑏

𝑝𝑜𝑝

PDA instructions:

CTG Productions:

3/4/2025 University of Kentucky 117

N = { S }

T = { a, b, c, d }

S : start symbol

P =

S → d|ABC
A → aA|Ʌ
B → bB|Ʌ
𝐶 → 𝑐𝐶|Ʌ

0
start

S

???

???

Example: transform the following C-F grammar

to an empty-stack PDA

3/4/2025 University of Kentucky 119

P =

S → d|ABC
A → aA|Ʌ
B → bB|Ʌ
𝐶 → 𝑐𝐶|Ʌ

0
start

S

𝑎,𝑎

𝑝𝑜𝑝
,

𝑏,𝑏

𝑝𝑜𝑝
,

𝑐,𝑐

𝑝𝑜𝑝
,

𝑑,𝑑

 𝑝𝑜𝑝

Λ, 𝑆

< 𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ 𝑑 >
,
Λ, 𝐴

𝑝𝑜𝑝
,
Λ, 𝐵

𝑝𝑜𝑝
,
Λ, 𝐶

𝑝𝑜𝑝

Λ, 𝑆

< 𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ 𝐶 , 𝑝𝑢𝑠ℎ 𝐵 , 𝑝𝑢𝑠ℎ 𝐴 >
Λ, 𝐴

< 𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ 𝐴 , 𝑝𝑢𝑠ℎ 𝑎 >
Λ, 𝐵

< 𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ 𝐵 , 𝑝𝑢𝑠ℎ 𝑏 >
Λ, 𝐶

< 𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ 𝐶 , 𝑝𝑢𝑠ℎ 𝑐 >

d Input queue

S

Ʌ d

d

3/4/2025 University of Kentucky 120

P =

S → d|ABC
A → aA|Ʌ
B → bB|Ʌ
𝐶 → 𝑐𝐶|Ʌ

0
start

S

𝑎,𝑎

𝑝𝑜𝑝
,

𝑏,𝑏

𝑝𝑜𝑝
,

𝑐,𝑐

𝑝𝑜𝑝
,

𝑑,𝑑

 𝑝𝑜𝑝

Λ, 𝑆

< 𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ 𝑑 >
,
Λ, 𝐴

𝑝𝑜𝑝
,
Λ, 𝐵

𝑝𝑜𝑝
,
Λ, 𝐶

𝑝𝑜𝑝

Λ, 𝑆

< 𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ 𝐶 , 𝑝𝑢𝑠ℎ 𝐵 , 𝑝𝑢𝑠ℎ 𝐴 >
Λ, 𝐴

< 𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ 𝐴 , 𝑝𝑢𝑠ℎ 𝑎 >
Λ, 𝐵

< 𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ 𝐵 , 𝑝𝑢𝑠ℎ 𝑏 >
Λ, 𝐶

< 𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ 𝐶 , 𝑝𝑢𝑠ℎ 𝑐 >

a Input queue

S

Ʌ a

A

a

B

C

Ʌ Ʌ a Ʌ Ʌ Ʌ

A

3/4/2025 University of Kentucky 123

N = { S }

T = { a, b, c, d, e }

S : start symbol

P =

S → d | e |ABC
A → aA|Ʌ
B → bB|Ʌ
𝐶 → 𝑐𝐶|Ʌ

0
start

S

???

???

Example: transform the following C-F grammar

to an empty-stack PDA

3/4/2025 University of Kentucky 124

P =

S → d|e|ABC
A → aA|Ʌ
B → bB|Ʌ
𝐶 → 𝑐𝐶|Ʌ

0
start

S

𝑎,𝑎

𝑝𝑜𝑝
,

𝑏,𝑏

𝑝𝑜𝑝
,

𝑐,𝑐

𝑝𝑜𝑝
,

𝑑,𝑑

 𝑝𝑜𝑝
,

𝑒,𝑒

𝑝𝑜𝑝

Λ, 𝑆

< 𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ 𝑑 >
,

Λ, 𝑆

< 𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ 𝑒 >
,
Λ, 𝐴

𝑝𝑜𝑝
,
Λ, 𝐵

𝑝𝑜𝑝
,
Λ, 𝐶

𝑝𝑜𝑝

Λ, 𝑆

< 𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ 𝐶 , 𝑝𝑢𝑠ℎ 𝐵 , 𝑝𝑢𝑠ℎ 𝐴 >
Λ, 𝐴

< 𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ 𝐴 , 𝑝𝑢𝑠ℎ 𝑎 >
Λ, 𝐵

< 𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ 𝐵 , 𝑝𝑢𝑠ℎ 𝑏 >
Λ, 𝐶

< 𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ 𝐶 , 𝑝𝑢𝑠ℎ 𝑐 >

a a b e Input queue

S

Do this at home

3/4/2025 University of Kentucky 125

P =

S → d|e|ABC
A → aA|Ʌ
B → bB|Ʌ
𝐶 → 𝑐𝐶|Ʌ

0
start

S

𝑎,𝑎

𝑝𝑜𝑝
,

𝑏,𝑏

𝑝𝑜𝑝
,

𝑐,𝑐

𝑝𝑜𝑝
,

𝑑,𝑑

 𝑝𝑜𝑝
,

𝑒,𝑒

𝑝𝑜𝑝

Λ, 𝑆

< 𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ 𝑑 >
,

Λ, 𝑆

< 𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ 𝑒 >
,
Λ, 𝐴

𝑝𝑜𝑝
,
Λ, 𝐵

𝑝𝑜𝑝
,
Λ, 𝐶

𝑝𝑜𝑝

Λ, 𝑆

< 𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ 𝐶 , 𝑝𝑢𝑠ℎ 𝐵 , 𝑝𝑢𝑠ℎ 𝐴 >
Λ, 𝐴

< 𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ 𝐴 , 𝑝𝑢𝑠ℎ 𝑎 >
Λ, 𝐵

< 𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ 𝐵 , 𝑝𝑢𝑠ℎ 𝑏 >
Λ, 𝐶

< 𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ 𝐶 , 𝑝𝑢𝑠ℎ 𝑐 >

a a b e
Input queue

S

rejected

3/4/2025 126

End of Context-Free

Languages and

Pushdown Automata I

University of Kentucky

	Slide 1: CS375: Logic and Theory of Computing
	Slide 2: Table of Contents:
	Slide 3: Table of Contents (conti):
	Slide 4: 7. Context-Free Languages & Pushdown Automata- Context-Free Languages
	Slide 5: 7. Context-Free Languages & Pushdown Automata- Context-Free Languages
	Slide 6: 7. Context-Free Languages & Pushdown Automata- Context-Free Languages
	Slide 7: 7. Context-Free Languages & Pushdown Automata- Context-Free Languages
	Slide 8: 7. Context-Free Languages & Pushdown Automata- Context-Free Languages
	Slide 9: 7. Context-Free Languages & Pushdown Automata- Context-Free Languages
	Slide 10: 7. Context-Free Languages & Pushdown Automata- Context-Free Languages
	Slide 11: 7. Context-Free Languages & Pushdown Automata- Context-Free Languages
	Slide 12: 7. Context-Free Languages & Pushdown Automata- Context-Free Languages
	Slide 13
	Slide 14: 7. Context-Free Languages & Pushdown Automata- Context-Free Languages
	Slide 15
	Slide 16
	Slide 17: 7. Context-Free Languages & Pushdown Automata- Context-Free Languages
	Slide 18: 7. Context-Free Languages & Pushdown Automata- Context-Free Languages
	Slide 19: 7. Context-Free Languages & Pushdown Automata- Context-Free Languages
	Slide 20: 7. Context-Free Languages & Pushdown Automata- Context-Free Languages
	Slide 21: 7. Context-Free Languages & Pushdown Automata- Context-Free Languages
	Slide 22: 7. Context-Free Languages & Pushdown Automata- Pushdown Automata
	Slide 23: 7. Context-Free Languages & Pushdown Automata- Pushdown Automata
	Slide 24: Pushdown Automata, intuitively
	Slide 25: Why not a Pushup Automaton?
	Slide 28: For the PDA example in slide 26:
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35: Final State acceptance vs Empty-stack acceptance
	Slide 36: Final State acceptance example:
	Slide 37: Final State acceptance vs Empty-stack acceptance
	Slide 38: Empty Stack acceptance example:
	Slide 39: 7. Context-Free Languages & Pushdown Automata- Pushdown Automata
	Slide 40: 7. Context-Free Languages & Pushdown Automata- Pushdown Automata
	Slide 41: 7. Context-Free Languages & Pushdown Automata- Pushdown Automata
	Slide 42: 7. Context-Free Languages & Pushdown Automata- Pushdown Automata
	Slide 43: 7. Context-Free Languages & Pushdown Automata- Pushdown Automata
	Slide 44: 7. Context-Free Languages & Pushdown Automata- Pushdown Automata
	Slide 45: 7. Context-Free Languages & Pushdown Automata- Pushdown Automata
	Slide 46: 7. Context-Free Languages & Pushdown Automata- Pushdown Automata
	Slide 47: 7. Context-Free Languages & Pushdown Automata- Pushdown Automata
	Slide 48: 7. Context-Free Languages & Pushdown Automata- Pushdown Automata
	Slide 49: 7. Context-Free Languages & Pushdown Automata- Pushdown Automata
	Slide 50: 7. Context-Free Languages & Pushdown Automata- Pushdown Automata
	Slide 51: 7. Context-Free Languages & Pushdown Automata- Pushdown Automata
	Slide 52: 7. Context-Free Languages & Pushdown Automata- Pushdown Automata
	Slide 53
	Slide 54: 7. Context-Free Languages & Pushdown Automata- Pushdown Automata
	Slide 55
	Slide 56: 7. Context-Free Languages & Pushdown Automata- Pushdown Automata
	Slide 57: 7. Context-Free Languages & Pushdown Automata- Pushdown Automata
	Slide 58: 7. Context-Free Languages & Pushdown Automata- Pushdown Automata
	Slide 59: 7. Context-Free Languages & Pushdown Automata- Pushdown Automata
	Slide 60: 7. Context-Free Languages & Pushdown Automata- Pushdown Automata
	Slide 61: 7. Context-Free Languages & Pushdown Automata- Pushdown Automata
	Slide 62: 7. Context-Free Languages & Pushdown Automata- Pushdown Automata
	Slide 63: 7. Context-Free Languages & Pushdown Automata- Pushdown Automata
	Slide 64: 7. Context-Free Languages & Pushdown Automata- Pushdown Automata
	Slide 65: 7. Context-Free Languages & Pushdown Automata- Pushdown Automata
	Slide 66: 7. Context-Free Languages & Pushdown Automata- Pushdown Automata
	Slide 67: 7. Context-Free Languages & Pushdown Automata- Pushdown Automata
	Slide 68: 7. Context-Free Languages & Pushdown Automata- Pushdown Automata
	Slide 69: 7. Context-Free Languages & Pushdown Automata- Pushdown Automata
	Slide 70: 7. Context-Free Languages & Pushdown Automata- Pushdown Automata
	Slide 71
	Slide 72: 7. Context-Free Languages & Pushdown Automata- Pushdown Automata
	Slide 73: 7. Context-Free Languages & Pushdown Automata- Pushdown Automata
	Slide 74: 7. Context-Free Languages & Pushdown Automata- Pushdown Automata
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89: 7. Context-Free Languages & Pushdown Automata- Pushdown Automata
	Slide 90
	Slide 91: 7. Context-Free Languages & Pushdown Automata- Pushdown Automata
	Slide 92: 7. Context-Free Languages & Pushdown Automata- Pushdown Automata
	Slide 93: 7. Context-Free Languages & Pushdown Automata- Pushdown Automata
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 102
	Slide 103
	Slide 106
	Slide 107
	Slide 108: 7. Context-Free Languages & Pushdown Automata- Pushdown Automata
	Slide 109
	Slide 110: 7. Context-Free Languages & Pushdown Automata- Pushdown Automata
	Slide 113: 7. Context-Free Languages & Pushdown Automata- Pushdown Automata
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 119
	Slide 120
	Slide 123
	Slide 124
	Slide 125
	Slide 126

