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University of Kentucky
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University of Kentucky
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Goal: 

   To study a non-regular language

   called context-free language, 

   and the machine called pushdown automaton

   that recognizes this language.

University of Kentucky

7. Context-Free Languages & Pushdown 

Automata- Context-Free Languages

Why do we want to study context-free language?
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7. Context-Free Languages & Pushdown 

Automata- Context-Free Languages

Why do we want to study context-free 

language?

Because regular languages do not include any 

programming languages such as Pascal, C, 

C++, Java or Python as members.

Why? Consider the data item 𝑎2𝑏2. This item 

can be a term in a polynomial and yet it is not 

recognized as a regular language term.
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Can a machine recognize a language that is not regular?

     YES.

 

                       

A context-free grammar has productions of the form

                        N → w

where N is a non-terminal and w is a string containing 

terminals and/or non-terminals.

University of Kentucky

7. Context-Free Languages & Pushdown 

Automata- Context-Free Languages

Can have more than 

one production

N        w   

The language  𝑎𝑛𝑏𝑛 | 𝑛 ∈ 𝑁  is not regular, but it has a 

non-regular grammar

                         S →  aSb  |  Ʌ
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7. Context-Free Languages & Pushdown 

Automata- Context-Free Languages

      Why is the grammar called

                     “context-free grammar”  ?

 

Consider the rule

          S → aSb

 What this says is “wherever you find S, you can replace it with

  aSb”.
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7. Context-Free Languages & Pushdown 

Automata- Context-Free Languages

Why is the grammar called “context-free grammar”  ?

            S → aSb

            CSB →  CaSbB

==================================================

       In summary, in the first case, you didn't need any context

       to apply the rule. You can apply it irrespective of the context

       in which S appears. So, grammars which contain only rules

       of first kind are called context-free grammars.
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7. Context-Free Languages & Pushdown 

Automata- Context-Free Languages

Why is the grammar called

                     “context-free grammar”  ?

  Now consider the rule

         CSB →  CaSbB

 This says “You can replace S with aSb only if it is preceded by C

 and followed by B”. Here it imposes a condition on when S can

 be replaced with aSb. You can apply this rule only if S appears in

 this particular context. Here, ‘context’ is used as is generally

  used in normal English.
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7. Context-Free Languages & Pushdown 

Automata- Context-Free Languages

nn ba

2+nnba

A context-free language is the set of strings derived from a 

context-free grammar.

Example.  {         | n ∈ N}  is a C-F language derived from the

                  C-F grammar 

                                  S → aSb | Λ.

Example. Any regular grammar is context-free.

                 So regular languages are C-F languages.

Quiz. Find a grammar for  {            | n ∈ N}. 

Answer.  S → aSb | bb.

Think of the strings in the following 

form:

  bb, (ab)bb, (aabb)bb, (aaabbb)bb, …
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Quiz. Find a grammar for  {          | w ∈ {a, b}* }, where         

                   is the reverse of w.

       Answer. S → aSa | bSb | Λ.

       Example. 

       Question. 

University of Kentucky

7. Context-Free Languages & Pushdown 

Automata- Context-Free Languages

Rww
Rw

abbabaababSbaaSaS 

? },,,{  if What   dcbaw

Would S → aSa | bSb | cSc | dSd | Λ   work?
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Techniques for Constucting Grammars:

     Let L and M be two C-F grammars with disjoint sets

      of non-terminals and with start symbols A and B, 

      respectively. 

      Then

          •  L U M  has grammar  S → A | B

        •  LM  has grammar  S → AB

        •  L*  has grammar  S → AS | Λ

University of Kentucky

7. Context-Free Languages & Pushdown 

Automata- Context-Free Languages

Why do we need

a ‘Ʌ’ here?

How about the 

alphabets?
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      Then

          •  L U M   :  S → A | B          plus

        •  LM        : S → AB              plus

        •  L*          :  S → AS | Λ       plus

University of Kentucky

L*M has grammar   S →  AS | B (4)

(1)

(2)

(3)

S ⇒ AA…AAS

   ⇒ AA…AAB

L    : A  → ⋯
           ⋯ ⋯ 

M    :   B →  ⋯
           ⋯ ⋯
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7. Context-Free Languages & Pushdown 

Automata- Context-Free Languages

Examples. For a string x and letter a  let  na(x)  be the number of 

a’s in x. Let L = { x ∈ {a, b}*  |  na(x) = nb(x) }. 

      A C-F grammar for L with start symbol E can be written as:

               E → aEbE | bEaE | Λ.

     Use this information to find grammars for following languages.

      1.  { x ∈ {a, b}* | na(x) = 1 + nb(x) }.

      Solution:   S → EaE.

      Can this grammar generate   𝑎4𝑎𝑏4,  𝑎2𝑏3𝑎𝑏5𝑎6,  𝑏2𝑎𝑎5𝑏3 ?

       

Would  𝑺 → 𝒂𝑬 𝒐𝒓 
 𝑺 → 𝑬𝒂 𝒘𝒐𝒓𝒌?
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Examples. For a string x and letter a  let  na(x)  be the number

 of a’s in x. Let L = { x ∈ {a, b}*  |  na(x) = nb(x) }.

A C-F grammar for L with start symbol E can be written as:

               E → aEbE | bEaE | Λ.

       

Question 1:

Would  E →  aEb | bEa | Ʌ   work for L ? 

NO.

Because we wouldn’t be able to generate strings 

such as:  abba, baab, ababbaba, babaabab, …

E →  aEbE  →  aEbbEaE →  aɅbbɅaɅ  =  abba

Can not generate strings whose 

2nd half is symmetric to its 1st half
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Examples. For a string x and letter a  let  na(x)  be the number

 of a’s in x. Let L = { x ∈ {a, b}*  |  na(x) = nb(x) }.

A C-F grammar for L with start symbol E can be written as:

               E → aEbE | bEaE | Λ.

       

Question 2:
Why don’t we need an ‘E’ on the left hand side of the 

productions, i.e., why don’t we need productions of the 

following form?

       E →  EaEbE | EbEaE | Ʌ 

Because the left most symbol of each string in L is either 

‘a’ or ‘b’. If it is ‘a’, we can start with the first production.

If it is ‘b’, we can start with the second production.
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7. Context-Free Languages & Pushdown 

Automata- Context-Free Languages

?  work 

or    Woul

EaS

aES

→

→
1.  { x ∈ {a, b}* | na(x) = 1 + nb(x) }.

      Solution:   S → EaE.

      Can this grammar generate   𝑎4𝑎𝑏4,  𝑎2𝑏3𝑎𝑏5𝑎6,  𝑏2𝑎𝑎5𝑏3 ?

       𝑎4𝑎𝑏4 = 𝑎 (𝑎4 𝑏4)

𝑎2𝑏3𝑎𝑏5𝑎6 = 𝑎2𝑏3𝑎 𝑏5𝑎5 𝑎

𝑏2𝑎𝑎5𝑏3 = 𝑏2𝑎2 𝑎(𝑎3𝑏3)

?
?
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Examples. For a string x and letter a  let  na(x)  be the number of 

a’s in x. Let  L = {x ∈ {a, b}* | na(x) = nb(x)}. 

      A grammar for L with start symbol E can be written as:

               E → aEbE | bEaE | Λ.

      Use this information to find grammars for following languages.

      2.  {x ∈ {a, b}* | na(x) = 2 + nb(x) }.

      Solution:   S → EaEaE.

University of Kentucky

7. Context-Free Languages & Pushdown 

Automata- Context-Free Languages

?  not  Why EaaES →

Can this grammar generate   𝑎4𝑎𝑏2𝑎𝑏2,  𝑎2𝑏3𝑎𝑏5𝑎𝑎6 ?

𝑎4𝑎𝑏2𝑎𝑏2 = 𝑎𝑎(𝑎2𝑎𝑏2𝑎𝑏2)

𝑎2𝑏3𝑎𝑏5𝑎𝑎6 =  (𝑎2𝑏3𝑎𝑏5𝑎𝑎4)𝑎𝑎
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Examples. For a string x and letter a let  na(x)  be the number of 

a’s in x. Let  L = {x ∈ {a, b}* | na(x) = nb(x)}. 

      A grammar for L with start symbol E can be written as:

               E → aEbE | bEaE | Λ.

      Use this information to find grammars for following languages.

      3.  { x ∈ {a, b}* | na(x) > nb(x) }.

      Solution:        S → EaET        

                              T → aET | Λ.

University of Kentucky

7. Context-Free Languages & Pushdown 

Automata- Context-Free Languages

What is T for?

S → EaET → EaEaET → EaEaEaET → ….

To ensure the number 

of extra a’s can be as 

many as possible

Would the following T work?

 T → TEa | Λ 



3/4/2025 20

Examples. For a string x and letter a let  na(x)  be the number of 

a’s in x. Let  L = {x ∈ {a, b}* | na(x) = nb(x)}. 

      A grammar for L with start symbol E can be written as:

               E → aEbE | bEaE | Λ.

      Use this information to find grammars for following languages.

      3.  { x ∈ {a, b}* | na(x) > nb(x) }.

      Solution:        S → EaET        

                              T → aET | Λ.

University of Kentucky

7. Context-Free Languages & Pushdown 

Automata- Context-Free Languages

Questions:  would  S →EaES | Ʌ   or   S→ EaES | a   work? 

None would work!!!    Why?
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Examples. For a string x and letter a let  na(x)  be the number of 

a’s in x. Let  L = {x ∈ {a, b}* | na(x) = nb(x)}. 

      A grammar for L with start symbol E can be written as:

               E → aEbE | bEaE | Λ.

      Use this information to find grammars for following languages.

      4.  {x ∈ {a, b}* | na(x) < nb(x) }.

      Solution:      S → EbET     T → bET | Λ.

University of Kentucky

7. Context-Free Languages & Pushdown 

Automata- Context-Free Languages

compare #4

with #3
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A pushdown automaton (PDA):

      a finite automaton with a stack

     stack operations:  pop, push, and nop. 

University of Kentucky

7. Context-Free Languages & Pushdown 

Automata- Pushdown Automata

a PDA is an automaton that can memorize things

What can we do with a PDA ?

can be used to model a parser for instance.

(Most programming languages have deterministic PDA’s )

Do nothing

Infinite memory but 

restricted access

UNDO
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A PDA starts with one designated symbol on the stack.

A state transition is determined by:

                   

Representation:

University of Kentucky

7. Context-Free Languages & Pushdown 

Automata- Pushdown Automata

If the machine is in state i and the input 

letter is b and C is on top of the stack,

then pop the stack and enter state j

current state 

input symbol

top of the stack

( i, b, C, pop, j )
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Pushdown Automata, intuitively

Start

S

stack

S

A stack is used when events 

occurred more recently are 

more  important
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Why not a Pushup Automaton?

Start

X

X

queue

A queue is used when the order 

of occurrence is important
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Start   X
1

nop

X,
4

)(

,

)(

,

apush

aa

apush

Xa

3

pop

ab,
2

pop

a,

nop

X,
stack

X

a a b

Input string

a
a

Output queue

b a

Λ

a

For the PDA example in slide 26:

Λ
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Why is stack data structure important?

(1) can reverse a word; 

(2) for “undo” mechanism;

(3) can be used to match braces, …

Very useful for language processing

Question: Can a queue do the same thing?
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Why is stack data structure important?

(1) can reverse a word; 

I

𝑋

𝑎

𝑚

𝑎

𝑏

𝑜

𝑦 Top

X
Λ, ?

𝑝𝑜𝑝

Λ, 𝑋

𝑛𝑜𝑝

Λ, ?

𝑝𝑜𝑝

? , 𝑋

𝑝𝑢𝑠ℎ(? )

? , #

𝑝𝑢𝑠ℎ(? ) Λ, 𝑋

𝑛𝑜𝑝
⋮

⋮

⋮

Next input symbol

Empty 

space 

symbol

Current top symbol
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(2) for “undo” mechanism;

⋮

𝐸𝑖−2 𝐸𝑖−1 𝐸𝑖

Top

How should the previous PDA be modified?
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X ∗, ?

𝑝𝑜𝑝

? , 𝑋

𝑝𝑢𝑠ℎ(? )

? , #

𝑝𝑢𝑠ℎ(? ) ∗, 𝑋

𝑛𝑜𝑝

Next input event

Current top event

⋮

𝐸𝑖−2 𝐸𝑖−1 𝐸𝑖

Top

UNDO
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UNDO and  REDO can be implemented 

with two stacks 

• Push all operations to Undo-stack

• When UNDO is called, pop operations from 
Undo-stack and push it to Redo-stack.

• When REDO is called, pop operations from 
Redo-stack and push it to Undo-stack.

How should the previous PDA be modified?
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(3) can be used to match braces

⋯  )⋯  (⋯  [⋯  ] ⋯  }

Top

{ 

{ [ ( ) ] }

How should the previous PDA be modified?

(use two stacks, one for every input symbol, 

one for braces only)
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Acceptance of a string:

      A string w is accepted by a PDA if there is a 

path from the start state to a final state such 

that the symbols on the path edges 

concatenate to w. Otherwise, w is rejected.   

University of Kentucky

Final State acceptance

    vs   Empty-stack acceptance

This kind acceptance is called Final State Acceptance  
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stack

Start   X
1

nop

X,
4

)(

,

)(

,

apush

aa

apush

Xa

3

pop

ab,
2

pop

a,

nop

X,

pop

ab, a a a a b b

Input string

Output queue

b

X

a

a

a

a

a a b a a

3

Λ

Final State acceptance example:accepted
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Empty-Stack Acceptance.
      Instead of final-state acceptance, a PDA can also be

      defined to accept a string by the condition that the stack

      is empty. 

      The two types of acceptance are equivalent in that they

      define PDAs that accept the same class of languages.

         

University of Kentucky

empty-stack PDA         final-state PDA 

Final State acceptance

    vs   Empty-stack acceptance
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stack

Start   X
1

4

)(

,

)(

,

apush

aa

apush

Xa

3

pop

ab,
2

pop

a,

pop

ab, a a a a b b

Input string

Output queue

b

X

a

a

a

a

a a b a a

3

𝚲

Empty Stack acceptance example:

Λ, 𝑋

𝑝𝑜𝑝

Stack is empty

accepted

Λ, 𝑋

𝑛𝑜𝑝
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Question: is the following PDA a final-state acceptance PDA for 

the language L = { 𝑎𝑛𝑏𝑛 | 𝑛 ∈ 𝑁 }   ?    

University of Kentucky

7. Context-Free Languages & Pushdown 

Automata- Pushdown Automata

𝜦, 𝑿

𝒑𝒐𝒑

𝜦, 𝑿

𝒑𝒐𝒑

Start   X

YES Λ, 𝑋

𝑛𝑜𝑝or

or
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Question: is the following PDA an empty-stack acceptance PDA 

for the language L = { 𝑎𝑛𝑏𝑛 | 𝑛 ∈ 𝑁 }   ?    

University of Kentucky

7. Context-Free Languages & Pushdown 

Automata- Pushdown Automata

𝜦, 𝑿

𝒑𝒐𝒑

𝜦, 𝑿

𝒑𝒐𝒑

Start   X

Is Ʌ accepted?

So Ʌ is accepted b/c the 

stack is empty now X
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Question: is the following PDA an empty-stack acceptance PDA 

for the language L = { 𝑎𝑛𝑏𝑛 | 𝑛 ∈ 𝑁 }   ?    

University of Kentucky

7. Context-Free Languages & Pushdown 

Automata- Pushdown Automata

𝜦, 𝑿

𝒑𝒐𝒑

𝜦, 𝑿

𝒑𝒐𝒑

Start   X

Is abɅ  accepted?

So ab is accepted b/c the 

stack is empty now X

a

Try  aabb, aaabbb, … yourself
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7. Context-Free Languages & Pushdown 

Automata- Pushdown Automata

Deterministic PDA:  at most one legal transition for the same 

combination of input symbol, state and top stack symbol

Nondeterminism can occur in two ways:
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7. Context-Free Languages & Pushdown 

Automata- Pushdown Automata

Deterministic PDA:  at most one legal transition for the same 

combination of input symbol, state and top stack symbol

Nondeterminism: the 2nd case:

 b=Ʌb, hence,  

 if δ(i, Ʌ, C) is not empty, 

 then processing δ(i, b, C)

 could give us two different

 legal transitions. Why?

𝑏, 𝐷

𝑝𝑜𝑝

𝛿 𝑖, 𝑎 𝐶  means when you are in state i, the next input symbol 

is 𝑎 and the top element in the stack is C, the number of 

instructions that can be used for this combination
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7. Context-Free Languages & Pushdown 

Automata- Pushdown Automata

Deterministic PDA:  at most one legal transition for the same 

combination of input symbol, state and top stack symbol

Nondeterminism: the 2nd case:

 In addition to getting δ(i, b, C) ,

 we can get δ(i, Ʌ, C) first and

 then followed by δ(j, b, D) where

 j is the next state of δ(i, Ʌ, C) and

 D is a stack symbol right below C (after popping C).

𝑏, 𝐷

𝑝𝑜𝑝
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7. Context-Free Languages & Pushdown 

Automata- Pushdown Automata

Intuitively,

A PDA is deterministic if

                     |δ(i, a, C)| + |δ(i, Ʌ, C)| ≤ 1

 for any state i, any alphabet symbol a, any stack symbol C.

Deterministic PDA:  never have a choice

Nondeterminisitic PDA: may have several alternatives 

                                       how to continue
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Example. A PDA to accept the language   { | n > 0}   as a

                graph and as a set of 5-tuples.

7. Context-Free Languages & Pushdown 

Automata- Pushdown Automata
nnba

Deterministic or

nondeterministic?

aabb

Will this PDA accept aabbb?

NO. Why?
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Example. A PDA to accept the language   { | n > 0}   as a

                graph and as a set of 5-tuples.

University of Kentucky

7. Context-Free Languages & Pushdown 

Automata- Pushdown Automata
nnba

X
a

Consider: aaabbb a
a

Accepted

(final state)
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Example. A PDA to accept the language   { | n > 0}   as a

                graph and as a set of 5-tuples.

7. Context-Free Languages & Pushdown 

Automata- Pushdown Automata
nnba

In this case, we can recover all the a’s in the given 

string aaabbb.

Each time we pop an ‘a’ out from the stack, we get 

one ‘a’ back. What is the significance of this?

The stack plays the role of 

a counter here, implicitly.

(output: bababa)
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Example. A PDA to accept the language   { | n > 0}   as a

                graph and as a set of 5-tuples.

7. Context-Free Languages & Pushdown 

Automata- Pushdown Automata
nnba

This PDA does not accept  aabbab, but would accept aabb. Why?

Because after the substring aabb is processed, we are in state 1 

and we can only execute the instruction Ʌ,X/nop then.  
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Quiz. How should you modify the machine to accept

          {       | n ∈ N}  (final state)?

University of Kentucky

7. Context-Free Languages & Pushdown 

Automata- Pushdown Automata

nnba

2) nop, ,,,0( X

Answer: Add the instruction

                                                     

nop

X,
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Example. A PDA to accept the language { | n > 0} as a

                graph and as a set of 5-tuples.

University of Kentucky

7. Context-Free Languages & Pushdown 

Automata- Pushdown Automata
nnba

Instead of 

0 1

pop

ab,

nop

X,

pop

ab,

)(

,

apush

Xa

Start  X

)(

,

apush

aa

Would this PDA 

also work?
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Example. A PDA to accept the language { | n > 0} as a

                graph and as a set of 5-tuples.

University of Kentucky

7. Context-Free Languages & Pushdown 

Automata- Pushdown Automata
nnba

Deterministic or

nondeterministic?

0 1
Start  X

)(

,

apush

Xa

pop

ab,pop

ab,

nop

X,

)(

,

apush

aa

Would this PDA 

also work?

Take a 

closer

look
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Example. A PDA to accept the language { | n > 0} as a

                graph and as a set of 5-tuples.

University of Kentucky

nnba

0
Start  X

1

pop

ab,pop

ab,

nop

X,

)(

,

apush

Xa

)(

,

apush

aa

Would this PDA 

also work? 

This PDA accepts  

𝑎𝑛1𝑏𝑛1 𝑎𝑛2𝑏𝑛2 ⋯ 𝑎𝑛𝑘𝑏𝑛𝑘 𝑎𝑚 𝑛𝑖 , 𝑘, 𝑚 𝜖 𝑁 }                          

NO

such as: Ʌ, a, aa, aabb, aabbaa, …, aabbaaabbbaa, … 
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Example. Find a PDA to accept the language {           | n ∈ N}.

A solution:

University of Kentucky

7. Context-Free Languages & Pushdown 

Automata- Pushdown Automata
nnba2

2 a’s for

one b

Deterministic, or

nondeterministic?
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Does every high-level programming

language have a deterministic PDA?

University of Kentucky

YES or NO

Yes. Why? because each high-level language 
has a context-free grammar, and a CFG is 
equivalent to a DPDA 
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An important definition:

     Instantaneous  Description (ID) :

        ( current state, unconsumed input, stack contents )

        e.g.,  (0, aaaabb, X)  :  start in state 0 with X on the stack

                                            and the input string being aaaabb

University of Kentucky

7. Context-Free Languages & Pushdown 

Automata- Pushdown Automata

Plays the role 

of a stack
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Example. Find a PDA to accept the language {           | n ∈ N}.

A solution:

University of Kentucky

7. Context-Free Languages & Pushdown 

Automata- Pushdown Automata
nnba2

accepted
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Example. Find a PDA to accept the language {           | n ∈ N}.

A solution:

University of Kentucky

7. Context-Free Languages & Pushdown 

Automata- Pushdown Automata
nnba2

How do I know the PDA should be built this way?
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Example. Find a PDA to accept the language {           | n ∈ N}.

A solution:

University of Kentucky

7. Context-Free Languages & Pushdown 

Automata- Pushdown Automata
nnba2

First, to accept      , we have two choices:

Start   X

nop

X,

Start   X

nop

X,
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Example. Find a PDA to accept the language {           | n ∈ N}.

A solution: Then, build mechanism to push      onto the stack  

University of Kentucky

7. Context-Free Languages & Pushdown 

Automata- Pushdown Automata
nnba2

ma

nop

X,

Start   X

)(

,

)(

,

apush

aa

apush

Xa

nop

X,

Start   X

)(

,

)(

,

apush

aa

apush

Xa
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Example. Find a PDA to accept the language {           | n ∈ N}.

A solution: Then, build mechanism to push      onto the stack  

University of Kentucky

7. Context-Free Languages & Pushdown 

Automata- Pushdown Automata
nnba2

ma

nop

X,

Start   X

)(

,

)(

,

apush

aa

apush

Xa

nop

X,

Start   X

)(

,

)(

,

apush

aa

apush

Xa

Ignore this one because it accepts N}|{ nam
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Example. Find a PDA to accept the language {           | n ∈ N}.

A solution: Then, build mechanism to pop  from the stack

                    2 times for a given   

University of Kentucky

7. Context-Free Languages & Pushdown 

Automata- Pushdown Automata
nnba2

1
Start   X

nop

X,

)(

,

)(

,

apush

aa

apush

Xa

a

2

pop

ab,

b

3

pop

a,
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Example. Find a PDA to accept the language {           | n ∈ N}.

A solution: Then, build mechanism to pop  from the stack

                    2 times for each    ,  to accept     

University of Kentucky

7. Context-Free Languages & Pushdown 

Automata- Pushdown Automata
nnba2

1
Start   X

nop

X,

)(

,

)(

,

apush

aa

apush

Xa

a

2 3

pop

ab,

b

pop

a,

nnba2

nop

X,

pop

ab,
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Example. Find a PDA to accept the language {           | n ∈ N}.

A solution: Then, build mechanism to pop  from the stack

                    2 times for each    ,  to accept     

University of Kentucky

7. Context-Free Languages & Pushdown 

Automata- Pushdown Automata
nnba2

1
Start   X

nop

X,

)(

,

)(

,

apush

aa

apush

Xa

a

2 3

pop

ab,

b nnba2

nop

X,

pop

ab,
Remove this

edge if n>0

pop

a,
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Example. Find a PDA to accept the language {           | n ∈ N}.

Idea: build mechanism to pop  from the stack once for

         for every two    ‘s

University of Kentucky

7. Context-Free Languages & Pushdown 

Automata- Pushdown Automata
nnba 2

32
nop

ab,

pop

ab,

a
b

nop

ab,
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Example. Find a PDA to accept the language {           | n ∈ N}.

Idea: build mechanism to pop  from the stack once for

         for every two    ‘s

University of Kentucky

7. Context-Free Languages & Pushdown 

Automata- Pushdown Automata
nnba 2

3
nop

ab,

pop

ab,

a
b

OR

2
pop

ab,
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Question: is the following PDA a final-state acceptance PDA for 

the language L = { 𝑎𝑛𝑏𝑛 | 𝑛 ∈ 𝑁 }   ?    

University of Kentucky

7. Context-Free Languages & Pushdown 

Automata- Pushdown Automata

𝜦, 𝑿

𝒑𝒐𝒑

𝜦, 𝑿

𝒑𝒐𝒑

Start   X

YES
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Question: is the following PDA an empty-stack acceptance PDA 

for the language L = { 𝑎𝑛𝑏𝑛 | 𝑛 ∈ 𝑁 }   ?    

University of Kentucky

7. Context-Free Languages & Pushdown 

Automata- Pushdown Automata

𝜦, 𝑿

𝒑𝒐𝒑

𝜦, 𝑿

𝒑𝒐𝒑

Start   X

Is Ʌ accepted?

So Ʌ is accepted b/c the 

stack is empty now X



3/4/2025 69

Question: is the following PDA an empty-stack acceptance PDA 

for the language L = { 𝑎𝑛𝑏𝑛 | 𝑛 ∈ 𝑁 }   ?    

University of Kentucky

7. Context-Free Languages & Pushdown 

Automata- Pushdown Automata

𝜦, 𝑿

𝒑𝒐𝒑

𝜦, 𝑿

𝒑𝒐𝒑

Start   X

Is abɅ  accepted?

So ab is accepted b/c the 

stack is empty now X

a

Try  aabb, aaabbb, … yourself
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Transform final-state acceptance to empty-stack acceptance:

Introduce a new start state s, a new stack symbol Y, a new empty 

state e, and construct edges and actions as shown in the 

diagram below. Note that ? stands for any stack symbol.

University of Kentucky

7. Context-Free Languages & Pushdown 

Automata- Pushdown Automata
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Transform final-state acceptance to empty-stack acceptance:

Introduce a new start state s, a new stack symbol Y, a new empty 

state e, and construct edges and actions as shown in the 

diagram below. Note that ? stands for any stack symbol.

University of Kentucky

The arrangement here ensures that if xxxx is accepted 

by the final-state PDA then ɅxxxxɅ is accepted by the 

empty-stack PDA
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Example: given the following final-state PDA, convert it to a

                 empty-stack PDA 

University of Kentucky

7. Context-Free Languages & Pushdown 

Automata- Pushdown Automata

nop

X,
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Example: given the following final-state PDA, convert it to a

                 empty-stack PDA 

University of Kentucky

7. Context-Free Languages & Pushdown 

Automata- Pushdown Automata

nop

X,

s e

)(

,

Xpush

Y

Start    Y

pop

X,

pop

Y,
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Example: given the following final-state PDA, convert it to a

                 empty-stack PDA 

University of Kentucky

7. Context-Free Languages & Pushdown 

Automata- Pushdown Automata

s e

)(

,

Xpush

Y

Start    Y

pop

Y,

OR

pop

X,

pop

X,
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Question: is the new stack symbol ‘Y’ 

really needed here ?

First, non-final states have nothing to do with ‘Y’ or ‘e’.

Consider the following final state acceptance PDA that 

accepts the CFL  L={ 𝑎𝑛𝑏𝑚 | 𝑛, 𝑚 ∈ 𝑁;  𝑛 > 𝑚 }

21

3

0

𝒂, 𝑿

𝒑𝒖𝒔𝒉(𝒂)

𝒂, 𝒂

𝒑𝒖𝒔𝒉(𝒂)

𝒃, 𝒂

𝒑𝒐𝒑

Ʌ, 𝒂

𝒑𝒐𝒑

𝒃, 𝒂

𝒑𝒐𝒑
𝒃, 𝑿

𝒑𝒐𝒑

Ʌ, 𝑿

𝒑𝒐𝒑X

Start

Are  a, aaa, aab, aaaabb, 

aabbbb accepted by this 

PDA ? Yes

But not this one
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Consider the following final state acceptance PDA that 

accepts the CFL  L={ 𝑎𝑛𝑏𝑚 | 𝑛, 𝑚 ∈ 𝑁;  𝑛 > 𝑚 }

0

𝒂, 𝑿

𝒑𝒖𝒔𝒉(𝒂)

𝒂, 𝒂

𝒑𝒖𝒔𝒉(𝒂)

3

Ʌ, 𝒂

𝒑𝒐𝒑

𝒃, 𝒂

𝒑𝒐𝒑

1

𝒃, 𝒂

𝒑𝒐𝒑

2

𝒃, 𝑿

𝒑𝒐𝒑

Ʌ, 𝑿

𝒑𝒐𝒑X

Start

Is  a  accepted by this PDA ?

a Ʌ

Input queue

stack

X

a

Yes
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Consider the following final state acceptance PDA that 

accepts the CFL  L={ 𝑎𝑛𝑏𝑚 | 𝑛, 𝑚 ∈ 𝑁;  𝑛 > 𝑚 }

0

𝒂, 𝑿

𝒑𝒖𝒔𝒉(𝒂)

𝒂, 𝒂

𝒑𝒖𝒔𝒉(𝒂)

3

Ʌ, 𝒂

𝒑𝒐𝒑

𝒃, 𝒂

𝒑𝒐𝒑

1

𝒃, 𝒂

𝒑𝒐𝒑

2

𝒃, 𝑿

𝒑𝒐𝒑

Ʌ, 𝑿

𝒑𝒐𝒑X

Start

Is  aaa  accepted by this PDA ?

a a a Ʌ

Input queue

stack

X

a
a
a

Yes
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Consider the following final state acceptance PDA that 

accepts the CFL  L={ 𝑎𝑛𝑏𝑚 | 𝑛, 𝑚 ∈ 𝑁;  𝑛 > 𝑚 }

0

𝒂, 𝑿

𝒑𝒖𝒔𝒉(𝒂)

𝒂, 𝒂

𝒑𝒖𝒔𝒉(𝒂)

3

Ʌ, 𝒂

𝒑𝒐𝒑

𝒃, 𝒂

𝒑𝒐𝒑

1

𝒃, 𝒂

𝒑𝒐𝒑

2

𝒃, 𝑿

𝒑𝒐𝒑

Ʌ, 𝑿

𝒑𝒐𝒑X

Start

Is  aab  accepted by this PDA ?

a a b Ʌ

Input queue

stack

X

a
a

Yes
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Consider the following final state acceptance PDA that 

accepts the CFL  L={ 𝑎𝑛𝑏𝑚 | 𝑛, 𝑚 ∈ 𝑁;  𝑛 > 𝑚 }

0

𝒂, 𝑿

𝒑𝒖𝒔𝒉(𝒂)

𝒂, 𝒂

𝒑𝒖𝒔𝒉(𝒂)

3

Ʌ, 𝒂

𝒑𝒐𝒑

𝒃, 𝒂

𝒑𝒐𝒑

1

𝒃, 𝒂

𝒑𝒐𝒑

2

𝒃, 𝑿

𝒑𝒐𝒑

Ʌ, 𝑿

𝒑𝒐𝒑X

Start

Is  aabb  accepted by this PDA ?

a a b b Ʌ

Input queue

stack

X

a
a

Yes or No
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Consider the following final state acceptance PDA that 

accepts the CFL  L={ 𝑎𝑛𝑏𝑚 | 𝑛, 𝑚 ∈ 𝑁;  𝑛 > 𝑚 }

0

𝒂, 𝑿

𝒑𝒖𝒔𝒉(𝒂)

𝒂, 𝒂

𝒑𝒖𝒔𝒉(𝒂)

3

Ʌ, 𝒂

𝒑𝒐𝒑

𝒃, 𝒂

𝒑𝒐𝒑

1

𝒃, 𝒂

𝒑𝒐𝒑

2

𝒃, 𝑿

𝒑𝒐𝒑

Ʌ, 𝑿

𝒑𝒐𝒑X

Start

Is  aabbb  accepted by this PDA ?

a a b b b Ʌ

Input queue

stack

X

a
a

No
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3

Ʌ, 𝒂

𝒑𝒐𝒑

0

𝒂, 𝑿

𝒑𝒖𝒔𝒉(𝒂)

𝒂, 𝒂

𝒑𝒖𝒔𝒉(𝒂)

𝒃, 𝒂

𝒑𝒐𝒑

1

𝒃, 𝒂

𝒑𝒐𝒑

2

𝒃, 𝑿

𝒑𝒐𝒑

Ʌ, 𝑿

𝒑𝒐𝒑X

Start

eɅ, 𝑿

𝒑𝒐𝒑

Ʌ, 𝒂

𝒑𝒐𝒑

Ʌ, 𝒂

𝒑𝒐𝒑

Ʌ, 𝑿

𝒑𝒐𝒑

Ʌ, 𝒂

𝒑𝒐𝒑

If we add an empty state ‘e’ and construct new edges 

and instructions as follows, would this give us an empty-

stack acceptance PDA for  L= { 𝑎𝑛𝑏𝑚 | 𝑛, 𝑚 ∈ 𝑁;  𝑛 > 𝑚 

} ? NO. Why?
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It accepts strings 𝑎𝑛, 𝑛 ≥ 1, by empty stack

3

Ʌ, 𝒂

𝒑𝒐𝒑

0

𝒂, 𝑿

𝒑𝒖𝒔𝒉(𝒂)

𝒂, 𝒂

𝒑𝒖𝒔𝒉(𝒂)

𝒃, 𝒂

𝒑𝒐𝒑

1

𝒃, 𝒂

𝒑𝒐𝒑

2

𝒃, 𝑿

𝒑𝒐𝒑

Ʌ, 𝑿

𝒑𝒐𝒑X

Start

eɅ, 𝑿

𝒑𝒐𝒑

Ʌ, 𝒂

𝒑𝒐𝒑

Ʌ, 𝒂

𝒑𝒐𝒑

Ʌ, 𝑿

𝒑𝒐𝒑

Ʌ, 𝒂

𝒑𝒐𝒑

a a Ʌ Ʌ Ʌ

Input queue
stack

X
a
a

Accepted
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It accepts strings 𝑎𝑛𝑏𝑚, 𝑛 ≥ 𝑚, by empty stack

3

Ʌ, 𝒂

𝒑𝒐𝒑

0

𝒂, 𝑿

𝒑𝒖𝒔𝒉(𝒂)

𝒂, 𝒂

𝒑𝒖𝒔𝒉(𝒂)

𝒃, 𝒂

𝒑𝒐𝒑

1

𝒃, 𝒂

𝒑𝒐𝒑

2

𝒃, 𝑿

𝒑𝒐𝒑

Ʌ, 𝑿

𝒑𝒐𝒑X

Start

eɅ, 𝑿

𝒑𝒐𝒑

Ʌ, 𝒂

𝒑𝒐𝒑

Ʌ, 𝒂

𝒑𝒐𝒑

Ʌ, 𝑿

𝒑𝒐𝒑

Ʌ, 𝒂

𝒑𝒐𝒑

a a b Ʌ Ʌ 

Input queue
stack

X

a
a

Accepted
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3

Ʌ, 𝒂

𝒑𝒐𝒑

0

𝒂, 𝑿

𝒑𝒖𝒔𝒉(𝒂)

𝒂, 𝒂

𝒑𝒖𝒔𝒉(𝒂)

𝒃, 𝒂

𝒑𝒐𝒑

1

𝒃, 𝒂

𝒑𝒐𝒑

2

𝒃, 𝑿

𝒑𝒐𝒑

Ʌ, 𝑿

𝒑𝒐𝒑X

Start

eɅ, 𝑿

𝒑𝒐𝒑

Ʌ, 𝒂

𝒑𝒐𝒑

Ʌ, 𝒂

𝒑𝒐𝒑

Ʌ, 𝑿

𝒑𝒐𝒑

Ʌ, 𝒂

𝒑𝒐𝒑

But it would accept strings 𝑎𝑛𝑏𝑛, n ≥1, 

by empty stack

a a b b Ʌ 

Input queue
stack

X

a
aaccepted
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3

Ʌ, 𝒂

𝒑𝒐𝒑

0

𝒂, 𝑿

𝒑𝒖𝒔𝒉(𝒂)

𝒂, 𝒂

𝒑𝒖𝒔𝒉(𝒂)

𝒃, 𝒂

𝒑𝒐𝒑

1

𝒃, 𝒂

𝒑𝒐𝒑

2

𝒃, 𝑿

𝒑𝒐𝒑

Ʌ, 𝑿

𝒑𝒐𝒑

Y Start

eɅ, 𝑿

𝒑𝒐𝒑

Ʌ, 𝒂

𝒑𝒐𝒑

Ʌ, 𝒂

𝒑𝒐𝒑

Ʌ, 𝑿

𝒑𝒐𝒑

Ʌ, 𝒂

𝒑𝒐𝒑

Using a new stack symbol ‘Y’ in the transformation 

process is necessary here.

s Λ, 𝑌

𝑝𝑢𝑠ℎ(𝑋)

Λ, 𝑌

𝑝𝑜𝑝

aabb would not 

be accepted here

So Y is really needed here
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A final state acceptance PDA for the language

 L = { 𝑎𝑛𝑏𝑛 | 𝑛 ∈ 𝑁 }   ?    

University of Kentucky

𝜦, 𝑿

𝒑𝒐𝒑

𝜦, 𝑿

𝒑𝒐𝒑

Start   X

When  Ʌ  is accepted, the stack is empty 

X
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A final state acceptance PDA for the language

 L = { 𝑎𝑛𝑏𝑛 | 𝑛 ∈ 𝑁 }   ?    

University of Kentucky

𝜦, 𝑿

𝒑𝒐𝒑

𝜦, 𝑿

𝒑𝒐𝒑

Start   X

When abɅ   is accepted, the stack is empty

X

a
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In this case, when we do the transformation, a new stack 

symbol ‘Y’ is also needed b/c otherwise we wouldn’t be 

able to move from state 2 to state ‘e’.

University of Kentucky

s e

)(

,

Xpush

Y

Start    Y

pop

Y,

pop

X,

pop

X,

Y
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Transform empty-stack acceptance to final-state acceptance:

Introduce a new start state s, a new stack symbol Y, a new final 

state ƒ, and construct edges and actions as shown in the 

diagram below.

University of Kentucky

7. Context-Free Languages & Pushdown 

Automata- Pushdown Automata
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The arrangement here ensures that if xxxx is accepted 

by the empty-stack PDA then ɅxxxxɅ is accepted by the 

final-state PDA
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Theorem: The context-free (C-F) languages are exactly

                 the languages accepted by PDAs.

Proof:  We’ll see two algorithms,

           one to transform a C-F grammar to an empty-stack PDA,

           & one to transform an empty-stack PDA to a C-F 

           grammar.     QED.

       

            University of Kentucky

7. Context-Free Languages & Pushdown 

Automata- Pushdown Automata

C-F grammar    empty-stack PDA    final-state PDA 
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7. Context-Free Languages & Pushdown 

Automata- Pushdown Automata

For each programming language, 

there is a PDA to recognize that 

programming language. 

Why?

b/c each programming language is 

a context-free language
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Transform C-F grammar to empty-stack PDA:

    - The idea is to use the stack of the PDA to simulate the

       (leftmost) derivation of a string in the grammar.

    -  The PDA has ONE STATE, but we allow multiple stack 

      operations. 

    -  The stack symbols are the terminals and nonterminals of the

      grammar.

    -  The designated starting stack symbol is the grammar start 

      symbol.    

                                     

7. Context-Free Languages & Pushdown 

Automata- Pushdown Automata
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N = { S }

T = { a, b }

S : start symbol

P =  
S →  Λ

S → aSb
S → aaS

 

0
start

S 

Λ, 𝑆

< 𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ 𝑆 , 𝑝𝑢𝑠ℎ 𝑎 , 𝑝𝑢𝑠ℎ 𝑎 >

𝑎, 𝑎

𝑝𝑜𝑝

𝑏, 𝑏

𝑝𝑜𝑝

Λ,𝑆

𝑝𝑜𝑝
  

Λ, 𝑆

< 𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ 𝑏 , 𝑝𝑢𝑠ℎ 𝑆 , 𝑝𝑢𝑠ℎ 𝑎 >

Transform C-F grammar to empty-stack PDA: 
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N = { S }

T = { a, b }

S : start symbol

P =  
S →  Λ

S → aSb
S → aaS

 

Transform C-F grammar to empty-stack PDA: 

What is the language of 

this C-F grammar?

𝑎𝑚+2𝑛𝑏𝑚 | 𝑛, 𝑚 𝜖 𝑁

Ʌ, aa, aaaa, … , 𝑎2𝑛, …
 ab, aaab, aaaaab, …

aabb, aaaabb, aaaaabbb, …
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Now, consider the following PDA:

Deterministic or 

non-deterministic?

Transform C-F grammar to empty-stack PDA: 
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DFA vs NFA
For a DFA, you have only one chance to determine if 

a given string is accepted by the DFA because there 

will be only one path in the DFA for that string. If that 

path does not lead to a final state, then the only 

conclusion is that string is not accepted by the DFA. 

For an NFA, there could be several different paths in 

the NFA for that string. If one path does not lead to a 

final state, you can try other available paths  to see if 

one of them would work.
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Transform C-F grammar to empty-stack PDA:                                     

PDA instructions:

(0, a, a, pop, 0)

(0, b, b, pop, 0)

(0, Ʌ, S, pop, 0)

(0, Ʌ, S, <pop, push(b), push(S), push(a)>, 0)

(0, Ʌ, S, <pop, push(S), push(a), push(a)>, 0)
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Transform C-F grammar to empty-stack PDA:                                     

How do I know the PDA should be constructed 

the above way?

The work of a PDA reverses the work of a 

grammar in the sense that a grammar generates 

a string while a PDA executes a string

For instance:       S ⟹ 𝑎𝑆𝑏 ⟹ 𝑎𝑎𝑎𝑆𝑏 ⟹ 𝑎𝑎𝑎𝑏

On the other hand:    aaab → aab → ab → b → Ʌ
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when top symbol of the stack is a nonterminal 

and next input symbol is not a Ʌ

then put a Ʌ in front of the un-consumed portion 

of the input string 

and the PDA should have an instruction for you 

to replace the top symbol of the stack with the 

right hand side of a grammar production.

Key Idea:
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)0,)(),(),(,,,,0( apushSpushbpushpopS

S
a

)0,,,,0( popaa

)0,)(),(),(,,,,0( apushapushSpushpopS

S
a
a

)0,,,,0( popaa

)0,,,,0( popaa

)0,,,,0( popS

)0,,,,0( popbb

),,0(

),,0(

),,0(

),,0(

),,0(

),,0(

),,0(

),,0(









bb

Sbb

aSbab

aaSbaab

Sbaab

aSbaaab

Saaab

Accepted
b
S
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a

S

b

S

b

a

a

S

b

a

S

b

S

b

b

S

push

pop

+

push pop

pop

+

push pop pop pop

),,0(

),,0(

),,0(

),,0(

),,0(

),,0(

),,0(

),,0(









bb

Sbb

aSbab

aaSbaab

Sbaab

aSbaaab

Saaab

S → aSb S → aaS S → Ʌ

S ⟹ 𝑎𝑆𝑏 ⟹ 𝑎𝑎𝑎𝑆𝑏 ⟹ 𝑎𝑎𝑎𝑏

(Left-most derivation of aaab)

So operations on the stack 

reflect derivation of the string 

aaab
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So, when the PDA processes the 

string aaab, operations on the stack 

of the PDA reflect the derivation of 

the string aaab

Now the process of transforming a

C-F grammar to an empty-stack 

PDA

Transform C-F grammar to empty-stack PDA:                                     
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Transform C-F grammar to empty-stack PDA:

Basic idea:  

   – Use the stack of the PDA to simulate the (leftmost) derivation

      of a string in the grammar

 • Push S (start symbol of CFG) on the stack

 • From this point on, there are two moves the PDA can make:

1.   1. If a non-terminal A is at the top of the stack, pop it and push the

             right-hand side of a production A → B1B2 ···Bn from G

         2. If a terminal a is at  the top of the stack, pop it and match it with

             whatever symbol is being read from the input string

                                     

7. Context-Free Languages & Pushdown 

Automata- Pushdown Automata
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Leftmost and Rightmost Derivations
Consider the grammar  G = ({S, A, B, C}, {a, b, c}, S, P)

where 

      P = { S → ABC,  A → aA | Ʌ ,  B → bB | Ʌ ,  C → cC | Ʌ  }

Leftmost derivation (always expand the leftmost variable first):

      S ⇒ ABC ⇒ aABC ⇒ aBC ⇒ abBC ⇒ abbBC ⇒ abbC 

         ⇒ abbcC ⇒ abbc    

Rightmost derivation (always expand the rightmost variable 

first):

      S ⇒ ABC ⇒ ABcC ⇒ ABc ⇒ AbBc ⇒ AbbBc ⇒ Abbc 

         ⇒ aAbbc ⇒ abbc    

Note:

1. Different derivations result in different sentential forms, but 

2. For a C-F grammar, it doesn't make difference in what order

    we expand the variables. 
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How to simulate a leftmost derivation of aaab for the grammar                          

      

                                                       

University of Kentucky

7. Context-Free Languages & Pushdown 

Automata- Pushdown Automata

aaSaSbS ||→

a

S

b

S

b

a

a

S

b

a

S

b

S

b

b

Output:  

S

push

pop

+

push pop

a

pop

+

push pop

a

pop

a

pop

pop b

S → aSb ;   S → aaS ;   S → Ʌ𝑆 ⇒ 𝑎𝑆𝑏 ⇒ 𝑎𝑎𝑎𝑆𝑏 ⇒ 𝑎𝑎𝑎𝑏
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Example. For the grammar:                           ,  do a leftmost 

derivation of aaab and show the IDs for executing it.

First, get PDA instructions for terminals and productions:

           Terminals         Corresponding PDA instructions

          Productions        Corresponding PDA instructions

University of Kentucky

7. Context-Free Languages & Pushdown 

Automata- Pushdown Automata

aaSaSbS ||→

)0,,,,0(                  

)0,,,,0(                  

popbbb

popaaa

)0,,,(0,                  

)0,)(),(),(,,,(0,               

)0,)(),(),(,,,,0(               

popSS

apushapushSpushpopSaaSS

apushSpushbpushpopSaSbS

→

→

→

Start with this one
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This is the empty-stack PDA:                                     

Why?
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A leftmost derivation of aaab:

      ID’s for aaab:                 PDA instructions:

University of Kentucky

)0,)(),(),(,,,,0( apushSpushbpushpopS

S
a

)0,,,,0( popaa

)0,)(),(),(,,,,0( apushapushSpushpopS

S
a
a

)0,,,,0( popaa

)0,,,,0( popaa

)0,,,,0( popS

)0,,,,0( popbb

),,0(

),,0(

),,0(

),,0(

),,0(

),,0(

),,0(

),,0(









bb

Sbb

aSbab

aaSbaab

Sbaab

aSbaaab

Saaab

Accepted

b
S

First note that:



Here is why:
         ID’s for aaab: 

University of Kentucky

),,0(

),,0(

),,0(

),,0(

),,0(

),,0(

),,0(

),,0(









bb

Sbb

aSbab

aaSbaab

Sbaab

aSbaaab

Saaab
S → aSb

S → aaS

S →  Λ

Λ, 𝑆

𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ 𝑏 , 𝑝𝑢𝑠ℎ 𝑆 , 𝑝𝑢𝑠ℎ(𝑎)
𝑎, 𝑎

𝑝𝑜𝑝

Λ, 𝑆

𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ 𝑆 , 𝑝𝑢𝑠ℎ 𝑎 , 𝑝𝑢𝑠ℎ(𝑎)
Λ, 𝑆

𝑝𝑜𝑝

𝑏, 𝑏

𝑝𝑜𝑝

PDA instructions:

CTG Productions:
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N = { S }

T = { a, b, c, d }

S : start symbol

P =  

S →  d|ABC
A → aA|Ʌ
B → bB|Ʌ
𝐶 → 𝑐𝐶|Ʌ

 

0
start

S 

???

???

Example: transform the following C-F grammar 

to an empty-stack PDA
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P =  

S →  d|ABC
A → aA|Ʌ
B → bB|Ʌ
𝐶 → 𝑐𝐶|Ʌ

 

0
start

S 

𝑎,𝑎

𝑝𝑜𝑝
,

𝑏,𝑏

𝑝𝑜𝑝
, 

𝑐,𝑐

𝑝𝑜𝑝
,

𝑑,𝑑

 𝑝𝑜𝑝
 

Λ, 𝑆

< 𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ 𝑑 >
,
Λ, 𝐴

𝑝𝑜𝑝
,
Λ, 𝐵

𝑝𝑜𝑝
,
Λ, 𝐶

𝑝𝑜𝑝

Λ, 𝑆

< 𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ 𝐶 , 𝑝𝑢𝑠ℎ 𝐵 , 𝑝𝑢𝑠ℎ 𝐴 >
Λ, 𝐴

< 𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ 𝐴 , 𝑝𝑢𝑠ℎ 𝑎 >
Λ, 𝐵

< 𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ 𝐵 , 𝑝𝑢𝑠ℎ 𝑏 >
Λ, 𝐶

< 𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ 𝐶 , 𝑝𝑢𝑠ℎ 𝑐 >

d Input queue

S

Ʌ d

d
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P =  

S →  d|ABC
A → aA|Ʌ
B → bB|Ʌ
𝐶 → 𝑐𝐶|Ʌ

 

0
start

S 

𝑎,𝑎

𝑝𝑜𝑝
,

𝑏,𝑏

𝑝𝑜𝑝
, 

𝑐,𝑐

𝑝𝑜𝑝
,

𝑑,𝑑

 𝑝𝑜𝑝
 

Λ, 𝑆

< 𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ 𝑑 >
,
Λ, 𝐴

𝑝𝑜𝑝
,
Λ, 𝐵

𝑝𝑜𝑝
,
Λ, 𝐶

𝑝𝑜𝑝

Λ, 𝑆

< 𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ 𝐶 , 𝑝𝑢𝑠ℎ 𝐵 , 𝑝𝑢𝑠ℎ 𝐴 >
Λ, 𝐴

< 𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ 𝐴 , 𝑝𝑢𝑠ℎ 𝑎 >
Λ, 𝐵

< 𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ 𝐵 , 𝑝𝑢𝑠ℎ 𝑏 >
Λ, 𝐶

< 𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ 𝐶 , 𝑝𝑢𝑠ℎ 𝑐 >

a Input queue

S

Ʌ a

A

a

B

C

Ʌ Ʌ a Ʌ Ʌ Ʌ

A
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N = { S }

T = { a, b, c, d, e }

S : start symbol

P = 

 

S →  d | e |ABC
A → aA|Ʌ
B → bB|Ʌ
𝐶 → 𝑐𝐶|Ʌ

 

0
start

S 

???

???

Example: transform the following C-F grammar 

to an empty-stack PDA
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P =  

S →  d|e|ABC
A → aA|Ʌ
B → bB|Ʌ
𝐶 → 𝑐𝐶|Ʌ

 

0
start

S 

𝑎,𝑎

𝑝𝑜𝑝
,

𝑏,𝑏

𝑝𝑜𝑝
, 

𝑐,𝑐

𝑝𝑜𝑝
,

𝑑,𝑑

 𝑝𝑜𝑝
,

𝑒,𝑒

𝑝𝑜𝑝
 

Λ, 𝑆

< 𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ 𝑑 >
,

Λ, 𝑆

< 𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ 𝑒 >
,
Λ, 𝐴

𝑝𝑜𝑝
,
Λ, 𝐵

𝑝𝑜𝑝
,
Λ, 𝐶

𝑝𝑜𝑝

Λ, 𝑆

< 𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ 𝐶 , 𝑝𝑢𝑠ℎ 𝐵 , 𝑝𝑢𝑠ℎ 𝐴 >
Λ, 𝐴

< 𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ 𝐴 , 𝑝𝑢𝑠ℎ 𝑎 >
Λ, 𝐵

< 𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ 𝐵 , 𝑝𝑢𝑠ℎ 𝑏 >
Λ, 𝐶

< 𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ 𝐶 , 𝑝𝑢𝑠ℎ 𝑐 >

a a b e Input queue

S

Do this at home
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P =  

S →  d|e|ABC
A → aA|Ʌ
B → bB|Ʌ
𝐶 → 𝑐𝐶|Ʌ

 

0
start

S 

𝑎,𝑎

𝑝𝑜𝑝
,

𝑏,𝑏

𝑝𝑜𝑝
, 

𝑐,𝑐

𝑝𝑜𝑝
,

𝑑,𝑑

 𝑝𝑜𝑝
,

𝑒,𝑒

𝑝𝑜𝑝
 

Λ, 𝑆

< 𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ 𝑑 >
,

Λ, 𝑆

< 𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ 𝑒 >
,
Λ, 𝐴

𝑝𝑜𝑝
,
Λ, 𝐵

𝑝𝑜𝑝
,
Λ, 𝐶

𝑝𝑜𝑝

Λ, 𝑆

< 𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ 𝐶 , 𝑝𝑢𝑠ℎ 𝐵 , 𝑝𝑢𝑠ℎ 𝐴 >
Λ, 𝐴

< 𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ 𝐴 , 𝑝𝑢𝑠ℎ 𝑎 >
Λ, 𝐵

< 𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ 𝐵 , 𝑝𝑢𝑠ℎ 𝑏 >
Λ, 𝐶

< 𝑝𝑜𝑝, 𝑝𝑢𝑠ℎ 𝐶 , 𝑝𝑢𝑠ℎ 𝑐 >

a a b e
Input queue

S

rejected
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End of Context-Free 

Languages and 

Pushdown Automata I

University of Kentucky
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