
1/30/2025 1

CS375:

Logic and Theory of Computing

Fuhua (Frank) Cheng

Department of Computer Science

University of Kentucky

University of Kentucky

1/30/2025 2

Table of Contents:

◼ Week 1: Preliminaries (set algebra, relations,

 functions) (read Chapters 1-4)

◼ Weeks 2-5: Regular Languages, Finite

 Automata (Chapter 11)

◼ Weeks 6-8: Context-Free Languages,

Pushdown Automata (Chapters 12)

◼ Weeks 9-11: Turing Machines (Chapter 13)

University of Kentucky

1/30/2025 3

Table of Contents (conti):

▪ Weeks 12-13: Propositional Logic (Chapter

6), Predicate Logic (Chapter 7),

Computational Logic (Chapter 9),

Algebraic Structures (Chapter 10)

University of Kentucky

1/30/2025 4University of Kentucky

6. Regular Languages & Finite Automata

 - Regular Language Topics

What is the function of a DFA/NFA?

1. A device to recognize a regular language

2. Can also be used as a device to generate

 a regular language

Why?

1/30/2025 University of Kentucky 5

For an edge ‘a’ between two states ‘I‘ and ‘J’ of a given

DFA/NFA,

I J
c

a “path” between I and J through c is represented as

follows:
I → cJ

I is called the start point, J is called the end point. I and

J could be the same if edge c is a loop of state I.

For each final state ‘F’ of the DFA/NFA, define an

“empty path” as follows:

‘F’ is both the start point and end point of this path.

F → Ʌ

1/30/2025 University of Kentucky 6

Two paths can be merged into a single path if start

point of the second path is the same as the end point of

the first path. So for the following two paths,

I → cJ J → dK

after merge, we get a path between ‘I’ and ‘K’ through

c and d, represented as follows:

I → cdK

I J
c

K
d

L
e

Several paths can be merged to form longer path. The

path representation for the following case is

I → cdeL

1/30/2025 University of Kentucky 7

In the following case if L is a final state,

then we can merge the path I → cdeL with the empty

path L → Ʌ to get a path represented as follows:

 I → cde

The right hand side of the path representation is a

string only.

I J
c

K
d

L
e

A string can be generated by a DFA/NFA if there

is a path from the start state of the FA to a final

state such that the right hand side of the path

representation is that string only.

1/30/2025 8University of Kentucky

For the following DFA, the string ‘aba’ can be

generated by this DFA because aba is the right

hand side of the path representation S → aba

constructed as follows:

S

a
I

a

bb

a
L a,b

b

J

aK

b

S → aI; I → bJ; J → aK; K → Ʌ

S → abJ

S → abaK

S → aba

1/30/2025 9University of Kentucky

6. Regular Languages & Finite Automata

 - Regular Language Topics

How should this function of a DFA/NFA be

characterized ?

Use a regular grammar

1/30/2025 10

Regular languages can be characterized by regular expressions,

 by DFAs, by NFAs, as well as by regular grammars.

RECALL: what is a grammar?

University of Kentucky

6. Regular Languages & Finite Automata

 - Regular Language Topics

a set of rules used to define the structure of the strings

in a language, usually represented as a 4-tuple

G = (N, T, S, P)

N : alphabet of nonterminals (uppercase letters)

T : alphabet of terninals (lowercase letters)

S : start symbol (nonterminal)

P : set of productions

A grammar is like a life creating

and growing mechanism

1/30/2025 11

Example.

University of Kentucky

6. Regular Languages & Finite Automata

 - Regular Language Topics

N = {S} , T = {a, b, c}, S: start symbol,

then the grammar can be represented by the 4-tuple

 G = ({S}, {a, b, c} , S, P)

cSS

bSS

aSS

SP

→

→

→

→

:

1/30/2025 12University of Kentucky

6. Regular Languages & Finite Automata

 - Regular Language Topics

Back to regular grammars -

A regular grammar is a grammar whose productions take the

following form:

 A → wB or A → w

where w is a string of terminals and A and B are nonterminals.

So we can have productions like:

 A → Ʌ

 A → w (w: not empty)

 A → B (A and B can be the same)

 A → wB (w: not empty)

1/30/2025 13University of Kentucky

A regular grammar is a grammar whose productions take the

following form:

 A → wB or A → w

where w is a string of terminals.

A C D B
…

w1 w2 w3 wn

w = w1w2w3…wn

F nust be a final

state

B doesn’t have to

be a final state

Relationship between an RG and an NFA:

A C D F
…w1 w2 w3 wn

1/30/2025 14

A regular grammar is a grammar whose productions take the

following form:

 A → wB or A → w
where w is a string of terminals.

University of Kentucky

‘Regular’ in what sense?

Why do not need a rule of the forms: A → Bw ?

Because for a string w=w1w2w3 generated by the above rule:

 B → Bw3 → Bw2w3 → Bw1w2w3→ Ʌw1w2w3 → w1w2w3

 one can get it by:

 A → w1A → w1w2A → w1w2w3A → w1w2w3Ʌ → w1w2w3

‘Is a regular language context dependent?

1/30/2025 15

Example. Construct a regular grammar for the language of

 { Ʌ, a, b, aa, bb, aaa, bbb, … , 𝑎𝑛, 𝑏𝑛, …}

-

6. Regular Languages & Finite Automata

 - Regular Language Topics

Would S → Ʌ | aS | bS work?

University of Kentucky

𝑆 → Λ ; 𝑆 → 𝑎𝑆 ; 𝑆 → 𝑏𝑆 No

𝑆 → Λ|𝑎𝐴|𝑏𝐵 ; 𝐴 → Ʌ|𝑎𝐴 ; 𝐵 → Λ|𝑏𝐵 Yes

a and b should have separate/

independent breeding lines

1/30/2025 University of Kentucky 16

𝑆 → Λ ;
𝑆 → 𝑎𝑆 ; 𝑆 → 𝑏𝑆

b

a

s

b

a

s

A

B

a

b

𝑆 → Λ 𝑎𝐴 𝑏𝐵 ;
𝐴 → Ʌ|𝑎𝐴 ; 𝐵 → Λ|𝑏𝐵

1/30/2025 17

Example. Write a regular grammar for

 {ab, acb, accb, acccb, accccb, …}.

Solution: A regular expression for the language is ac*b.

 A regular grammar is

 S → aT

 T → b | cT.

University of Kentucky

6. Regular Languages & Finite Automata

 - Regular Language Topics

True? abaTSab :

bacaccbaccTacTaTSbac 22 : 

Would S → aS | b | cS work? NO

Note that ‘a’ and ‘b’

only appear once

1/30/2025 University of Kentucky 18

6. Regular Languages & Finite Automata

 - Regular Language Topics
➢ If a letter, say c, is supposed to appear only once

in a string, then we should not have a production

of the following form:

 S → cS

➢ If a is not supposed to get involved in the growth

of b or b is not supposed to get involved in the

growth of a then we should not have productions

of the following form:

 S → aS | bS

1/30/2025 19

Transforming an NFA to a Regular Grammar

 1. State names become the nonterminals.

 2. Edge symbols of the NFA become the ternimals

 3. The start state becomes the start symbol of the grammar.

 4. For each state transition from I to J labeled with x construct

 a production I → xJ.

 5. For each final state F construct a production F → Λ.

University of Kentucky

6. Regular Languages & Finite Automata

 - Regular Language Topics

JIx →= simply then if

Why?

Why?

1/30/2025 20

Example. Transform the following NFA to a regular grammar.

University of Kentucky

6. Regular Languages & Finite Automata

 - Regular Language Topics

Non-terminals: S, F, I Terminals: a, b

Start symbol: S

Productions : S → aI | F

 I → aI | bF

 F → Ʌ

1/30/2025 21University of Kentucky

6. Regular Languages & Finite Automata

 - Regular Language Topics

NFA Regular Grammar

NFA Regular GrammarRegular Expression

NFA Regular GrammarRegular Expression

1/30/2025 University of Kentucky 23

6. Regular Languages & Finite Automata

 - Regular Language Topics


a ba

Compact regular

grammar

1/30/2025 24

Solution (conti):

 Hence,

University of Kentucky

6. Regular Languages & Finite Automata

 - Regular Language Topics

}5{)5(}4{)4(

}5,3{)3(}5,3,2{)2(

}5,3,2,1{)1(}5,3,2,1,0{)0(

==

==

==



a ba

5


2


0


1 3

4

a ba

1/30/2025 25

Solution: Draw an NFA and then use the algorithm.

University of Kentucky

6. Regular Languages & Finite Automata

 - Regular Language Topics

0 1 2

a
 


 a

b
5 3 4

Then,

1. build the tree on the right

2. identify all distinct nodes

Can we convert this NFA to a

regular grammar directly?

1/30/2025 26

Solution: Draw an NFA and then use the algorithm.

University of Kentucky

6. Regular Languages & Finite Automata

 - Regular Language Topics

{0,1,2,3,5}

 {1,2,3,5} {4}

 {1,2,3,5} {4}

 {3,5}

 {4}



  

a

a

a

a a

b

b

b b

=)0(

b

Then,

1. build the transition table

2. and write it in simplified form

1/30/2025 27

Solution: Draw an NFA and then use the algorithm.

University of Kentucky

6. Regular Languages & Finite Automata

 - Regular Language Topics

Then,

1. build the transition table

2. and write it in simplified form

T a b

S F {0,1,2,3,5} {1,2,3,5} {4}

 F {1,2,3,5} {1,2,3,5} {4}

 {4} {3,5}

 F {3,5} {4}







T a b

S F 0 1 2

 F 1 1 2

 2 3 4

 F 3 4 2

4 4 4

1/30/2025 28

Solution: Draw an NFA and then use the algorithm.

University of Kentucky

6. Regular Languages & Finite Automata

 - Regular Language Topics

Then, draw an DFA

0

a
1

a

bb

a
4 a,b

b

2

a3

b

T a b

S F 0 1 2

 F 1 1 2

 2 3 4

 F 3 4 2

4 4 4

Don’t need

1/30/2025 29

Solution: Draw an NFA and then use the algorithm.

University of Kentucky

6. Regular Languages & Finite Automata

 - Regular Language Topics

Then, draw an DFA

0

a
1

a

bb

a
4 a,b

b

2

a3

b

Don’t need

S

a
I

a

bb

J

aF

b

1/30/2025 30

Solution: Draw an NFA and then use the algorithm.

University of Kentucky

6. Regular Languages & Finite Automata

 - Regular Language Topics

Then, construct a regular grammar

→

→

→

→

|

||

||

:grammar Resulting

bJF

aFJ

bJaII

bJaIS

simplify

S

a
I

a

bb

J

aF

b

→

→

→

|

||

||

baFF

baFaII

baFaIS

→

→

|

||

baFF

baFaSS
can this be further

simplified?

1/30/2025 31

University of Kentucky

6. Regular Languages & Finite Automata

 - Regular Language Topics

How is simplification done?

→

→

→

→

|

||

||

:grammar Resulting

bJF

aFJ

bJaII

bJaIS

simplify

S

a
I

a

bb

J

aF

→

→

→

|

||

||

baFF

baFaII

baFaIS

b

S

a
I

a

baba

Fba

1/30/2025 32

University of Kentucky

S

a
I

a

bb

J

aF

b

b

J

S

a I

a

b

J F a

b

a

?

S

a
I

a

baba

Fba

1/30/2025 33

University of Kentucky

6. Regular Languages & Finite Automata

 - Regular Language Topics

How is simplification done?

Further

simplification

→

→

→

|

||

||

baFF

baFaII

baFaIS

→

→

|

||

baFF

baFaSS

S

a
I

a

baba

Fba

S

a

ba

Fba

1/30/2025 34

University of Kentucky

S

a

ba

Fba

S

a
I

a

baba

Fba

?
ba

J

S

aa*ba

ba

ba+aa*ba

J

S

ba
a*ba

J

S

ba

Why?

ba+aa*ba=(Ʌ+aa*)ba

 =a*ba

1/30/2025 35

Question: Why do we

want to convert this

NFA to a DFA and

then convert it to a

regular grammar?

University of Kentucky

6. Regular Languages & Finite Automata

 - Regular Language Topics

0 1 2

a
 


 a

b
5 3 4

Question: If we convert this NFA to a

regular grammar, would we get the

same regular grammar?

1/30/2025 36University of Kentucky

6. Regular Languages & Finite Automata

 - Regular Language Topics

S A B

a
 


 a

b
F C D

Question: If we convert

this NFA to a regular

grammar, would we

get the same regular

grammar?

S → A

A → aA | B

B → C

C → bD | F

D → aC

F → Ʌ

?
S → aS | baF | Ʌ

F → baF | Ʌ

1/30/2025 37University of Kentucky

S A B

a
 


 a

b
F C D

S → A

A → aA | B

B → C

C → bD | F

D → aC

F → Ʌ

?
S → aS | baF | Ʌ

F → baF | Ʌ

S → aS | C

C → baC | Ʌ

S → aS | baC | Ʌ

C → baC | Ʌ

5


2


0


1 3

4

a ba

1/30/2025 38University of Kentucky

6. Regular Languages & Finite Automata

 - Regular Language Topics

NFA Regular GrammarRegular Expression

NFA Regular Grammar

1/30/2025 39

Transforming a Regular Grammar to an NFA

 1. Replace any production with multiple terminals by

 productions with single terminals.

 2. The start state is the grammar start symbol.

 3. Transform I → aJ into a transition from I to J labeled with a.

 4. Transform I → J into a transition from I to J labeled with Λ.

 5. Transform each I → a into a transition from I to new single

 final state F labeled with a.

 6. The final states are F together with each state I with a

 production I → Λ.

University of Kentucky

6. Regular Languages & Finite Automata

 - Regular Language Topics





→

→
→

bJI

aIS
abJS

1/30/2025 40

5. Transform each I → a into a transition from I to new single

 final state F labeled with a.

 ‘ I → a ‘ means the production stops once ‘ a ‘ is produced, so

‘ a ‘ must be the label of an edge to a final state.

 6. each state I with a production I → Λ is a final state.

 ‘ I → Ʌ ‘ means the production stops at I, so I must be a

 final state.

University of Kentucky

6. Regular Languages & Finite Automata

 - Regular Language Topics

1/30/2025 41

Example. Transform the following regular grammar into an NFA.

 S → abS | T | Λ

 T → cT | d

Solution. Transform S → abS into

 S → aI and I → bS,

so the grammar becomes

 S → aI | T | Λ

 I → bS

 T → cT | d

They can be written as :

University of Kentucky

6. Regular Languages & Finite Automata

 - Regular Language Topics

1/30/2025 42

 S → aI

 S → T

 S → Ʌ

 I → bS

 T → cT

 T → d

Now the NFA can be drawn:

University of Kentucky

6. Regular Languages & Finite Automata

 - Regular Language Topics

b

start S

I

a

TɅ

c

d

F

1/30/2025 43

Example. What is the regular expression for the language of the

 grammar?

Answer:

University of Kentucky

6. Regular Languages & Finite Automata

 - Regular Language Topics

dcab

dcab

dcabab

dcabab

**)(

)()(

)()(

)()(

=

+=

+=

+







≠ (ab)*(c*d)

1/30/2025 44

Regular Languages have an important

property:

University of Kentucky

All sufficiently long words in a regular language may

be pumped to produce a new word that also lies

within the same language.

that is, having a middle

section of the word repeated

an arbitrary number of times

If w = w1 w2 w3 ϵ L

then w1 w2 w2 w3 ϵ L

w1 w2 w2 w2 w3 ϵ L

w1 w2 w2 w2 w2 w3 ϵ L

⋮

Why?

Because of the

Pumping Lemma

1/30/2025 45

University of Kentucky

6. Regular Languages & Finite Automata

 - Regular Language Topics

Why?
A string of length m is built by m edges and so by m+1

states.

An acceptance path

1/30/2025 46

The following graph depicts the situation.

Dotted arrows represent the path of acceptance for s

Letters x, y, and z represent the concatenation of the letters along

the edges of the path. So s = xyz and y ≠ Λ.

 University of Kentucky

6. Regular Languages & Finite Automata

 - Regular Language Topics

x, z could be

empty

1/30/2025 47University of Kentucky

6. Regular Languages & Finite Automata

 - Regular Language Topics
n nExample. The language L = { a b | n ∈ N} is not regular.

Proof: Assume, BWOC, that L is regular.

 Since L is infinite, the Pumping Lemma applies.

 Choose s = 𝑎𝑚𝑏𝑚.

 Then s = xyz, where y ≠ Ʌ, | xy | ≤ 2m, and 𝑥𝑦𝑘𝑧 ∈ L for

 all k ϵ N.

 We claim that y consists completely of a’s or b’s only.

 For if y is of the form y = 𝑎𝑖𝑏𝑗, i > 0, j > 0,

 then we have x = 𝑎𝑚−𝑖 and z = 𝑏𝑚−𝑗.

 So, 𝑥𝑦2𝑧 = 𝑎𝑚−𝑖(𝑎𝑖𝑏𝑗)(𝑎𝑖𝑏𝑗)𝑏𝑚−𝑗 = 𝑎𝑚𝑏𝑗𝑎𝑖𝑏𝑚 ∈ 𝐿.

 But this is a contradiction. So we have either
 𝑦 = 𝑎𝑖, i > 0, or 𝑦 = 𝑏𝑗, j > 0.

1/30/2025 University of Kentucky 48

s = aaaaaaaaaa…......aaaaaaaa|bbbbbbbb………bbbbbbbbbb

m m

m-i m-j

i j

x = 𝑎𝑚−𝑖
y = 𝑎𝑖𝑏𝑗 z = 𝑏𝑚−𝑗

𝑥𝑦2𝑧 = 𝑎𝑚−𝑖(𝑎𝑖𝑏𝑗)(𝑎𝑖𝑏𝑗)𝑏𝑚−𝑗 = 𝑎𝑚𝑏𝑗𝑎𝑖𝑏𝑚 ∈ 𝐿

But this is a contradiction!

Pumping Lemma says:

1/30/2025 49University of Kentucky

6. Regular Languages & Finite Automata

 - Regular Language Topics
n n

Example. The language L = { a b | n ∈ N} is not regular.

Proof (conti.):

 If 𝑦 = 𝑎𝑖 for some i > 0 then xy is a string of a’s.

 Since s = xyz = 𝑎𝑚𝑏𝑚 and 𝑥𝑦2 is also a string of a’s,

 we have 𝑥𝑦2𝑧 = 𝑎𝑚+𝑖𝑏𝑚. By Pumping Lemma, this is

 supposed to be an element of L, but this is impossible

 because a and b have different exponents.

 Similarly we can also prove that if 𝑦 = 𝑏𝑗 for some j > 0,

 we would also get into a contradiction.

 Hence, L can not be regular. QED

1/30/2025 University of Kentucky 50

s = aaaaaaaaaa…......aaaaaaaa|bbbbbbbb………bbbbbbbbbb

m m

k j+m

i j

x = 𝑎𝑘
y = 𝑎𝑖 z = 𝑎𝑗𝑏𝑚

𝑥𝑦2𝑧 = 𝑎𝑘(𝑎𝑖)(𝑎𝑖)𝑎𝑗𝑏𝑚 = 𝑎𝑘+2𝑖+𝑗𝑏𝑚 = 𝑎𝑚+𝑖𝑏𝑚 ∈ 𝐿

But this is a contradiction!

Pumping Lemma says:

y = 𝑎𝑖 , 𝑖 > 0
k + i + j = m

1/30/2025 51

Example. In the previous proof we exhibited a contradiction when

 k = 2. Find similar contradictions for k = 0 and k = 3.

University of Kentucky

6. Regular Languages & Finite Automata

 - Regular Language Topics

1/30/2025 52

Some time it is possible to transform a regular

expression to a regular grammar directly.

University of Kentucky

Consider: ab* + c

{a, ab, abb, abbb, … } { c }

So we must have:

S → aA | c

A → bA | Ʌ

S → aA

A → bA | Ʌ
S → c

Can not use

𝐒 → 𝐚𝐒 here

1/30/2025 53

Some time it is possible to transform a regular

expression to a regular grammar directly.

University of Kentucky

Consider: a*b* + c

{ 𝑎𝑖𝑏𝑗 | 𝑖, 𝑗 ≥ 0} { c }

S → aA | bB | Ʌ | c

A → aA | bB | Ʌ

B → bB | Ʌ

S → aA | bB | Ʌ

A → aA | bB | Ʌ

B → bB | Ʌ

S → c

1/30/2025 54

Some time it is possible to transform a regular

expression to a regular grammar directly.

University of Kentucky

Consider: a*b* + c

{ 𝑎𝑖𝑏𝑗 | 𝑖, 𝑗 ≥ 0} { c }

S → A | B | Ʌ | c

A → aA | bB | Ʌ

B → bB | Ʌ

S → A | B | Ʌ

A → aA | bB | Ʌ

B → bB | Ʌ

S → c

or

1/30/2025 55

Some time it is possible to transform a regular

expression to a regular grammar directly.

University of Kentucky

Consider: a*b* + c

{ 𝑎𝑖𝑏𝑗 | 𝑖, 𝑗 ≥ 0} { c }

S → aS | bS | Ʌ S → c

Would this set of productions work?

NO

1/30/2025 56

Some time it is possible to transform a regular

expression to a regular grammar directly.

University of Kentucky

Consider: a*b*c + ab

{ b*c, a+b*c } { ab }

S → A | ab

A → aA | B

B → bB | c

S → A

A → aA | B

B → bB | c

S → ab

1/30/2025 57

Some time it is possible to transform a regular

expression to a regular grammar directly.

University of Kentucky

Consider: a*b*c + ab

{ b*c, a+b*c } { ab }

S → aA | B

A → aA | B

B → bB | c

S → ab

Would this set of productions work?

YES

1/30/2025 58

Some time it is possible to transform a regular

expression to a regular grammar directly.

University of Kentucky

Consider: a*b*c + ab

{ b*c, a+b*c } { ab }

S → aA | bB | c

A → aA | bB | c

B → bB | c

S → ab

Or, would this set of productions work?

YES

1/30/2025 59

End of Regular

Language and Finite

Automata IV

University of Kentucky

	Slide 1: CS375: Logic and Theory of Computing
	Slide 2: Table of Contents:
	Slide 3: Table of Contents (conti):
	Slide 4: 6. Regular Languages & Finite Automata - Regular Language Topics
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9: 6. Regular Languages & Finite Automata - Regular Language Topics
	Slide 10: 6. Regular Languages & Finite Automata - Regular Language Topics
	Slide 11: 6. Regular Languages & Finite Automata - Regular Language Topics
	Slide 12: 6. Regular Languages & Finite Automata - Regular Language Topics
	Slide 13
	Slide 14
	Slide 15: 6. Regular Languages & Finite Automata - Regular Language Topics
	Slide 16
	Slide 17: 6. Regular Languages & Finite Automata - Regular Language Topics
	Slide 18
	Slide 19: 6. Regular Languages & Finite Automata - Regular Language Topics
	Slide 20: 6. Regular Languages & Finite Automata - Regular Language Topics
	Slide 21: 6. Regular Languages & Finite Automata - Regular Language Topics
	Slide 23
	Slide 24: 6. Regular Languages & Finite Automata - Regular Language Topics
	Slide 25: 6. Regular Languages & Finite Automata - Regular Language Topics
	Slide 26: 6. Regular Languages & Finite Automata - Regular Language Topics
	Slide 27: 6. Regular Languages & Finite Automata - Regular Language Topics
	Slide 28: 6. Regular Languages & Finite Automata - Regular Language Topics
	Slide 29: 6. Regular Languages & Finite Automata - Regular Language Topics
	Slide 30: 6. Regular Languages & Finite Automata - Regular Language Topics
	Slide 31: 6. Regular Languages & Finite Automata - Regular Language Topics
	Slide 32
	Slide 33: 6. Regular Languages & Finite Automata - Regular Language Topics
	Slide 34
	Slide 35: 6. Regular Languages & Finite Automata - Regular Language Topics
	Slide 36: 6. Regular Languages & Finite Automata - Regular Language Topics
	Slide 37
	Slide 38: 6. Regular Languages & Finite Automata - Regular Language Topics
	Slide 39: 6. Regular Languages & Finite Automata - Regular Language Topics
	Slide 40: 6. Regular Languages & Finite Automata - Regular Language Topics
	Slide 41: 6. Regular Languages & Finite Automata - Regular Language Topics
	Slide 42: 6. Regular Languages & Finite Automata - Regular Language Topics
	Slide 43: 6. Regular Languages & Finite Automata - Regular Language Topics
	Slide 44
	Slide 45: 6. Regular Languages & Finite Automata - Regular Language Topics
	Slide 46: 6. Regular Languages & Finite Automata - Regular Language Topics
	Slide 47: 6. Regular Languages & Finite Automata - Regular Language Topics
	Slide 48
	Slide 49: 6. Regular Languages & Finite Automata - Regular Language Topics
	Slide 50
	Slide 51: 6. Regular Languages & Finite Automata - Regular Language Topics
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59

