CS375:
Logic and Theory of Computing

Fuhua (Frank) Cheng

Department of Computer Science

University of Kentucky

1/30/2025 University of Kentucky 1

Table of Contents:

Week 1: Preliminaries (set algebra, relations,
functions) (read Chapters 1-4)

Weeks 2-5: Regular Languages, Finite
Automata (Chapter 11)

Weeks 6-8: Context-Free Languages,
_ Pushdown Automata (Chapters 12)

Weeks 9-11: Turing Machines (Chapter 13)

1/30/2025 University of Kentucky 2

Table of Contents (conti):

Weeks 12-13: Propositional Logic (Chapter
6), Predicate Logic (Chapter 7),
Computational Logic (Chapter 9),
Algebraic Structures (Chapter 10)

Kentucky

D. Reqgular Languages & Finite Automata

- Regular Language Topics

[What IS the function of a DFA/NFA?]

[1. A device to recognize a reqgular language]

a regular language

<
| 2. Can also be used as a device to generate

J

For an edge ‘a’ between two states ‘I' and ‘J’ of a given

DFA/NFA, .
O——O

a “path” between | and J through c Is represented as
follows:

| —» cJ
| Is called the start point, J is called the end point. | and
J could be the same if edge c is a loop of state |.

For each final state ‘F’ of the DFA/NFA, define an
“empty path” as follows:

F—> A
'F’ is both the start point and end point of this path.

Two paths can be merged into a single path If start
point of the second path is the same as the end point of
the first path. So for the following two paths,

| - cJ J — dK

after merge, we get a path between ‘I’ and ‘K’ through
c and d, represented as follows:

| - cdK

Several paths can be merged to form longer path. The
path representation for the following case is

| — cdeL

OO0

In the following case if L is a final state,

C d e
O
then we can merge the path | — cdelL with the empty
path L — /A to get a path represented as follows:

| —» cde

The right hand side of the path representation is a
string only.

A string can be generated by a DFA/NFA if there
IS a path from the start state of the FA to a final

state such that the right hand side of the path
representation Is that string only.

For the following DFA, the string ‘aba’ can be
generated by this DFA because aba is the right
hand side of the path representation S — aba

constructed as follows:

1/30/2025 University of Kentucky 8

D. Reqgular Languages & Finite Automata

- Regular Language Topics

fHow should this function of a DFA/NFA be A

characterized ?
_)

\

§
Use a regular grammar

— _

6 n RegUIar I—anguag Agramn—\ar-i.s Iike.a Ii.fe creat.ing J

_ Regular Language Top and growing mechanism

Regular languages can be charag
by DFAs, by NFAs, as well as

y regular expressions,

RECALL: what is a grammar?

a set of rules used to define the structure of the strings
In a language, usually represented as a 4-tuple

G=(N,T,S,P)
— N : alphabet of nonterminals (uppercase letters)

T . alphabet of terninals (lowercase letters)
S : start symbol (nonterminal)

\P : set of productions /

D. Reqgular Languages & Finite Automata

- Regular Language Topics
Example.
N={S}, T={a, b,c}, S:startsymbol,

P.S—>A
S —aS
S —>DbS
S —>CS

then the grammar can be represented by the 4-tuple

G=({S},{a,b,c},S,P)

1/30/2025 University of Kentucky 11

D. Reqgular Languages & Finite Automata

- Regular Language Topics
Back to regular grammars -

A regular grammar is a grammar whose productions take the
following form:

or
where w is &'string of terminals and A and B aye nonterminals.

Ewe cgn have productions like:
A—-N
A—->w (w: not empty)
A—B (A and B can be the same)
A — wB (w: not empty)

Relationship between an RG and an NFA:

A regular grammar is a grammar whose productions take the
following form:

B doesn’t have to
be a final state

W1 W2 7\ W3 Whn =
Wi N\ W2 /7 N\ W3 = _ Wn
(o) ®

F nust be a final
state

A regular grammar is a grammar whose productions take the
following form:

or LA W

where w Is a string of terminals.

Is a regular language context dependent?

‘Regular’in what sense?

Why do not need a rule of the forms: A — Bw ?

Because for a string w=wiw2ws generated by the above rule:
B — Bws — Bwawz — Bwiwawsz— AWiW2w3 — WiW2ws3

one can get it by:
A - WA — wiw2A — wiw2wsA — wiwaws/A — wiwaws

D. Reqgular Languages & Finite Automata

- Regular Language Top

a and b should have separate/
Independent breeding lines

Example. Construct a regular gra e language of

Would S—>ANA|aS|bS work?

S — AlaA|bB; A - Alad; B - A|bB @

1/30/2025

S - A;
S->aS; S-bS

S — A|aA|bB;
A - AlaA; B - A|bB

16

D. Reqgular Languages & Finite Automata

- Regular Language Topics
Example. Write a regular grammar for
{ab, acb, accb, acccb, accccb, ...}.

Solution: A regular expression for the language is ac*b.
A regular grammar is
S —aTl
I'— b|cCT.

— ab: S=al = ab

ac’b: S=aT = acT = accT = acch = ac’b
Would S—aS|b|cS work?

Note that ‘a’ and ‘b’
only appear once

D. Reqgular Languages & Finite Automata

- Reqular Language Topics
» If a letter, say c, Is supposed to appear only once
In a string, then we should not have a production

of the following form:

S ->CS

» If a Is not supposed to get involved in the growth
of b or b Is not supposed to get involved in the
growth of a then we should not have productions
of the following form:

S_>aS|bS 18

D. Reqgular Languages & Finite Automata

- Reqular Lanquaae Topics

Transforming an NFA to a Regular Grammar

‘1. State names become the nonterminals. ‘ Why?

|2. Edge symbols of the NFA become the ternimals | Why?

|3. The start state becomes the start symbol of the grammar. |

4. For each state transition from | to J labeled with x construct
a production / — xJ.

‘5. For each final state F construct a production ~ — A. ‘

1/30/2025

if x=A thensimply | —>J|

D. Reqgular Languages & Finite Automata

- Regular Language Topics

Example. Transform the following NFA to a regular grammatr.

Non-terminals: S, F, | Terminals: a, b
Start symbol: S

Productions : S —allF
| — al | bF

F—o A

1/30/2025 20

D. Reqgular Languages & Finite Automata

- Regular Language Topics

‘ NFA ‘ “ ‘ Regular Grammar ‘

‘ Regular Expression ‘ “ ‘ NFA ‘ “‘ Regular Grammar ‘

‘ Regular Expression ‘ » ‘ NFA ‘ » ‘ Regular Grammar ‘

1/30/2025 21

Compact regular

0. Regular Languages & | grammar]ata

Example. Transform the regulgzeXpression Into a
regular grammar:

Solution: Draw an NFA and then use the algorithm.

/_ * * /_-\\I
> Nt > R

1/30/2025 University of Kentucky 23

D. Reqgular Languages & Finite Automata

- Regular Language Topics
Solution (conti): ¢ \

A(0)={0,1, 2,3, 5} AQ) ={L, 2, 3, 5}
A(2) ={2, 3, 5} A(3) ={3, 5}
AD={ _ AG)={5

1/30/2025 24

D. Reqgular Languages & Finite Automata

Can we convert this NFA to a
regular grammar directly?

- Regular Language Topics
Solution: Draw an NFA and then use t

a
— G 0- eiaes
@a d \

A— (1238 @
b 7\

1. build the tree on the right ' f/ \i
2. 1dentify all distinct nodes

{0,1,2,3,5}, {1,2,3,5}, {3,5}, D , {4}

o
@
K

D. Reqgular Languages & Finite Automata

- Regular Language Topics
Solution: Draw an NFA and then use the algorithm.

Then,
1. build the transition table

2(0)= {0,1.2,3,5)

2. and write it in simplified form 2
S ' {1,2,3,5) {4)
E T a b : « b
ISF{0.1.235)f {1235} {4) E {1 2,3,5|}_ s

——F {1235} {1235 {4 ;2 |
| (4) 35} @ ! By oA !
E F {35) % 4y ! ! b ff&: |
o lLllag o o W o o

N
(o3}

versity of Kentucky — e o o o o o = =

D. Reqgular Languages & Finite Automata

- Regular Language Topics

Solution: Draw an NFA and then use the algorithm.

Then,

1. build the transition table

2. and write it in simplified form

1/30/2025

: T a b :
ESF{O,1,2,3,5} {1,235} {4 |
L F (1235 {1,235 {4
:) B35 O i
i F {35) %R 7 N
L. 2 | s @

l T a b
'SF 0 1 2
i F 1 1 2
! 2 3 4
L F 3 4 2
: 4 4 4

D. Reqgular Languages & Finite Automata

- Regular Language Topics
Solution: Draw an NFA and then use the algorithm.

Then, draw an DFA

B L T | a b
|

« ESF 0 1 2 i

— R 1 2 :

. i 2 3 4 i

\| : F 3 4 2 :

ab . 4 4 4

1/30/2025 \

, L orcit g of I olek k| - m o = - — = — 28 =— -
Seo__-7 N Don’tneedl

D. Reqgular Languages & Finite Automata

- Regular Language Topics
Solution: Draw an NFA and then use the algorithm.

Then, draw an DFA

1/30/2025 \ 29

| lniviarcityv of Kanticla
S 7’ /\ ’t)
Se__~- Don’t need

D. Reqgular Languages & Finite Automata

- Regular Language Topics
Solution: Draw an NFA and then use the algorithm.

Then, construct a regular grammar

IResulting grammar ::
S—allbJ|A
: | > al |bJ|A
: J —aF
—L F—o>DbJ|A
Simm-s-—;aﬁ =
|I Gl BBl AL can this be further

IF > baF |A : simplified? lf — baF [A

D. Reqgular Languages & Finite Automata
- Regular Language Topics

How Is simplification done?

:Resulting grammar :
I S—al|bJ|A

1 | —al|RlA
: J — aF
[

D. Reqgular Languages & Finite Automata

- Regular Language Topics

How Is simplification done?

_______ I /’

IS > ai |baF |A]]
:I—>al|baF|AI Ai
IF >baF A | -

Further
simplification
=S —&,.Q?:r-baF |A'= % ha
F —>baF |A -
LolaniA_) D
a

aa*ba

ba

ba
\ 4

ba+aa*ba

bataa*ba=(A+aa*)ba
=a*ba

D. Reqgular Languages & Finite Automata

- Regular Language Topics

Question: Why do we
want to convert this
NFA to a DFA and
then convert it to a
regular grammar?

— Question: If we convert this NFA to a
regular grammar, would we get the
same regular grammar?

1/30/2025 University of Kentucky 35

D. Reqgular Languages & Finite Automata

- Regular Language Topics

Question: If we convert
this NFA to a reqgular
grammar, would we
get the same regular
grammar?

S — aS | baF | A
: F— baF | A

36

D. Reqgular Languages & Finite Automata

- Regular Language Topics

‘ NFA ‘ « ‘ Regular Grammar ‘

Regular Expression ‘ « ‘ NFA ‘ « ‘ Regular Grammar

1/30/2025 38

D. Reqgular Languages & Finite Automata

- Regular Language Topics
Transforming a Regular Grammar to an NFA
1. Replace any production with multiple terminals by
productions with single terminals.
2. The start state is the grammar start symRyol.

3. Transform / — aJ into a transition from | to,J labeled with a.

4. Transform / — J into a transition from | to J kabeled with A.

5. Transform each / — a into a transition from | {9 new single
— final state F labeled with a.
6. The final states are F together with each state |
production /| — A.

1/30/2025 University of Kentucky

D. Reqgular Languages & Finite Automata

- Regular Language Topics

5. Transform each / — a into a transition from | to new single
final state F labeled with a.

| — a “means the production stops once ‘a ‘is produced, so
‘a “must be the label of an edge to a final state.

6. each state | with a production / — A is a final state.

‘I — /A" means the production stops at |, so | must be a
final state.

1/30/2025 University of Kentucky 40

D. Reqgular Languages & Finite Automata

- Regular Language Topics
Example. Transform the following regular grammar into an NFA.
S—abS|T|A
I'—cT|d

Solution. Transform S — a@ Into
S—al and [—DbS,
so the grammar becomes
S—al|T|A
T | — bS
I'—cT|d
They can be written as :

1/30/2025 University of Kentucky 41

0.

Regular Languages & Finite Automata

- Regular Language Topics

S — al
S—T

I —DbS start A
—> C \
;—> dT b@

b

Now the NFA can be drawn:

1/30/2025 University of Kentucky 42

D. Reqgular Languages & Finite Automata

- Regular Language Topics
Example. What is the regular expression for the language of the

grammar?
C
2
. A I d .
Answer: 7 7
start —(()T, & @/
5 . I
(ab)" + (ab)*Ac’d b —
=(ab)” + (ab)’c’d

=(ab)"(A+c*d) | | #(ab)*(c*d) |

1/30/2025 University of Kentucky 43

(that IS, having a middle
section of the word repeated

Reqgular

~N

propel an arbitrary number of times y

p 4

Important

within the same language.

/
All suﬁicie%words In a regular language may

be pumped to produce a new word that also lies

If w=wiw2ws €L

then wiw2w2ws €L
W1 W2 W2 W2 W3 € L

W1 W2 W2 W2 W2W3 € L

1/30/2025 University of Kentucky

Why?
Because of the
Pumping Lemma

44

D. Reqgular Languages & Finite Automata

- Regular Language Topics

The Pumping Lemma

If L is an|infinite|regular language, then it is recognized by a DFA
with, say, mstates. If sin L and | s| 2 m, then an acceptance
path for s must pass through some state twice.

An acceptance path

Why?
—A string of length m is built by m edges and so by m+1
states.

1/30/2025 University of Kentucky 45

D. Reqgular Languages & Finite Automata

- Regular Language Topics

The following graph depicts the situation. X, z could be

Start —><3.> H-O-0 O»&I ------ f F\\

t
.@G@y / i
1

Dotted arrows represent the path of acceptance for s
Letters X, y, and z represent the concatenation of the letters along
—the edges of the path. Sos =xyz and y # A.

Assume that the middle state is the first repeated state on the

path. So

xy | £ m. Since the loop can be traversed any number

of times, we have the Pumping property: xv*z e forall k eN.

D. Reqgular Languages & Finite Automata

- Regular Language Topics

Example. The language L = {a"b" | n €N} is not regular. \

Proof: Assume, BWOC, that L Is regular.
Since L is infinite, the Pumping Lemma applies.

Choose s =a™p™.
Then s = xyz, wherey # A\, | xy | £2m, and xy*z €L for
all k eN.

[We claim that y consists completely of a’s or b’s only.
For if yis of the form y=a'b’/, i>0,>0,

then we have x =a™* and z=bpm"/.

So, xy?z =a™ ' (a'b’)(alb/)b™) = a™blalb™ € L.
But this is a contradiction. So we have either
y=al,i>0,or y= bJ,j>0.

47

| m = | > m - |
S = aaaaaaaaaa......... aaaaaaaalbbbbbbbb......... bbbbbbbbbb
| m-i I | »m-j I
=i j—
\ J \
I \ | I
m-—i ! — ,m—j
X=a y = athy z=pMmJ

Pumping Lem S:
xXy?z = am_i(aibj)(aibj)bm_j =

But this Is a contradiction!

e e

D. Reqgular Languages & Finite Automata

- Regular Language Topics

Example. The language L ={a"b" | n €N} is not regular. \

Proof (contl.):

If y = a' for some i > 0 then xy is a string of a’s.
Since s =xyz =a™b™ and xy? is also a string of a’s,
we have xy?z = a™*'p™. By Pumping Lemma, this is
supposed to be an element of L, but this is impossible
—— | because a and b have different exponents.

Similarly we can also prove that if y = b’/ for some j > 0,
we would also get into a contradiction.

Hence, L can not be regular. QED ‘ w©

bbbbbbbbbb

Pumping Lemma says:

xy?z :Mc@!&i)m _ [ak+2i+j})m _ m =

But this Is a contradiction!

D. Reqgular Languages & Finite Automata

- Regular Language Topics
Example. In the previous proof we exhibited a contradiction when
k = 2. Find similar contradictions for k = 0 and k = 3.

Answer: (k = 0) The pumping property implies xy°z € L.

In other words, xz €L. But xz =a™b", which is not
in L because | > 0. This contradiction implies that L is
not regular. QED.

‘ (k = 3) The pumping property implies xy*z € L. But
xy’z =a™?p", which is not in L because i > 0.

This contradiction implies that L is not regular. QED.

1/30/2025 University of Kentucky 51

Some time It Is possible to transform a regular
expression to a regular grammar directly.

Consider: ab* + c Can not use

S — aS here

{a, ab, abb, abbb, .- {c}
' J
So we must have; ‘
S S — aA S— ¢C ‘
A— DbA|A
S— aA|c

A— DbA|A

Some time It Is possible to transform a regular
expression to a regular grammar directly.

Consider: a*b* + c

{a'b/|i,j =0}

T A— aA|bB|A
B— bB|A

A aA|bB|A
B— bB|A

Some time It Is possible to transform a regular
expression to a regular grammar directly.

Consider: a*b* + c

{a'b/|i,j =0} {c}
or ﬂ, ﬂ
(———— K r‘
_[S—2 AIBIA |, S ¢
T A— aA|bB|A
B— bB|A N — = = = — — AN

1S AIBIAlc __,
A— aA|bB|A
B— bB|A

Some time It Is possible to transform a regular
expression to a regular grammar directly.

Consider: a*b* + c

{a'b/|ij =0} {Cll}
S — aS|bS|A | [S—c

Would this set of productions work?

NO

Some time It Is possible to transform a regular
expression to a regular grammar directly.

Consider: a*b*c + ab

Some time It Is possible to transform a regular
expression to a regular grammar directly.

Consider: a*b*c + ab

{ b*c, a+b*cji {aﬁ}
S— aA|B ‘S—> ab
S— A— aA|B
B— bB]|cC

Would this set of productions work?
YES

Some time It Is possible to transform a regular
expression to a regular grammar directly.

Consider: a*b*c + ab

{ b*c, a+b*cﬁ {ab}

4

S aA|bB|c

‘S—> ab
—— |A—> aA|bB]|c

B— bB|c

Or, would this set of productions work?
YES

End of Regular
Language and Finite
Automata IV

	Slide 1: CS375: Logic and Theory of Computing
	Slide 2: Table of Contents:
	Slide 3: Table of Contents (conti):
	Slide 4: 6. Regular Languages & Finite Automata - Regular Language Topics
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9: 6. Regular Languages & Finite Automata - Regular Language Topics
	Slide 10: 6. Regular Languages & Finite Automata - Regular Language Topics
	Slide 11: 6. Regular Languages & Finite Automata - Regular Language Topics
	Slide 12: 6. Regular Languages & Finite Automata - Regular Language Topics
	Slide 13
	Slide 14
	Slide 15: 6. Regular Languages & Finite Automata - Regular Language Topics
	Slide 16
	Slide 17: 6. Regular Languages & Finite Automata - Regular Language Topics
	Slide 18
	Slide 19: 6. Regular Languages & Finite Automata - Regular Language Topics
	Slide 20: 6. Regular Languages & Finite Automata - Regular Language Topics
	Slide 21: 6. Regular Languages & Finite Automata - Regular Language Topics
	Slide 23
	Slide 24: 6. Regular Languages & Finite Automata - Regular Language Topics
	Slide 25: 6. Regular Languages & Finite Automata - Regular Language Topics
	Slide 26: 6. Regular Languages & Finite Automata - Regular Language Topics
	Slide 27: 6. Regular Languages & Finite Automata - Regular Language Topics
	Slide 28: 6. Regular Languages & Finite Automata - Regular Language Topics
	Slide 29: 6. Regular Languages & Finite Automata - Regular Language Topics
	Slide 30: 6. Regular Languages & Finite Automata - Regular Language Topics
	Slide 31: 6. Regular Languages & Finite Automata - Regular Language Topics
	Slide 32
	Slide 33: 6. Regular Languages & Finite Automata - Regular Language Topics
	Slide 34
	Slide 35: 6. Regular Languages & Finite Automata - Regular Language Topics
	Slide 36: 6. Regular Languages & Finite Automata - Regular Language Topics
	Slide 37
	Slide 38: 6. Regular Languages & Finite Automata - Regular Language Topics
	Slide 39: 6. Regular Languages & Finite Automata - Regular Language Topics
	Slide 40: 6. Regular Languages & Finite Automata - Regular Language Topics
	Slide 41: 6. Regular Languages & Finite Automata - Regular Language Topics
	Slide 42: 6. Regular Languages & Finite Automata - Regular Language Topics
	Slide 43: 6. Regular Languages & Finite Automata - Regular Language Topics
	Slide 44
	Slide 45: 6. Regular Languages & Finite Automata - Regular Language Topics
	Slide 46: 6. Regular Languages & Finite Automata - Regular Language Topics
	Slide 47: 6. Regular Languages & Finite Automata - Regular Language Topics
	Slide 48
	Slide 49: 6. Regular Languages & Finite Automata - Regular Language Topics
	Slide 50
	Slide 51: 6. Regular Languages & Finite Automata - Regular Language Topics
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59

