

CS375 HW 7 Solution Set (20 points)

Due date: April 5, 2025

1. (5 points)

The language generated by the following grammar is

(2 points)

 S → abcD | abD D → dD | Ʌ

This grammar is LL(). (1 point)

Use left-factoring we can find an equivalent LL(k) grammar for this grammar where k is

the smallest choice for such an integer. In the following, fill out the blank in the middle

portion to make the resulting grammar such an LL(k) grammar.

 S → abT D → dD | Ʌ (1 point)

What is the value of k? k = (1 point)

2. (6 points)

The language generated by the following grammar is

(2 points)

 S → SaaaS | b

This grammar is left recursive, hence, it is not LL(k) for any k.

Fill out the blank below to make the resulting grammar an equivalent grammar of the

above grammar but with no left-recursion.

 S → bT

 (2 points)

{𝑎𝑏𝑑𝑚, 𝑎𝑏𝑐𝑑𝑛 | 𝑚, 𝑛 𝜖 𝑁}

 𝑇 → 𝑐𝐷 | 𝐷

 or

 𝑇 → 𝑐𝐷 | 𝐷 | Ʌ

 or

 𝑇 → 𝑐𝐷 | 𝐷 | 𝑑 | Ʌ

3

 𝑇 → 𝑎𝑎𝑎𝑆𝑇 | Λ

 or

 𝑇 → 𝑎𝑎𝑎𝑏𝑇𝑇 | Λ

1

{ 𝑏(𝑎𝑎𝑎𝑏)𝑛 | 𝑛 𝜖 𝑁}

Is the resulting grammar LL(k)? Yes No (1 point)

If your answer is YES, then what is the value of k? k = (1 point)

3. (5 points; 1 point each blank)

The following given grammar is a left recursive grammar

 S → Sabcd | abc | ab

The language generated by this grammar is L = { abc(𝑎𝑏𝑐𝑑)𝑚, ab(𝑎𝑏𝑐𝑑)𝑛 |

𝑚 𝑛 𝜖 𝑁 }.

This left recursive grammar can be transformed to a right recursive grammar as

follows:

 S → |

 T → |

x

1

For any given string of this language, say ‘baaabaaab’, the left most letter is always

‘b’. Since the first production of the new grammar ‘𝑆 → 𝑏𝑇’ is the unique first step,

we don’t need to scan any thing to use this production. Once this production is

applied, we would automatically get a match for the first letter of the input screen.

So our first scan starts with the second letter of the input string.

The 2nd letter would be an ‘a’, so the production to use would be ‘𝑇 → 𝑎𝑎𝑎𝑆𝑇’ or

‘𝑇 → 𝑎𝑎𝑎𝑏𝑇𝑇′. The first option gives a match of ‘𝑎𝑎𝑎′, the 2nd through the 4th

letters of the input string. So our next scan would be the 5th letter which would be a

‘b’ and we would have to use the production ‘𝑆 → 𝑏𝑇′ and get a match of the input

lettter, so the next scan would be the sixth letter ‘a’.

If the second option ‘𝑇 → 𝑎𝑎𝑎𝑏𝑇𝑇’ is used for the second scan, we get a match of

‘𝑎𝑎𝑎𝑏′, the 2nd through the 5th letters. So our next scan would be the 6th letter of

the input string like the first option.

As we can see, no matter which option is used for the ‘a’ scanned from the input

queue after the first step, we will either get a match for ‘aaab’ or a match for ‘aaa’

first and then a match for ‘b’, so our next scan would again be an ‘a’ and we again

will repeat the same matching pattern. So, each time, we only need to scan one

letter to determine the production needed for the next derivation step, so that is

why it is LL(1).

3

abT abcT

abcdT Ʌ

This right recursive grammar is an LL() grammar.

4. (7 points)

The following grammar is an indirect left recursive grammar

 S → Babc | aa B → Sabc | b

The language generated by this grammar is

 (2 points)

This indirect left recursive grammar can be transformed to a right

recursive grammar as follows:

 S → | (2 points)

 T → | (2 points)

This right recursive grammar is an LL() grammar. (1 point)

5. (7 points)

In slide 41 of the notes “Context-free Languages and Pushdown Automata IV”, it is

shown that the set of LL(k) languages is a proper subset of the set of deterministic

C-F languages (or see the following figure). In particular, it points out that the

language {𝑎𝑚, 𝑎𝑛𝑏𝑛 | 𝑚, 𝑛 ∈ 𝑁 } is a deterministic C-F, but not LL(k) for any k.

To show the language is not LL(k) for any k, note that a grammar for this language is

b(abc)T aaT

(𝑎𝑏𝑐)2T Ʌ

1

{𝑎𝑎(𝑎𝑏𝑐)2𝑛, 𝑏(𝑎𝑏𝑐)2𝑚+1 | 𝑛, 𝑚 ∈ 𝑁}

(4 points)

(you only need to answer one case here, either one). The language contains Ʌ as

an element. Now consider the case k = 1 and consider the input string ab. When

the first symbol is scanned, we get an ‘a’. This information alone is not enough for

us to make a proper choice. So we don’t even know what to do with the first step in

the parsing process.

For k = 2, if we consider the input string aabb, we face the same problem. For any

k > 2, the input string 𝑎𝑘𝑏𝑘 would cause exactly the same problem. So this

grammar is not LL(k) for any k.

On the other hand, by putting proper instructions into the blanks of the following

figure, we get a deterministic final-state PDA that accepts the language

{𝑎𝑚, 𝑎𝑛𝑏𝑛 | 𝑚, 𝑛 ∈ 𝑁 }.

or

 (3 points)

(again, you only need to answer one case here, either one). Hence, this language

is indeed deterministic C-F, but not LL(k) for any k.

𝑏, 𝑎

𝑝𝑜𝑝

𝑏, 𝑎

𝑝𝑜𝑝

Ʌ, 𝑋

𝑝𝑜𝑝

𝑏, 𝑎

𝑝𝑜𝑝

𝑏, 𝑎

𝑝𝑜𝑝

Ʌ, 𝑋

𝑛𝑜𝑝

6. (4 points)

Fill out the following blanks for the instructions of a Turing machine that accepts the

language {𝑏𝑛𝑎 | 𝑛 ∈ 𝑁}. Use smallest possible non-negative integers to represent

the states of the TM.

7. (6 points)

Fill out the following blanks for the instructions of a Turing machine that accepts

the language {𝑏𝑛𝑎𝑎 | 𝑛 ∈ 𝑁}. Use smallest possible non-negative integers to

represent the states of the TM.

