
CS375 Homework Assignment 6 Solution Set (40 points)

Due date: 03/29/2025

1. (7 points)

Given the context-free grammar { S → AB | c | Ʌ; A → aA | Ʌ; B → bB | Ʌ }, we can

convert it to a one-state empty-stack acceptance PDA as follows.

On the other hand, given such a one-state empty-stack acceptance PDA, we can convert it to

a CFG. In this case, we have one type-4 path, six type-1 paths and four general type-3 paths.

The type-4 and type-1 paths and their corresponding CFG productions are shown below.

In the following, fill out the blanks in the general type-3 paths for
Λ,𝑆

𝑝𝑜𝑝,𝑝𝑢𝑠ℎ(𝐵),𝑝𝑢𝑠ℎ(𝐴)
 ,

Λ,𝐴

𝑝𝑜𝑝,𝑝𝑢𝑠ℎ(𝐴),𝑝𝑢𝑠ℎ(𝑎)
,

Λ,𝐵

𝑝𝑜𝑝,𝑝𝑢𝑠ℎ(𝐵),𝑝𝑢𝑠ℎ(𝑏)
 and

Λ,𝑆

𝑝𝑜𝑝,𝑝𝑢𝑠ℎ(𝑐)
 and the blanks in the corresponding CFG

productions.

After a simple simplification process, we would get a CFG exactly the same as the given one.

2. (2 points)

Final-state acceptance and empty-stack acceptance are equivalent only for NPDA’s. They are

not equivalent for DPDA’s. For DPDA’s the class of languages defined by final-state

acceptance is bigger.

For instance, the language accepted by the above final state DPDA is L={ | n ϵ

N}. But this language is not accepted by this DPDA when viewed as an empty stack DPDA.

3. (5 points)

Given the following final-state DPDA,

and the following strings

 Ʌ, aa, bb, aaa, bbb, ab, abb, aabb, aabbb, aaabbb, aaabbbb

which of these strings are accepted by the given final-state DPDA? Put your answer in the

following blank.

 (1.5 points)

Ʌ, aa, aaa, abb, aabbb, aaabbbb

𝑐𝑛

If the given final-state DPDA is considered as an empty-stack NPDA (state 0 is no longer a

final state), then which of the given strings are accepted by the empty-stack DPDA? Put your

answer in the following blank.

 (1.5 points)

Now, consider the following two general questions. First, what is the language 𝐿1 accepted

by the given final-state DPDA? Put your answer in the following blank.

 𝐿1 = (1 point)

Second, what is the language 𝐿2 accepted by this DPDA when viewed as an empty-stack

DPDA? Put your answer in the following blank.

 𝐿2 = (1 point)

𝐿1 obviously is bigger than 𝐿2.

4. (5 points)

The following empty-stack PDA accepts the language L = { w ϵ {a, b}* | 𝑛𝑏(w) = 2𝑛𝑎(w) }

(assuming Λ ∈ 𝐿). In the following blanks show the execution of the string ababbb by this

PDA.

{𝑎𝑚𝑏𝑚+1 | 𝑚 ∈ 𝑁+}

abb, aabbb, aaabbbb

{𝑎𝑛, 𝑎𝑚𝑏𝑚+1 | 𝑛 ∈ 𝑁, 𝑚 ∈ 𝑁+}

5. (4 points)

The empty-stack PDA given in question #4 has one type 4, four type 1 and eight type 3

instructions. In the following four possible type 3 instructions, which one(s) are legitimate type

3 (i.e., they really exist)?

Put your answer in the following blank.

(b), (d)

6. (6 points)

Given the following parse tree where S, A, B are non-terminals, a and b are terminals and

Ʌ is the empty string, show the corresponding left-most derivation of the yield in the blanks

on the right side. (6 points)

For case (b), consider the string ‘bab’ which is a member of the language L

accepted by the PDA given in Question #4.

The execution of 'bab' by the PDA given in Question #4 can be performed as

follows:

So, by combining the first, the second and the last instructions we get a type 3

path.

 (0.5 points each)

Does the derivation show the grammar is an LL(1) grammar?

 Yes No (1 point)

Does the derivation show the grammar is an LL(2) grammar?

 Yes No (1 point)

7. (2 points)

I claim the following grammar for {𝑎𝑚+𝑛𝑏𝑚𝑐𝑛 | m,n ϵ N} is an LL(1) grammar.

 S → aSc | T T → aTb | Ʌ

My justification is that I can build a leftmost derivation for the string aaabcc by examining

only one input symbol for each step of the derivation. The leftmost derivation is shown

below.

x

x

If you think the above derivation is correct, mark the True box below. Otherwise, mark the

False box and give your reason in the box below the correct box.

8. (4 points)

Given the following context-free grammars for the language {𝑎𝑚+𝑛𝑏𝑚𝑐𝑛 | m,n ϵ N},

(a) S → aSc | aBb | Ʌ

 B → aBb | Ʌ

(b) S → aSc | B | Ʌ

 B → aBb | Ʌ

(c) S → aSc | B

 B → aBb | Ʌ

(i) which one or ones are LL(1)? (2 points)

(ii) which one or ones are ambiguous? (2 points)

None.

Hint: try ‘ab’ as input string for all three cases.

None.

Note that the production ‘S → aSc’ will always be used before any

‘S → aBb’ can be used in the construction of the parse tree for an

input string, except when the input string contains no c’s. In such a

case, only ‘S → aBb’ will be used in the construction of the parse

tree. What this means is: the parse tree of each input string is of a

unique structure. Hence, cannot be ambiguous.

9. (4 points)

Given the following context-free grammars for the language {𝑎𝑚+𝑛𝑏𝑚𝑐𝑛 | m,n ϵ N}, which

one or ones are LL(2) but not LL(1)?

(a) S → aaScc | aaBbc | aaBbb | aBb | ac | Ʌ

 B → aBb | Ʌ

(b) S → aaScc | aaBbc | aBb | ac | Ʌ

 B → aBb | Ʌ

(c) S → aaScc | aaBbc | B | ac | Ʌ

 B → aBb | Ʌ

(d) S → aaScc | aaBbc | B | ac

 B → aBb | Ʌ

10. (3 points)

The language generated by the following grammar is

(1 point)

 S → aS | A | Ʌ A → abA | Ʌ

Is this an LL(1) grammar? Yes No (1 point)

Is this an LL(2) grammar? Yes No (1 point)

• Solutions must be typed (word processed) and submitted both as a pdf file and a word file to Canvas

before 23:59 on 03/29/2025.

• Don’t forget to name your files as

 CS375_2025s_HW6_LastName.docx / CS375_2025s_HW6_LastName.pdf

 x

 x

None.

Hint: try ‘aabb’ as input string for all four cases.

 {𝑎𝑚(𝑎𝑏)𝑛 | 𝑚, 𝑛 𝜖 𝑁 }

Hint: consider ‘aab’ as input string in both cases.

